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Global IP6K1 deletion enhances temperature
modulated energy expenditure which reduces
carbohydrate and fat induced weight gain
Qingzhang Zhu 1, Sarbani Ghoshal 1, Richa Tyagi 2, Anutosh Chakraborty 1,*
ABSTRACT

Objective: IP6 kinases (IP6Ks) regulate cell metabolism and survival. Mice with global (IP6K1-KO) or adipocyte-specific (AdKO) deletion of IP6K1
are protected from diet induced obesity (DIO) at ambient (23 �C) temperature. AdKO mice are lean primarily due to increased AMPK mediated
thermogenic energy expenditure (EE). Thus, at thermoneutral (30 �C) temperature, high fat diet (HFD)-fed AdKO mice expend energy and gain
body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global
IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which
do not express UCP1.
Methods: Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR), fatty acid metabolism assays, and
immunoblot studies were conducted in IP6K1-KO and WT mice or cells.
Results: Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 �C. As a result, IP6K1-KO mice are protected
from DIO, insulin resistance, and fatty liver even at 30 �C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike
AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 �C) exposure enhances carbohydrate expenditure,
whereas 23 �C and 30 �C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation
of the AMPK signaling pathway.
Conclusions: Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions,
which strengthens its validity as an anti-obesity target.

� 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

A gain in body fat occurs when energy intake surpasses its expendi-
ture. Therefore, pathways that modulate intake, absorption, or
expenditure of carbohydrate or fat energy are prospective anti-obesity
targets. Energy is expended by glycolysis and coupled or uncoupled
respiration to generate ATP or heat, primarily in the skeletal muscle or
brown adipose tissue (BAT), respectively. Classic brown and brown-
like beige or brite adipocytes efficiently utilizes energy by the uncou-
pling protein 1 (UCP1) mediated thermogenesis [1e6]. Cold exposure
enhances sympathetic signaling, which primarily induces UCP1
mediated thermogenesis via stimulation of the b-AR (b-adrenergic
receptor) mediated c-AMP/PKA pathway [4,7]. Moreover, various other
factors such as bile acids, FGF21, atrial and ventricular natriuretic
peptides (ANP and BNP), and thyroid hormone (triiodothyronine; T3)
induce browning by stimulating their respective receptors, which
subsequently trigger overlapping mechanisms [1,4,8,9]. Upon entering
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target cells, T3 and T4 (thyroxine) are metabolized by the deiodinases
[10]. The enzyme DIO2 (type II deiodinase) enhances local concen-
tration of active T3 via deiodination of the inactive T4 form in the
adipose tissue [10]. Activated T3 binds to its nuclear receptor and
stimulates the transcriptional program necessary to induce UCP1
mediated thermogenesis [11,12].
UCP1 independent thermogenesis has also been reported [13]. For
example, chronic stimulation of b3-AR enhances metabolic rate in
UCP1-KO mice by increasing mitochondrial biogenesis and fatty acid
oxidation in the white adipose tissue (WAT) [14]. Moreover, FGF21
treatment reduces weight gain and restores energy homeostasis in
UCP1-KO mice by increasing the transcriptional co-activator PGC1a
(peroxisome proliferator-activated receptor gamma coactivator 1-
alpha) expression levels in the inguinal WAT (IWAT) [15,16]. Both
UCP1 dependent and independent thermogenesis as well as coupled
respiration are enhanced by PGC1a [1,7,8,17]. PGC1a promotes these
processes by stimulating several transcription factors and co-
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activators [4,17]. PGC1a expression and activity are regulated by
various pathways including the AMP activated protein kinase (AMPK).
AMPK is a cellular energy sensor [18], which enhances both coupled
and uncoupled respiration mediated EE especially in adipose tissue
and skeletal muscle [19e23]. Hence, the AMPK activator AICAR (5-
Aminoimidazole-4-carboxamide 1-b-D-ribofuranoside) stimulates EE
[24,25]. AMPK stimulates PGC1a activity either by direct phosphory-
lation [26] or by enhancing sirtuin mediated PGC1a deacetylation [22].
The enzyme acetyl CoA carboxylase (ACC) generates malonyl CoA in
the fatty acid biosynthetic pathway [27]. Malonyl CoA inhibits fatty acid
(b)-oxidation by reducing carnitine palmitoyltransferase (CPT) medi-
ated mitochondrial fatty acid uptake. AMPK phosphorylates and inhibits
ACC, which results in reduced fatty acid biosynthesis and increased b-
oxidation [18,20].
In mammals, a family of three IP6 kinases (IP6Ks) primarily convert the
inositol pentakisphosphate IP5 [I(1,3,4,5,6)P5] and the inositol hex-
akisphosphate IP6 [I(1,2,3,4,5,6)P6] (inositol hexakisphosphate) to
inositol pyrophoshates 5PP-IP4 and 5PP-IP5 (5-IP7), respectively [28e
32]. Moreover, in coordination with the enzyme PPIP5K, IP6Ks syn-
thesize 1,5-IP8 [32e34]. At a lower ATP/ADP ratio, IP6Ks dephos-
phorylate IP6 to a specific form of IP5 [Ins(2, 3, 4, 5, 6)P5] [35]. IP6 and
5-IP7 bind protein targets to modulate their functions [28e30]. In
addition, inositol pyrophosphates pyrophosphorylate proteins [28,29].
IP6Ks also regulate certain functions such as lipolysis, via protein-
interaction [36e38]. In rodents, IP6K1 is the major isoform in adi-
pose and other tissues, whereas IP6K3 expression is higher in the
skeletal muscle [39]. Mice with IP6K1 deletion (IP6K1-KO) are pro-
tected from HFD-induced weight gain and insulin resistance [40]. HFD-
fed IP6K1-KO mice (HFD-KOs) maintain insulin sensitivity by sustaining
activity of the insulin sensitizing protein kinase Akt [40]. IP6K1 is
downregulated in IWAT and RWAT (retroperitoneal) depots following
cold exposure [41]. Adipocyte-specific IP6K1-KO (AdKO) mice are
protected against HFD-induced weight gain, at ambient (23 �C), but not
at thermoneutral (30 �C) temperature, although their insulin sensitivity
is preserved at thermoneutrality [41]. IP6K1 reduces adipose tissue
browning mediated thermogenesis by inhibiting AMPK activity [41]. 5-
IP7 inhibits Akt, whereas IP6 stimulates AMPK’s stimulatory phos-
phorylation by upstream kinases [40,41]. Therefore, conversion of IP6
to 5-IP7 by IP6K1 inhibits both the kinases, which regulates insulin
sensitivity and thermogenic EE [40]. Accordingly, the pan IP6K inhibitor
TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] [42] reduces
body weight and insulin resistance via AMPK and Akt activation in diet
induced obese mice [41,43].
Although the lean phenotype of HFD-AdKO mice is abolished at 30 �C
[41], TNP partly blocks weight gain at 30 �C [43]. This indicates that
global-IP6K1 may regulate energy metabolism more robustly than
adipocyte-IP6K1. Moreover, whether global IP6K1 deletion enhances
browning or IP6K1 regulates AMPK mediated energy metabolism in
cells that do not express UCP1 is not known. Here, we determine
effects of global IP6K1 deletion on body weight and EE at various diet
and temperature conditions. Moreover, we used an array of
biochemical assays in UCP1 deficient cells to determine IP6K1’s in-
fluences in AMPK mediated metabolic processes.

2. MATERIALS AND METHODS

2.1. Materials
QPCR: TaqMan probes were purchased from Life Technologies (Grand
Island, NY). Antibodies: UCP1 (cat#U6382): Sigma Aldrich, St. Louis,
MO; phospho (S473; cat#4060) and total Akt (cat#2920), phospho
(S79; cat#3661) and total ACC (cat#3676), phospho (T172; cat#2535)
74 MOLECULAR METABOLISM 6 (2017) 73e85 � 2016 The Authors. Published by Elsevier GmbH. Thi
and total AMPK (cat#5831), phospho-AMPK Substrate (cat#5759),
acetylated-Lysine (cat#9814): Cell Signaling Technology, Danvers MA;
Adiponectin HMW/LMW (cat#5901): BioVision Milpitas, CA; IP6K1
(cat#GTX103949): GeneTex; PGC1a (for immunoblotting,
cat#AB3242): EMD Millipore, Billerica, MA; PGC1a (for immunopre-
cipitation, cat#sc-13067), DIO2 (sc-98716): Santa Cruz Biotechnology,
Dallas, TX. Radiochemicals: [9, 10-3H(N)]-oleic acid (cat#-
NET289001MC), [9, 10-3H(N)]-palmitic acid (cat#NET043001MC) and
[3H] Acetic acid (cat#NET003005MC), PerkinElmer Inc., Boston, MA.
Unless otherwise stated, all chemicals were purchased from Sigma
Aldrich.

2.2. Animals
Animal care and experimentations were approved by the Scripps
Florida, Institutional Animal Care and Use Committee (IACUC). Male
IP6K1-KOs and WT littermates were used [44]. Mice are housed in
groups of 3e5 in a 12 h light/12 h dark cycles at 23 �C and are fed
standard chow, unless otherwise stated. Chow (Harlan Laboratories #
2018SX; 16%, 60% and 24% calories from fat, carbohydrate, and
proteins, respectively) fed (2-month old) and high fat-fed (chow fed for
2 months followed by high fat diet as indicated; Bioserve#S3282; 59%,
26% and 15% calories from fat, carbohydrate, and proteins, respec-
tively), were used in the studies [40]. At 30 �C, DIO was generated
following a standard protocol [45]. Briefly, mice were placed in a 30 �C
room immediately after weaning. After one week of acclimatization,
mice were fed a HFD for indicated time period. Weekly body weight
was monitored. Body composition and GTT were performed at indi-
cated time periods. EE was measured in thermoneutrally placed mice
after 15-weeks of HFD feeding, after which, mice were sacrificed by
CO2 asphyxiation for tissue processing. Rectal temperature was
measured at indicated time points using the RET-3 probe in a TH-5
thermometer (Physitemp) [41].

2.3. Food intake
Food intake was monitored in CD (Chow diet)-fed mice under fed, fast,
and refed conditions using the BioDAQ instrumentation (Research diet)
following previously described procedure [41]. Data represent the
average daily intake. For HFD-fed animals, food intake was measured
at the onset of HFD-feeding, in ad libitum conditions. Average values
are compared by two-tailed Student’s t-test to determine significance.

2.4. CLAMS
Mice were individually placed and acclimatized in a Comprehensive
Laboratory Monitoring System (CLAMS; Columbus Instruments) at
23 �C for 36 h. Afterwards, VO2, VCO2, and spontaneous locomotor
activity were measured for the indicated time periods. Cold-induced
oxygen consumption was assessed by changing the temperature
from 23 �C to 5 �C for 24 h followed by 6 h fasting. For the fasting-
refeeding study, mice were fasted overnight at 23 �C, after which,
food was reintroduced and EE was measured for 10 h. Respiratory
exchange ratio (RER) and energy expenditure (EE) were calculated
using the following equations: RER ¼ VCO2/VO2, EE (kcal/
h) ¼ (3.815 þ 1.232*RER)*VO2. Values were normalized by lean body
mass [41]. Both raw and average values for VO2, EE, and RER are
presented. Based on mean RER values, the exact percentage of VO2
consumed for carbohydrate and fat oxidation was determined [46].

2.5. Body composition studies
Total, fat, lean, and fluid mass of chow-fed and high fat-fed WTs and
IP6K1-KOs were measured using the Minispec LF-NMR (Brucker Op-
tics) analyzer [41].
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: CD-fed IP6K1-KO mice display enhanced carbohydrate oxidation-mediated EE upon fasting/refeeding or following cold exposure. A. At 23 �C, CD-fed (ad libitum) WT and
IP6K1-KO mice display similar VO2 consumption. Fasting reduces VO2 in CD-WTs to a higher extent, than CD-KOs. Refed CD-KO mice also display higher VO2 consumption (n¼ 7e
8 mice/group; t-test). B. Fasting lowers carbohydrate-VO2 in both genotypes; yet, the values are higher in the knockouts. CD-KOs also exhibit higher carbohydrate-VO2 following
refeeding (n¼ 7e8 mice/group; t-test). C. Fat-VO2 is similar in fed and fasted WT and IP6K1-KO mice. Refeeding lowers Fat-VO2 in WT mice to a lower extent; thus, CD-KOs
oxidize less fat than WT, at this condition (n¼ 7e8 mice/group; t-test). D. CD-KO mice display similar VO2 consumption at 23 �C. Acute cold and cold þ fast exposed knockouts
consume more oxygen than WT (n¼ 6 mice/group). E. Average VO2 consumption is enhanced in the CD-KOs following cold and cold þ fast exposures (n¼ 6 mice/group; t-test).
F. Average EE is higher in the CD-KOs following cold and cold þ fast exposures (n¼ 6 mice/group; t-test). G. CD-KO mice display higher carbohydrate-VO2 than WT at 5 �C (n¼ 6
mice/group; t-test). H. Fat-VO2 is largely similar in CD-fed WTs and IP6K1-KOs (n¼ 6 mice/group; t-test). I. Acute cold þ fast exposure decreases body temperature in CD-WT
whereas IP6K1-KO mice are protected. Mice were kept at 5 �C for 8 h followed by acute (6 h) fasting at 5 �C (n¼ 6e8 mice/group; two-way Anova). In all panels, data are
expressed as mean � SEM. *P < 0.05, **P < 0.01, ****P < 0.0001.
2.6. Adipose tissue isolation, histological, and
immunohistochemical analyses
Mice were sacrificed, after which, various adipose tissue depots were
collected, weighed, and rapidly transferred to liquid nitrogen, followed
by storage at �80 �C or in 10% neutral buffered formalin at room
temperature until further processing. EWAT (epididymal; embeds the
vas deferens and the epididymis), IWAT (inguinal; attached dorsally
along the pelvis and skewed ventrally down on to the thigh of the hind
MOLECULAR METABOLISM 6 (2017) 73e85 � 2016 The Authors. Published by Elsevier GmbH. This is an open
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limb), RWAT (retroperitoneal; attached on the dorsal wall of the back)
and BAT (brown; depots above the shoulder blades) were collected
from CD and HFD-fed WT and IP6K1-KO mice were isolated at indi-
cated time periods following a standard procedure [47].
Various adipose tissue depots were sent to Scripps Histology core after
appropriate fixation for two days in 10% neutral buffered formalin.
Eight micron-sections were prepared and subsequently stained with
hematoxylin and eosin (H&E). For UCP1 immunohistochemistry,
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 75
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primary antibody was detected by Vectastain Elite ABC kit and dia-
minobenzidine (DAB) reagent using the manufacturer’s instructions
[41]. Adipocyte size was quantified using ImageJ software.

2.7. Analyses of various plasma parameters
Plasma triglycerides, high-density lipoprotein (HDL), low-density lipo-
protein (LDL), and total cholesterol were determined following standard
procedures at the TSRI metabolic core facility by using the respective
kits (Roche). Plasma T3 was measured using a mouse T3 ELISA kit
(cat# IB19128, Immuno-Biological Lab, Inc. IBL-America, MN),
following the manufacturer’s instructions. Adiponectin complexes were
analyzed following standard protocol. Briefly, 1.5 ml of plasma was
mixed with Laemmli buffer without b-mercaptoethanol. Proteins were
resolved in a 4e15% SDS-PAGE [41,48].

2.8. Glucose (GTT) and AICAR tolerance tests
GTT was measured in thermoneutrally placed HFD-mice following a
standard protocol [41]. AICAR was injected following standard pro-
cedure. Briefly, 2-month old CD-mice were fasted for 6 h before AICAR
(250 mg/kg body weight) injection [49]. Blood glucose, at indicated
time points was monitored.

2.9. RNA isolation and real time PCR
RNA isolation and QPCR were performed following standard proced-
ures [41]. CPT1a and PGC1a mRNA in MEFs (mouse embryonic
76 MOLECULAR METABOLISM 6 (2017) 73e85 � 2016 The Authors. Published by Elsevier GmbH. Thi
fibroblasts) was assessed 2 h post AICAR (1 mM) treatment. Relative
expression was determined using the DDCT method and normalized
to the housekeeping gene b Actin.

2.10. Seahorse analyses to determine mitochondrial oxygen
consumption rate (OCR)
To determine OCR in the RWAT, XF24 Islet Capture Microplates
(#101122) were used [50]. OCR was determined in 3 mg of RWAT
tissue in XF assay medium supplemented with 25 mM glucose and
1 mM pyruvate. FCCP (20 mM) was injected to obtain the maximal OCR.
Results are presented as pmole/min/mg tissue. Mitochondrial respi-
ration was determined in 3T3-L1 preadipocytes and primary inguinal
beige adipocytes following a standard procedure [41]. Beige adipo-
cytes were differentiated from stromal vascular cells isolated from 6 to
8 weeks old mice [41].

2.11. Lipid accumulation in MEFs
WT and IP6K1-KO MEF cells [44] and IP6K1-complemented cells
(complemented with vector, catalytically active, and inactive IP6K1) in
an IP6K1-KO background were used [40]. Cells were seeded at a
density of 1 � 105 cells/well in a 24-well plate. After 24 h, cells were
treated with oleate/BSA mixture (0.4 mM; molar ratio ¼ 6:1) for 24 h
[51,52]. Lipid was stained with ‘Oil Red O’ for 2 h and pictures were
taken using an EVOS microscope. Afterwards, lipids were dissolved by
100% isopropanol and quantified.
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: HFD-fed IP6K1-KO mice exhibit higher fat oxidation at 23�C, albeit switch to carbohydrate oxidation at 5�C. A. HFD-KOs consume more oxygen than WT, both at 23 �C
and 5 �C (n¼ 6e9 mice/group). B and C. Average VO2 and EE are enhanced in HFD-KOs under both temperature conditions (n¼ 6e9 mice/group; t-test). D and E. At 23 �C,
HFD-KO mice oxidize more fat. However, cold exposed HFD-KOs switch to carbohydrate oxidation (n¼ 6e9 mice/group; t-test). F. Cold exposure decreases body temperature in
HFD-WT whereas the knockouts are protected (n¼ 4e5 mice/group; two-way Anova). G. Immunohistochemistry reveals higher UCP1 protein levels in RWAT and IWAT of HFD-KOs.
In all panels, data are expressed as mean � SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
2.12. Fatty acid (b)-oxidation and biosynthesis assays
b-oxidation was measured by the production of [3H] H2O form [3H] OA
or [3H] PA under the following conditions; i) basal: treated 2 h with
radiolabeled fatty acids; ii) fatty acid induced: treated 24 h with cold
fatty acids followed by 2 h treatment of radiolabeled fatty acids and; iii)
AICAR or SIRT modulators induced: cells treated with cold fatty acids
(24 h) [52] then treated with radiolabeled fatty acids for 2 h in presence
of the compounds. b-oxidation was measured following a standard
procedure [53]. This assay specifically measures [3H] H2O, generated
by the b-oxidation process [54]. After four steps of b-oxidation, 75% of
[3H] from 9,10-[3H] fatty acids generate [3H] H2O, whereas 25% make
[3H] acetyl CoA, of which [3H] H2O is measured [54]. Fatty acid
biosynthesis assay was performed in 8-day differentiated 3T3L1 adi-
pocytes by assessing radiolabeling of fatty acids following [3H] Acetic
acid treatment [55].

2.13. Immunoblot and immunoprecipitation studies
Tissues or cells were lysed and processed for immunoblot analyses
following standard procedure [41]. Immunoprecipitation of PGC1a
from MEFs was performed following standard protocol (Cell Signaling
Technology).

2.14. Statistics
Number of mice (n) used in experiments are indicated in each plot.
Plots represent quantification results of at least three independent
MOLECULAR METABOLISM 6 (2017) 73e85 � 2016 The Authors. Published by Elsevier GmbH. This is an open
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samples/experiments. Immunoblots were quantified using ‘ImageJ’
software. For multiple comparisons, one-way or two-way Anova with
Holm-Sidak multiple comparison tests was used. For two independent
data sets, two tailed Student’s t-test was used. Data are presented as
�SEM (****P � 0.0001, ***P � 0.001, **P � 0.01 and *P � 0.05).
Statistical significance was calculated in GraphPad Prism, version 6.

3. RESULTS

3.1. CD-fed IP6K1-KO mice display enhanced carbohydrate
oxidation mediated EE upon fasting/refeeding or following cold
exposure
At 23 �C, chow (CD)-fed WTs and IP6K1-KOs (CD-KOs) consume [44]
and expend similar energy [40], yet the knockouts display slightly less
body mass due to reduced fat accumulation [40]. This indicates that
transient alterations in diet and/or environmental temperature may
enhance EE, which reduces fat mass in the CD-KOs. Therefore, at first,
we examined effects of fasting and refeeding on EE in WTs and IP6K1-
KOs. CD-fed WTs and IP6K1-KOs consume similar VO2 at 23 �C
(Figure 1A; dark, light). Expectedly, fasting reduced VO2 consumption
in both genotypes, although to a slightly lower extent in the knockouts.
Thus, fasted CD-KOs consumed slightly (not significantly) higher ox-
ygen, compared to WT (Figure 1A; fast). Conversely, refeeding
increased VO2 consumption in both genotypes; yet, CD-KOs consumed
marginal albeit significantly higher VO2 (Figure 1A; refed). As
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 77
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previously reported, respiratory ratio (RER) was largely similar in CD-
fed and fasted WT and IP6K1-KO mice, although refed knockouts
displayed a marginal increase in the RER value (Figure S1A). RER
values provide a relative understanding of carbohydrate and fat
mediated oxygen consumption among cohorts. However, they do not
give the exact amount of oxygen consumed for carbohydrate and fat.
Therefore, we calculated these values based on RER and VO2, in
accordance with the literature [46], which revealed that although RER
values were not significantly changed (Figure S1A), VO2 consumed for
carbohydrate, but not fat, oxidation was significantly higher in fasted
IP6K1-KOs compared to WT (Figure 1B and C; dark þ fast).
MOLECULAR METABOLISM 6 (2017) 73e85 � 2016 The Authors. Published by Elsevier GmbH. This is an open
www.molecularmetabolism.com
Conversely, refeeding enhanced carbohydrate-VO2 in both genotypes,
yet the average value was significantly higher in CD-KOs (Figure 1B;
refed). In contrast, fat-VO2 is similar in WTs and IP6K1-KOs under fed
and fasted conditions (Figure 1C; fed and fast). Refeeding reduces fat-
VO2, to a higher extent in the knockouts (Figure 1C; refed). These
results reveal that CD-fed IP6K1-KO mice consume more oxygen for
carbohydrate oxidation, whereas their fat-oxidation is less than WT.
Nevertheless, the resultant energy expenditure is higher in CD-KOs
under fasted and refed conditions, which leads to less fat accumula-
tion. Activity profiles are unchanged (Figure S1B). As observed previ-
ously, food intake is not significantly altered in fed CD-KOs (Table S1;
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daily intake). However, refeeding increases food intake in the knock-
outs for a short period of time (4 h) (Table S1; refed), after which it is
similar in both genotypes (data not shown). The transient increase in
food intake during refeeding in the knockouts, partly compensates for
the expended energy during fasting. However, the compensation is
clearly not enough, as energy expenditure is also higher in refed-KOs,
which leads to less energy accumulation.
Next, we monitored whether environmental temperature variations
differentially influence EE in CD-fed WTs and IP6K1-KOs. CD-KOs
display higher VO2 consumption following cold and cold þ fast ex-
posures (Figure 1DeF; 5 �C and 5 �Cþ fast). Activities are unchanged
(Figure S1C). Carbohydrate-VO2 is favored in cold-exposed CD-KOs,
whereas fat-VO2 is largely similar in both genotypes (Figure 1G and H).
Enhanced EE protects CD-KOs from cold þ fast induced decline in
body temperature (Figure 1I). Mild hypothermia is observed under
cold þ fast conditions (Figure 1I), as only cold-exposed mice do not
show the phenotype (Figure S1D). Together, these results indicate that
although CD-fed IP6K1-KO mice do not display a noticeable increase in
EE under basal conditions, they exhibit higher carbohydrate oxidation
mediated EE under fasted/refed and cold-exposed conditions, which
reduces energy accumulation.

3.2. Global IP6K1 deletion stimulates adipose tissue browning
Next, we determined whether enhanced thermogenic EE in the CD-
KOs, is due to an increase in adipose tissue browning. Indeed, IWAT
of CD-KOs appear smaller and brownish at 23 �C (Figure 2A). UCP1
and PGC1a protein levels are higher in IWAT and RWAT of CD-KOs
(Figure 2B and C). We do not observe any alteration of these pro-
teins in the BAT of CD-KOs (Figure S2A). Other browning and mito-
chondrial activity markers are also elevated in the RWAT and IWAT of
CD-KOs (Figure 2D and E). Moreover, mitochondrial oxygen con-
sumption rate (OCR) was increased in the CD-KO RWAT explants
(Figure 2F). IP6K1 deletion enhanced OCR in beige adipocytes in vitro
(Figure 2G and H and Figure S2B). Extracellular acidification rate
(ECAR), which indirectly measures glycolytic rate, was similar in WT
and IP6K1-KO beige adipocytes (Figure S2C). Thus, IP6K1 deletion
enhanced adipose tissue browning mediated thermogenic EE.

3.3. HFD-fed IP6K1-KO mice exhibit higher fat oxidation at 23 �C,
albeit switch to carbohydrate oxidation at 5 �C
Energy intake was similar in HFD-fed WTs and IP6K1-KOs (Table S2).
However, HFD-KO mice displayed higher VO2 and EE at both 23 �C and
following cold and cold þ fast exposures (Figure 3AeC). Activities
were unaltered under these conditions (Figure S3A). At 23 �C, HFD-KO
mice exhibited more fat-VO2, albeit at 5 �C, they switched to carbo-
hydrate-VO2 (Figure 3D and E). Efficient carbohydrate EE protected
HFD-KOs from acute cold þ fast induced decline in body temperature
(Figure 3F). HFD-KO mice also displayed higher UCP1 protein level in
Figure 6: IP6K1 enhances cellular fat accumulation by diminishing AMPK mediated ene
treatment. B. b (OA)-oxidation is increased in IP6K1-KO MEFs following OA (24 h) treatme
(n¼ 3; t-test). C. AICAR treated IP6K1-KO MEFs display enhanced b-oxidation (n¼ 3; two
IP6K1 restores OA-induced fat storage. E. Catalytically active but not inactive Myc-IP6K1 co
Anova). F. PGC1a mRNA expression is higher in IP6K1-KO MEFs, which is further enhance
treated IP6K1-KO MEFs. AMPK activity on PGC1a is also enhanced whereas PGC1a acety
(S79) are enhanced in OA-treated IP6K1-KO MEFs. I. TNP enhances AMPK phosphorylation
phosphorylation and activity in control but not in TNP treated cells. J and K. TNP enhances
enhances AMPK phosphorylation in 3T3L1 adipocytes, under basal conditions. AICAR wa
biosynthesis in 3T3L1 adipocytes. The ACC inhibitor TOFA was used as a positive control (n
activity in the RWAT depot. O. CD-KOs, at 23 �C, are sensitive to AICAR induced reduc
expressed as mean � SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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RWAT and IWAT depots (Figure 3G, Figure S3B). Moreover, they
exhibited reduced adipocyte size and fat accumulation in various ad-
ipose tissue depots (Figure S3CeE). These results suggest that HFD-
fed IP6K1-KOs exhibit enhanced fat oxidation at ambient temperature,
albeit switch to carbohydrate oxidation following cold exposure.
Moreover, efficient thermogenic EE protects these mice from HFD-
induced weight gain.

3.4. Thermoneutrality delays, yet does not abolish the lean
phenotype of HFD-fed IP6K1-KO mice
At 23 �C, global IP6K1-KOs were dramatically protected against HFD-
induced weight gain [40]. The lean phenotype of IP6K1-KOs was
evident from the onset of HFD-feeding [40] (Figure S4A). AdKO mice
also displayed a similar phenotype [41], although the difference in
weight gain between control and knockouts was more robust in the
global knockouts [40,41]. Moreover, adipocyte-specific IP6K1 controls
body weight primarily via regulation of adipose tissue browning
mediated thermogenesis. Accordingly, the lean phenotype of HFD-fed
AdKO mice was abolished at thermoneutral (30 �C) temperature [41].
Conversely, thermoneutrality impaired but does not abolish the lean
phenotype of HFD-fed global IP6K1-KO mice (Figure S4B). Thus, after
4-weeks of HFD, IP6K1-KO mice, at 23 �C, gained w7.6 g less body
weight than WT (Figure S4A) whereas at 30 �C, they gained similar
body weight (Figure S4B). After 4-weeks, IP6K1-KO mice exhibited a
sluggish rate of weight gain (Figure S4B). At 23 �C, the difference in KO
vs WT weight gain reached saturation by 6 weeks (Figure S4A),
whereas at 30 �C, it took 14-weeks for the knockouts to attain such a
difference (Figure S4B). After 14-weeks of HFD-feeding at 30 �C, HFD-
KOs accumulated less total and percent (over total body weight) fat
(Figure 4A and B). Total lean mass was lower, whereas percent lean
mass was higher in the knockouts (Figure 4A and B). The knockouts
accumulated less fat in various adipose-depots (Figure 4C and D).
Moreover, the thermoneutral-KO mice were protected from fatty liver
(Figure 4C and D). The knockouts also displayed reduced serum levels
of triglycerides (TAG), cholesterol, HDL, and LDL (Figure 4EeH).
At 23 �C, HFD-KOs displayed lower blood glucose level than WT, after
8-weeks of HFD [40], whereas they were largely similar in both ge-
notypes at 30 �C (Figure S4C; 8 wks). Similarly, after 8-weeks of HFD
at 30 �C, the knockouts displayed a slight improvement in GTT
(Figure S4D and E) compared to a substantial improvement at 23 �C
[40]. After 14-weeks, blood glucose level was significantly higher,
whereas glucose disposal (GTT) rate was lower, compared to knock-
outs (Figure 4I and J and Figure S4C; 14 wks). Accordingly, stimulatory
phosphorylation of the insulin effector protein kinase Akt was higher in
HFD-KO RWAT and liver (Figure 4K). Moreover, expression level of the
insulin sensitizing adipokine adiponectin (AdipoQ) was significantly
higher in the knockouts (Figure S4F). Monomeric AdipoQ generates
low and high molecular weight oligomers (LMW and HMW), of which
rgy metabolism. A. IP6K1-KO MEFs accumulate less fat following oleate (OA, 24 h)
nt. However, b (PA)-oxidation is increased under basal and PA (24 h) treated conditions
-way Anova). D. Complementation of IP6K1-KO MEFs with active but not inactive Myc-
mplementation reduces AICAR induced b-oxidation in IP6K1-KO MEFs (n¼ 3; one-way
d by AICAR treatment (n¼ 3; two-way Anova). G. PGC1a protein level is higher in OA-
lation is reduced. H. AMPK stimulatory phosphorylation (T172) and its activity on ACC
and activity in glucose starved 3T3L1 preadipocytes. Glucose induction reduces AMPK
OCR in starved and glucose induced 3T3L1 preadipocytes (8 replicates; t-test). L. TNP
s used as a positive control. M. TNP, at increasing concentrations, reduces fatty acid
¼ 3; one-way Anova). N. CD-KOs, at 23 �C, display higher AMPK phosphorylation and

tion in blood glucose level (5e6 mice/group; two-way Anova). In all panels, data are
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HMW is the potent insulin sensitizing form. Serum levels of HMW and
LMW AdipoQ were significantly higher in the knockouts (Figure 4L and
M and Figure S4G). Serum levels of total proteins were similar
(Figure S4H). These results indicate that thermoneutrality delays, but
does not abolish, manifestation of improved metabolic parameters in
global IP6K1-KO mice.

3.5. HFD-fed IP6K1-KO mice display greater fat oxidation mediated
EE at 30 �C
Next, we monitored adipose tissue browning and mitochondrial activity
markers in thermoneutrally placed HFD-fed mice. Unlike HFD-fed
AdKO, in which UCP1 is similarly expressed as LoxP control mice
[41], global IP6K1-KO displayed a depot-specific UCP1 expression. For
instance, RWAT-KO exhibited higher UCP1 mRNA and protein levels
compared to RWAT-WT (Figure 5A and B; RWAT). Conversely, UCP1
mRNA levels were lower in the IWAT than RWAT and they are similar,
whereas protein was undetectable in both genotypes (Figure 5A and B;
IWAT). Similar to AdKO mice [41], we did not observe any alterations in
tyrosine hydroxylase protein and pPKA substrate phosphorylation
levels, indicating that sympathetic signaling is unaltered in global
IP6K1-KO mice (data not shown). Plasma T3 levels were also similar in
WT and IP6K1-KO mice at this condition, indicating that the hypo-
thalamusepituitaryethyroid axis is unaffected by IP6K1 deletion
(Figure S5A). However, protein levels of DIO2 were augmented to a
higher extent in the RWAT of IP6K1-KO mice, indicating that local al-
terations in thyroid signaling may alter UCP1 expression in the
knockouts (Figure 5C and D and Figure S5B). On the other hand,
expression levels of other mitochondrial energy oxidation markers
were higher in both RWAT and IWAT depots of HFD-KOs at 30 �C,
suggesting the possibility of UCP1 independent EE in the knockouts at
thermoneutrality (Figure 5E and F).
Thereafter, we determined EE in thermoneutral HFD-fed mice. Ther-
moneutrally placed knockouts displayed higher VO2 consumption and
EE (Figure 5G and H and Figure S5C). Unlike cold exposed-KOs,
thermoneutral-KOs exhibited a significant reduction in RER
(Figure S5D). Consequently, thermoneutral-KOs oxidized more fat than
WT (Figure 5I). Carbohydrate oxidation was slightly (not significant)
less in the knockouts compared to WT, at this condition (Figure 5J).
Total activity was similar in both genotypes (Figure S5E). Thus, global
deletion of IP6K1 efficiently oxidized fat at thermoneutral conditions,
presumably via UCP1 dependent and independent mechanisms, which
protected the mice from DIO.

3.6. IP6K1 enhances cellular fat accumulation by diminishing
AMPK mediated energy metabolism
The above studies demonstrate that IP6K1 deletion enhances efficient
switching of carbohydrate and fat oxidation, depending on availability
of the energy source. This unique quality protects IP6K1-KO mice from
gaining body weight, even when they are exposed to a thermoneutral
temperature. These results also indicate that, at least under thermo-
neutral conditions, HFD-KOs oxidize more fat via a mechanism that
may or may not involve UCP1. Moreover, IP6K1 inhibits AMPK [41],
which enhances global EE [20]. Therefore, we tested, whether IP6K1
regulates AMPK mediated energy metabolism in cells, which do not
express UCP1. For this experiment, we simulated HFD-fed conditions
in cells by treating them with the fatty acids oleate (OA) or palmitate
(PA). We selected immortalized undifferentiated mouse embryonic
fibroblast (MEF) cells for the study, as i) IP6K1 is the major 5-IP7
generating enzyme in these cells [44] and ii) they do not express UCP1.
KO-MEFs accumulated 50% less fat (Figure 6A, Figure S6A). Less lipid
82 MOLECULAR METABOLISM 6 (2017) 73e85 � 2016 The Authors. Published by Elsevier GmbH. Thi
accumulation was due to enhanced OA induced b-oxidation in IP6K1-
KO MEFs (Figure 6B; OA). Similar results were obtained with PA,
although its oxidation in the knockouts was enhanced even without PA-
induction (24 h) (Figure 6B; PA). Fatty acid uptake was similar in both
types (data not shown). Moreover, the b-oxidation stimulating action of
the AMPK activator AICAR [25] was further enhanced in IP6K1-KO
MEFs (Figure 6C). Expression of CPT1a was higher in KO-MEFs,
which was further enhanced upon AICAR treatment (Figure S6B).
Enhanced b-oxidation in the knockouts seems to be specific to AMPK
pathway as pharmacologic modulators of sirtuins or other histone
deacetylases (HDACs) did not modulate the process in the knockouts
(Figure S6C). Complementation of IP6K1-KO MEFs with active, but not
inactive, IP6K1 (Figure S6D) restored fat storing capacity of MEFs
(Figure 6D). Moreover, active, but not inactive, IP6K1 complementation
of IP6K1-KO MEFs reduced AICAR induced b-oxidation (Figure 6E).
PGC1a mRNA levels, which were basally higher, were further elevated
by AICAR (Figure 6F). PGC1a protein levels were also elevated in KO-
MEFs upon OA treatment (Figure 6G). Moreover, PGC1a’s acetylation
(inhibitory modification) was decreased, while phosphorylation (stim-
ulatory modification) was increased in OA-treated KO-MEFs
(Figure 6G). AMPK stimulatory phosphorylation (T172) and its activity
on ACC (S79) were also higher in OA-treated IP6K1-KO MEFs
(Figure 6H).
Next, we tested IP6K1’s effects on AMPK mediated energy metabolism
in 3T3L1 cells. We used the IP6K inhibitor TNP for the following rea-
sons; i) IP6K1 is the major isoform in the adipose tissue [39,41], ii) TNP
significantly reduces 5-IP7 levels in 3T3L1 adipocytes [40], iii) TNP
ameliorates DIO in mice by augmenting EE [43], and iv) TNP enhances
AMPK signaling in the adipose tissue and adipocytes [41]. TNP pro-
tected glucose induction mediated inhibition of AMPK in 3T3L1 pre-
adipocytes (Figure 6I). TNP enhanced OCR in starved and glucose-
reintroduced 3T3L1 preadipocytes (Figure 6J and K). 3T3L1 pre-
adipocytes did not express UCP1 and thus, the OCR was not due to
uncoupling in these cells (Figure 6K). Maximal respiratory capacity of
these cells was also enhanced by TNP (Figure 6K). Enhanced carbo-
hydrate oxidation reduced fat accumulation in CD-KOs (Figure 1). It has
been shown that AMPK inhibits fat generation from carbohydrates by
inhibiting ACC mediated fatty acid biosynthesis [20]. We found that
TNP enhanced AMPK activity in mature 3T3L1 adipocytes (Figure 6L)
and inhibited fatty acid biosynthesis (Figure 6M). Similar to what
happened in AdKO mice, AMPK stimulatory phosphorylation and its
activity on ACC were substantially higher in the RWAT depot of CD-fed
IP6K1-KO mice (Figure 6N). Hence, AICAR injection [49] significantly
improved endogenous glucose disposal in CD-fed IP6K1-KO mice
(Figure 6O). Thus, IP6K1 inhibited AMPK signaling, which reduced
thermogenic [41] and non-thermogenic EE that promotes fat accu-
mulation in vivo.

4. DISCUSSION

There are several major findings of the current study. One, global
IP6K1 deletion protects mice from DIO and insulin resistance irre-
spective of environmental temperature conditions. Two, at 23 �C, CD-
fed IP6K1-KO mice do not exhibit increased EE in ad libitum condi-
tions, but they do so upon fasting and refeeding. Moreover, CD-fed
knockouts expend more energy at 5 �C. In these conditions, CD-fed
knockouts oxidize more carbohydrate, which answers the previously
unsolved question, ‘why do IP6K1-KO mice accumulate less fat, even
in chow-fed conditions?’ [40]. Three, HFD-fed IP6K1-KO mice oxidize
more carbohydrate following cold exposure, whereas they oxidize
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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more fat at ambient and thermoneutral temperatures. Four, IP6K1-KO
mice display enhanced UCP1 expression, which is partly impaired at
30 �C, although mitochondrial activity markers are higher in the
knockouts irrespective of temperature conditions. Five, IP6K1 deletion
enhances b-oxidation in a cell autonomous and UCP1 independent
manner. Finally, IP6K1 regulates AMPK mediated fatty acid
metabolism.
At 30 �C, HFD-KOs display higher UCP1 expression compared to WT,
only in the RWAT, whereas expression of other mitochondrial biogenic/
activity markers is elevated in both RWAT and IWAT of the knockouts.
Functional differences including UCP1 expression among various WAT-
depots, depending on diet and temperature conditions are reported
[56], exert distinct effects on adipose tissue functions [4]. Proteomic
studies of various WAT-depots also reveal substantial variations in their
protein levels [57]. In male Wistar rats, UCP1 expression is higher in
RWAT than IWAT under both CD and HFD-fed conditions, although
other markers are expressed to comparable levels [58], which is in line
with our observation. HFD-KOs display increased DIO2 primarily in the
RWAT depot. DIO2 mediated T3 production enhances UCP1 expres-
sion. Accordingly, DIO2-KO mice display impaired UCP1 expression
and thermogenesis [59]. Moreover, DIO2-KO mice are susceptible
to DIO, fatty liver, and insulin resistance specifically at thermoneutral
conditions, presumably due to a reduction in fat oxidation at this
condition [60]. Thus, increased DIO2 levels may partly explain depot
specific UCP1 expression, although further studies are needed to
determine the precise mechanism. Involvement of one or more of other
signaling pathways, such as FGF21, bile acids, and ANP/BNP, may also
be involved in manifestation of the global IP6K1-KO mice phenotype.
These possibilities will be tested in subsequent studies.
Our study also indicates that IP6K1 regulates AMPK mediated energy
metabolism in UCP1 deficient cells. Similar to adipocytes, the AMPK-
PGC1a axis is stimulated in IP6K1-KO MEFs. Under basal conditions,
KO-MEFs display a higher ATP and NADþ/NADH ratio, due to
enhanced glycolysis, as their mitochondrial respiratory capacity is
partly compromised [61]. However, the b-oxidation machinery works
more efficiently in KO-MEFs, especially when they are under excess
energy (fatty acid) pressure. These results correlate with our in vivo
observation that HFD-fed IP6K1-KO mice display more robust effects
on EE and body weight compared to CD-fed knockouts. Future studies
are needed to monitor effects of pharmacologic inhibition of IP6Ks on
body weight and insulin sensitivity of UCP1-KO mice to precisely
determine the extent to which IP6K1 regulates UCP1 independent EE
in vivo.
In summary, deletion of global IP6K1 dramatically protects mice from
DIO and insulin resistance due to increased EE, which is not entirely
dependent on environmental temperature conditions. Pharmacologic
inhibition of IP6Ks also produces similar results [43]. In general,
clothing and other thermoregulatory conditions maintain the thermo-
neutral temperature in humans [62]. Therefore, a pathway that re-
duces body weight at thermoneutral temperature is a highly
encouraging target in human obesity. AMPK mediated regulation of
energy metabolism is well established in humans [18]. Moreover,
deletion of IP6K3, which is the predominant isoform in murine and
human skeletal muscle protects mice from age induced fat accumu-
lation and insulin resistance. Moreover, IP6K3-KO mice live longer
[39]. However, IP6K3-KO mice are not protected from DIO [39], which
further suggests that IP6K1 regulates body weight primarily via its
effects on the adipose tissue. Nevertheless, pan inhibition of the
inositol pyrophosphate pathway is expected to have beneficial effects
in obesity, diabetes, and aging.
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