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Abstract
Negative binomial regression is commonly employed to analyze overdispersed
count data. With small to moderate sample sizes, the maximum likelihood esti-
mator of the dispersion parameter may be subject to a significant bias, that in
turn affects inference on mean parameters. This article proposes inference for
negative binomial regression based on adjustments of the score function aimed
at mean or median bias reduction. The resulting estimating equations generalize
those available for improved inference in generalized linear models and can be
solved using a suitable extension of iterative weighted least squares. Simulation
studies confirm the good properties of the new methods, which are also found
to solve in many cases numerical problems of maximum likelihood estimation.
The methods are illustrated and evaluated using two case studies: an Ames
salmonella assay data set and data on epileptic seizures. Inference based on
adjusted scores turns out to generally improve on maximum likelihood, and even
on explicit bias correction, with median bias reduction being overall preferable.
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1 INTRODUCTION

Regression models for count data are employed in many contexts, especially in social sciences, economics, biology, and
epidemiology. It is not uncommon that empirical counts display substantial overdispersion and a popular modeling
approach is negative binomial regression, see for example, section 7.3 of the book by Agresti1 and the monograph by
Hilbe2 for recent accounts.

Frequentist inference about mean and shape parameters in negative binomial regression is typically based on the
likelihood and this is the method of choice for standard software, such as the glm.nb function of the R package MASS.3
Maximum likelihood has been studied starting from Fisher4 and Anscombe5 for independent and identically distributed
data and from Lawless6 for the regression setting. With moderate sample sizes, the maximum likelihood estimator of the
shape parameter may be subject to a substantial bias that can influence the inferential conclusions also about regression
coefficients.

General improved estimation methods based on adjustments of the likelihood equations have been proposed start-
ing from the contributions of Firth7 and Kenne Pagui et al,8 resulting in mean or median bias reduction, respectively.
While mean bias reduction yields an estimator with reduced bias, median bias reduction is such that each component
of the estimator is, with high accuracy, median unbiased, that is, it has the same probability of underestimating and
overestimating the corresponding parameter component. Mean bias reduction is invariant under linear transformation of
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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the parameters, while median bias reduction is invariant under monotone component-wise parameter transformations.
Unlike traditional bias correction, that subtracts an estimate of the bias from the maximum likelihood estimate, see for
instance section 9.2 of Cox and Hinkley,9 both mean and median bias reduction methods do not rely on finiteness of the
maximum likelihood estimate and have the advantage of solving practical issues related to boundary estimates that can
occur with positive probability in models for discrete data.10 Obtaining the quantities required for mean and median bias
reduction, as well as development of efficient software, is not always straightforward, but is necessary in order to make
these methods available to practitioners. A major effort has been devoted to generalized linear models11-13 leading to the
brglm2 package14 for the software R.15 Additional effort was needed for other specific models, such as beta regression12,16

or cumulative link models.17

Negative binomial regression does not fall into the generalized linear models class when the shape parameter is
unknown, as is the case in practical applications. Therefore, due to its widespread use, it is of interest to provide the quan-
tities required for mean and median bias reduction, together with an efficient implementation, and to assess whether
the general theoretical properties of the methods produce appreciable improvements over standard maximum likelihood.
Previous work in this direction includes the paper by Saha and Paul,18 who, for independent and identically distributed
data, derived a bias corrected maximum likelihood estimator for the shape parameter and showed that it is preferable to
other methods.19,20 The authors also give an example of bias correction involving negative binomial regression, although
the expression of the correction is not provided.

In this article, we derive the adjusted score equations for mean and median bias reduction for negative binomial
regression and show that they can be solved by iterative weighted least squares after an appropriate adjustment of the
ordinary working variate, or adjusted dependent variable, for maximum likelihood. Moreover, the method is developed
for various link functions and parameterizations of the shape parameter. An R implementation is given in the brnb func-
tion which has been added to the current version of the R package brglm2.14 Mean and median bias reduced estimators
are compared with the maximum likelihood estimator through an extensive simulation experiment under different sce-
narios. Two case studies, the Ames salmonella reverse mutagenicity assay21 and the epileptic seizures data,22 are also
considered and include comparison with other methods previously used for the same data, in particular bias correction.18

The results indicate that, overall, mean and median bias reduction are both preferable to standard likelihood inference,
even after bias correction, especially with moderate sample sizes. Median bias reduction provides the best empirical cov-
erage of Wald-type confidence intervals for all parameters. Moreover, numerical problems that lead to unavailability of
the maximum likelihood estimate, and therefore of its bias correction, occur more frequently than with mean or median
bias reduction. In addition, traditional bias correction is seen to be less accurate than mean and median bias reduction
when the number of covariates is large relative to the sample size.

The rest of the article is organized as follows. In Section 2, we introduce the notation for the negative binomial
regression model. In Section 3, we give the adjusted score functions for mean and median bias reduction, together with
computational details. Sections 4 and 5 contain simulation results and case studies, respectively. A brief discussion is
given in Section 6. The Supplementary Material contains additional figures and simulation results together with R code
to reproduce the analyses in the article.

2 NEGATIVE BINOMIAL REGRESSION

Using Poisson regression when overdispersion is present typically leads to underestimation of standard errors of regres-
sion coefficients and therefore to potentially misleading inferential conclusions. Negative binomial regression1,2 allows
to model overdispersion introducing a shape parameter in the variance specification, so that, for count mean response 𝜇i,
i = 1, … ,n, the inflated variance has the form𝜇i + 𝜅𝜇2

i , where 𝜅 > 0. Poisson regression is a limiting case as 𝜅 approaches
zero.

Let yi, i = 1, … ,n, be realizations of independent negative binomial random variables Yi with mean 𝜇i and variance
V(Yi) = 𝜇i + 𝜅𝜇2

i , where 𝜅 > 0. The probability mass function of Yi is

fYi(yi;𝜇i, 𝜅) =
Γ(yi + 𝜅−1)
yi!Γ(𝜅−1)

(
𝜅𝜇i

1 + 𝜅𝜇i

)yi
(

1
1 + 𝜅𝜇i

)1∕𝜅

, (1)

yi = 0, 1, … , 𝜅 > 0 and 𝜇i > 0. In a regression setting, we consider 𝜇i = g−1(𝜂i), where g−1(⋅) is the inverse of the link
function, 𝜂i = x⊤i 𝛽 is the linear predictor, with 𝛽 = (𝛽1, … , 𝛽p)⊤ ∈ Rp and xi = (xi1, … , xip)⊤ a vector of covariates, with
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x⊤i the ith row of the model matrix X . When an intercept is included in the linear predictor, xi1 = 1, i = 1, … ,n. The
usual choice for the link function is g(⋅) = log(⋅). For sake of generality, the derivation below is for a generic monotone
reparameterization of 𝜅, say 𝜙 = 𝜙(𝜅), with inverse 𝜅(𝜙) and derivative 𝜅′(𝜙). Common choices are 𝜙 = 1∕𝜅, 𝜙 = log 𝜅
or 𝜙 =

√
𝜅.

Let 𝜃 = (𝛽⊤, 𝜙)⊤. Noting that for any a > 0, Γ(y + a)∕Γ(a) = a(a + 1) · · · (a + y − 1), the log likelihood is

𝓁(𝛽, 𝜙) =
n∑

i=1
mi

⎧⎪⎨⎪⎩
y∗i∑

j=0
log(1 + 𝜅j) + yi log 𝜇i

1 + 𝜅𝜇i
− 1

𝜅
log(1 + 𝜅𝜇i)

⎫⎪⎬⎪⎭ ,

where mi is a fixed weight for the ith observation, y∗i = yi − 1,
∑y∗i

j=0 log(1 + 𝜅j) is zero when y∗i < 0 and 𝜅 = 𝜅(𝜙). Weights
mi are typically equal to 1, but can be greater than 1 with grouped data. The score function U = U(𝜃) = (𝜕∕𝜕𝜃)𝓁(𝜃) has
components U𝛽 = (𝜕∕𝜕𝛽) 𝓁(𝛽, 𝜅(𝜙)) and U𝜙 = (𝜕∕𝜕𝜙)𝓁(𝛽, 𝜅(𝜙)) given by

U𝛽 = X⊤WD−1(y − 𝜇),

U𝜙 = 𝜅′(𝜙)
n∑

i=1
mi

{
S1i −

𝜇iyi

𝜅𝜇i + 1
+

(𝜅𝜇i + 1) log(𝜅𝜇i + 1) − 𝜅𝜇i

𝜅3𝜇i + 𝜅2

}
,

where D is a diagonal matrix with diagonal elements di = d𝜇i∕d𝜂i, W is a diagonal matrix with diagonal elements
wi = mid2

i ∕V(Yi), y = (y1, … , yn)⊤, 𝜇 = (𝜇1, … , 𝜇n)⊤ and S1i =
∑y∗i

j=0j∕(𝜅j + 1). The expected information6 is

i(𝜃) =

[
i𝛽𝛽 0p

0⊤p i𝜙𝜙

]
=

[
X⊤WX 0p

0⊤p 𝜅′(𝜙)2i𝜅𝜅

]
,

where 0p is a p-vector of zeros and

i𝜅𝜅 = 𝜅−4
n∑

i=1
mi

{+∞∑
j=0

Pr (Yi > j)
(𝜅−1 + j)2 − 𝜅𝜇i

𝜇i + 𝜅−1

}
.

The maximum likelihood estimate �̂�
⊤ = (𝛽⊤, �̂�) is obtained as solution of the equations U𝛽 = 0 and U𝜙 = 0 that can be

solved using a Fisher scoring algorithm. Exploiting the orthogonality between 𝛽 and 𝜙, the current iterate �̂�(j) is found by
replacing 𝛽

(j) into the jth Fisher scoring iteration for U𝜙 = 0. The procedure is alternated until convergence. With simple
algebra, the jth iteration of Fisher scoring algorithm for U𝛽 = 0 updates the current iterate 𝛽

(j) providing

𝛽
(j+1) = (X⊤W (j)X)−1X⊤W (j)z(j), (2)

where the superscript (j) indicates that the quantity is evaluated at 𝛽(j) and z is the vector with elements zi = 𝜂i + (yi −
𝜇i)∕di, i = 1, … ,n, usually called the adjusted dependent variables or working variates. Equation (2) has the same form
as the iterative weighted least squares (IWLS) iteration in generalized linear models.

3 MEAN AND MEDIAN BIAS REDUCTION

Bias of maximum likelihood estimators in small samples or with sparse data can result in significant loss of accuracy of
the related inferential procedures. An extensive amount of literature has focused on methods for reducing mean bias.
A general classification separates explicit methods, also called bias correction, obtained subtracting from the maximum
likelihood estimate an estimate of its first order bias, from implicit methods, also called bias reduction, obtained modifying
the score function. A unified review is presented by Kosmidis.23 See also Greenland et al24 for an expository discussion of
sparse data bias and available remedies. Such classification also holds for methods aiming at improving other centering
properties of the estimator, such as the median centering. Generally, explicit methods are one-step approximations to
the corresponding implicit methods, using the maximum likelihood estimate as a starting value. Therefore, they are less
accurate and rely on existence of the latter. We recall below mean and median bias reduction and obtain the relevant
expressions for negative binomial regression.
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Consider a regular model with d-dimensional parameter 𝜃, log likelihood 𝓁(𝜃), score function U(𝜃), and expected
information i(𝜃), the latter assumed in the following to be of order n. We let U𝜃r (𝜃) be a component of U(𝜃), r = 1, … , d,
and j(𝜃) = −𝜕2𝓁(𝜃)∕𝜕𝜃𝜕𝜃⊤ be the observed information. While the maximum likelihood estimate �̂� is a solution of the
equation U(𝜃) = 0, the improved estimates proposed here are based on adjusted score equations having the general form
U(𝜃) + A(𝜃) = 0, with A(𝜃) a model-dependent adjustment term of order O(1) under repeated sampling. All the proposed
adjustments involve the quantities (see Kosmidis and Firth12 for their first use)

P𝜃r (𝜃) = E𝜃{U(𝜃)U(𝜃)⊤U𝜃r (𝜃)}, Q𝜃r (𝜃) = E𝜃{−j(𝜃)U𝜃r (𝜃)}, r = 1, … , d.

In particular, Firth7 showed that the leading term of order O(n−1) of the bias of the maximum likelihood estimator is
reduced to order O(n−2) with A(𝜃) = A∗(𝜃), where A∗(𝜃) has elements

A∗
𝜃r
(𝜃) = 1

2
tr
{

i(𝜃)−1(P𝜃r (𝜃) + Q𝜃r (𝜃))
}

, r = 1, … , d, (3)

with tr(⋅) the trace operator. We let U∗(𝜃) = U(𝜃) + A∗(𝜃) and we denote by 𝜃∗ the corresponding estimator, solution of
U∗(𝜃) = 0.

The bias corrected maximum likelihood estimator, see for example, section 9.2 of Cox and Hinkley9 and section 5.3 of
Barndorff-Nielsen and Cox,25 is given by 𝜃 = �̂� − b(�̂�), where b(𝜃) is the term of order O(n−1) of the bias of �̂� and is equal
to −i(𝜃)−1A∗(𝜃).7 Also 𝜃 has bias of order O(n−2), although the availability of 𝜃 relies on the existence of �̂�.

Both bias reduction and bias correction are tied to a specific parameterization. This means that if 𝜓 = 𝜓(𝜃) is a
nonlinear reparameterization of 𝜃, the transformed estimator 𝜓(𝜃∗) or 𝜓(𝜃) will not have reduced bias of order O(n−2).
Equivariance under nonlinear componentwise reparameterizations is obtained with median bias reduction of Kenne
Pagui et al,8 leading to the estimator 𝜃† satisfying, in the continuous case, the improved median centering property
Pr𝜃(𝜃†r ≤ 𝜃r) = 1∕2 + O(n−3∕2), r = 1, … , d, in contrast with the corresponding O(n−1∕2) order of error for the maximum
likelihood estimator. More in detail, the adjusted score for median bias reduction, as given in formula (10) of the cited
paper, has the form U†(𝜃) = U(𝜃) + A†(𝜃), with A†(𝜃) = A∗(𝜃) − i(𝜃)F(𝜃). The vector F(𝜃) involves the quantities P𝜃r (𝜃)
and Q𝜃r (𝜃) and its expression is given in the Appendix. The median bias reduced estimator 𝜃† is obtained as a solution of
U†(𝜃) = 0.

Since both A∗(𝜃) and A†(𝜃) are of order O(1), 𝜃∗ and 𝜃† have the same asymptotic normal distribution as the maximum
likelihood estimator.7,8 In practice, standard errors are computed using diagonal elements of the inverse Fisher informa-
tion, evaluated at the corresponding estimate, that is, i(𝜃∗)−1 and i(𝜃†)−1 respectively. The asymptotic coverage error of the
associated Wald confidence intervals will be the same as with maximum likelihood, although empirical coverage error is
typically better due to improved centering.

For the negative binomial regression model (1), we have d = p + 1 and the quantity A∗(𝜃) = (A∗⊤
𝛽
,A∗

𝜙
)⊤, whose

derivation is in the Appendix, has

A∗
𝛽
= X⊤W𝜉 , A∗

𝜙
= 𝜅′(𝜙)

n∑
i=1

mihid2
i 𝜇

2
i

2wiV(Yi)2 + 1
2

i−1
𝜙𝜙

R𝜙𝜙 ,

where 𝜉 = (𝜉1, … , 𝜉n)⊤, with 𝜉i = hid′
i∕(2diwi). The quantity hi appearing in 𝜉i and in A∗

𝜙
is the “hat” value for the ith

observation, obtained as the ith diagonal element of the matrix H = X(X⊤WX)−1X⊤W and d′
i = d2𝜇i∕d𝜂2

i . The expression
of R𝜙𝜙 is given in the Appendix. For independent and identically distributed observations, with 𝜇i = 𝜇, bias reduction for
the shape parameter 𝜅 was considered by Zhang et al26 in Example 4. The adjustment term A†(𝜃) = (A†⊤

𝛽
,A†

𝜙
)⊤ for median

bias reduction has

A†
𝛽
= X⊤W(𝜉 + Xu) , A†

𝜙
= A∗

𝜙
+ i−1

𝜙𝜙
S𝜙𝜙 , (4)

where expressions for u and S𝜙𝜙 are derived in the Appendix.
With simple algebra, the jth iteration of IWLS which updates the current iterate 𝛽∗(j) leads to

𝛽∗(j+1) = (X⊤W (j)X)−1X⊤W (j)z∗(j) , (5)

where z∗(j) = z(j) + 𝜉(j) is the adjusted version of the working variate z defined in (2). The jth iteration of IWLS for 𝛽† has
the same expression as (5), with working variate z∗ + Xu in place of z∗.
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All the improved methods for negative binomial regression, together with maximum likelihood fitting, are imple-
mented in the brnb R function of the R package brglm2. Maximum likelihood fitting can also be performed using the
glm.nb function of the MASS R package.

4 SIMULATION STUDIES

In this section, the properties of the estimators are assessed through simulation under different scenarios corresponding to
combinations of values of n, 𝜙, and 𝛽. For each setting, we run 10 000 Monte Carlo replications. For all configurations, we
used the logarithmic link function and the identity transformation for the shape parameter (𝜙 = 𝜅). Maximum likelihood
(ML), mean and median bias reduced (BR) estimates were computed using thebrnbR function. Convergence is achieved
when the absolute difference between the previous and current estimates is less than 10−8. The default option sets to 100
the maximum number of iterations.

For a scalar parameter 𝛾 , let us denote by 𝛾 r, r = 1, … ,R, the rth Monte Carlo value of an estimator 𝛾 and by se(𝛾r) its
corresponding standard error, computed using the square root of a diagonal element of the inverse of Fisher information,
evaluated at 𝛾 r. Let, in addition, MSE =

∑R
r=1(𝛾r − 𝛾)2∕R be the empirical mean squared error, BIAS = 𝛾• − 𝛾 the empirical

mean bias, where 𝛾• =
∑R

r=1𝛾 r∕R, and SD =
√∑R

r=1(𝛾r − 𝛾•)2∕(R − 1) the empirical standard deviation. Moreover, let I(A)
be the indicator function of the set A and z𝛼 the 𝛼-quantile of the standard normal distribution. Estimators are evaluated in
terms of empirical probability of underestimation, PU =

∑R
r=1I(𝛾 r ≤ 𝛾)∕R; estimated relative (mean) bias, RBIAS = (𝛾• −

𝛾)∕|𝛾|; estimated root mean squared error, RMSE =
√

MSE; estimated coverage probability of 95% Wald-type confidence
intervals, WALD =

∑R
r=1I(|𝛾r − 𝛾| ≤ se(𝛾r)z1−𝛼∕2)∕R and the relative increase in estimated mean squared error from its

absolute minimum due to bias, IBMSE = {MSE − SD2}∕SD2 = BIAS2∕SD2. Except for RMSE, the performance measures
are expressed in percentages.

We first conducted a simulation study with constant mean 𝜇, that is, with intercept only, and shape parameter 𝜅. In
particular, for sample sizes n = 20, 50,150, 300, R = 10 000 Monte Carlo samples were drawn from the negative binomial
with values of the parameters 𝜇 = 2, 5 (𝛽 = log 2, log 5) and 𝜅 = 0.5, 0.75, 1, 1.5, 2. When the empirical variance is less than
the mean, which happened in some simulated samples only with n = 20 and n = 50, ML, mean and median BR estimates
do not exist. We denote by A1 the number of simulated samples, out of 10 000, where this occurred. Nonconvergence of
the ML algorithm was also observed in some simulated samples with empirical variance greater than the mean, especially
with 𝜇 = 2 and small values of 𝜅. Few of these cases showed nonconvergence also for mean and median BR. In particular,
in the 10 000 − A1 samples with empirical variance greater than the mean, we found A2 nonconvergence samples using
ML. Among these A2 samples, we found A3 nonconvergence samples using mean BR and, finally, among these A3 samples,
we found A4 nonconvergence samples using median BR. For each setting, with n = 20, 50, Table 1 gives the values of
Aj, j = 1, … , 4.

T A B L E 1 Computational diagnostics in 10 000 replications

𝝁 = 2 𝝁 = 5

𝜿 0.5 0.75 1 1.5 2 0.5 0.75 1 1.5 2

n = 20 A1 535 214 108 43 17 18 3 0 0 0

A2 163 85 42 17 12 6 3 0 3 1

A3 2 1 0 0 1 0 0 0 2 1

A4 0 0 0 0 0 0 0 0 2 1

10 000 - A1 - A2 9302 9701 9850 9940 9971 9976 9994 10 000 9997 9999

n = 50 A1 36 6 0 0 0 0 0 0 0 0
A2 16 0 1 0 0 0 0 0 0 0

A3 2 0 0 0 0 0 0 0 0 0

A4 0 0 0 0 0 0 0 0 0 0

10 000 - A1 - A2 9948 9994 9999 10 000 10 000 10 000 10 000 10 000 10 000 10 000

Note: A1 indicates the number of samples with empirical variance less than the empirical mean. Of the remaining 10 000 − A1 samples, A2 is the number of
nonconvergence samples using ML, which include A3 nonconvergence samples using mean BR, which in turn include A4 nonconvergence samples using
median BR. The quantity 10 000 - A1 - A2 represents the number of samples with convergence for all methods out of 10 000 replications.
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β =

 log 2
β =

 log 5

46
48
50
52

46
48
50
52

P
U

β =
 log 2

β =
 log 5

−9

−6

−3

0

−9

−6

−3

0R
B

IA
S

β =
 log 2

β =
 log 5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3R
M

S
E

β =
 log 2

β =
 log 5

0.5 0.75 1 1.5 2 0.5 0.75 1 1.5 2 0.5 0.75 1 1.5 2 0.5 0.75 1 1.5 2

92

93

94

95

92

93

94

95

κ

W
A

LD

F I G U R E 1 Estimated probability of under estimation (PU), relative bias (RBIAS), root mean squared error (RMSE) and coverage
probability of 95% Wald-type confidence intervals (WALD) for the intercept 𝛽 = log𝜇, with 𝜅 = 0.5, 0.75, 1, 1.5, 2 and 𝛽 = log 2, log 5. Results
for ML (black squares), mean BR (blue circles), and median BR (red triangles). Except for RMSE, the vertical axes represent percentages

In order to compare the methods on the same samples, the results reported in Figures 1 and 2 are based on the sim-
ulated samples in which all methods converged (10 000 - A1 - A2 samples in Table 1 for n = 20, 50, while all methods
converge for n = 150,300). Moreover, as done in References 8,11, for n = 20, 50, the results based, for each method, on
all the samples in which that method converged are displayed in Figures S1 and S2 in Section S.2 of the Supplementary
Material. The qualitative conclusions of the simulation described below are unchanged.

Both mean and median BR achieve the desired goals, that is, are effective in mean and median centering, respectively,
and are both preferable to ML. We recall, however, that mean centering is tied to a specific parameterization. Under this
respect, the larger empirical relative bias of median BR of the shape parameter is not observed in other parameterizations,
such as the inverse or the log parameterizations. Median BR provides empirical coverage of the 95% Wald-type confidence
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F I G U R E 2 Estimated probability of under estimation (PU), relative bias (RBIAS), root mean squared error (RMSE) and coverage
probability of 95% Wald-type confidence intervals (WALD) for the shape parameter 𝜅, with 𝜅 = 0.5, 0.75, 1, 1.5, 2 and 𝛽 = log 2, log 5. Results
for ML (black squares), mean BR (blue circles), and median BR (red triangles). Except for RMSE, the vertical axes represent percentages

intervals better than its competitors, especially for the shape parameter and small sample sizes. As expected, all three
estimators improve as the sample size and 𝜇 increase.

With the aim of checking the improvement in the order of bias for mean BR, and of the distance from 0.5 of the
probability of underestimation for median BR, we simulated Nr = 2rN0 samples of size nr = 2rn0 for r ∈ {0, … , 5} with
n0 = 20 and N0 = 4000. This simulation design guarantees that the simulation standard error is asymptotically bounded
for any r. The results are given in Section S.3 of the Supplementary Material for 𝜇 = 5 and 𝜅 = 1 and are in line with the
theory. Indeed, mean BR provides a reduction in the order of the bias from O(n−1) to O(n−2). Similarly, the order of error in
the probability of underestimation is seen to decrease from O(n−1∕2) to O(n−3∕2) for median BR, even though theoretically
the result is only guaranteed for continuous models.
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We now consider a second simulation study involving covariates. The linear predictor is connected to the mean with
log link and the identity transformation for the shape parameter is considered (𝜙 = 𝜅). In particular, we let

log𝜇i = 𝛽1 + 𝛽2xi2 + 𝛽3xi3 + 𝛽4xi4 + 𝛽5xi5, (6)

where xi2 and xi3 are independent realizations of Bernoulli random variables with probabilities 0.8 and 0.5, respectively;
xi4 are independent realizations of a uniform on (1, 2); xi5 are independent realizations of a Poisson with mean 2.5, i =
1, … ,n. The true parameter values are 𝛽1 = 1, 𝛽2 = −0.75, 𝛽3 = −1.5, 𝛽4 = 1, and 𝛽5 = −0.5. Four values are considered
for the shape parameter, 𝜅 = 0.5, 0.75, 1, 1.5. The sample sizes considered are n = 40, 80,150, 300. For each combination
of 𝛽, 𝜅 and n, we run 10 000 Monte Carlo replications, where the values of the explanatory variables xi2, xi3, xi4, and xi5
were held constant throughout the simulations.

The summaries of the simulation results for the regression coefficients are presented in Figure 3 with 𝜅 = 0.75. Other
values of 𝜅 gave similar results, which are summarized in Figures S4 to S6 in Section S.4 of the Supplementary Mate-
rial. Figure 4 summarizes results for 𝜅. With 𝜅 = 0.75 and n = 40, we found 39, 11 and 9 samples out of 10 000 where
the IWLS algorithm did not reach convergence for ML, mean BR, and median BR, respectively, while no convergence
problems arose for n = 80,150, 300. A sufficient condition for existence of the ML estimate27 is satisfied in most of the
nonconvergence cases. Therefore, nonconvergence is mostly due to numerical problems. Moreover, the percentage of
samples showing nonconvergence decreases as 𝜅 increases. As for the previous simulation study, the reported results are
based only on samples which led to convergence for all methods. Looking at the four performance measures, it appears

n = 40 n = 80 n = 150 n = 300
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probability of 95% Wald-type confidence intervals (WALD) and increase in estimated mean squared error (IBMSE) for estimation of
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parameter 𝜅 with n = 40, 80,150, 300. Simulation results for ML (black squares), mean BR (blue circles), and median BR (red triangles).
Except for RMSE, the vertical axes represent percentages

that mean and median BR are preferable to ML for small n. On the other hand, the results improve for all three methods
as n increases. As 𝜅 increases, for estimation of regression coefficients, median BR is comparable to mean BR in terms of
estimated relative (mean) bias, while it proves to be more accurate in achieving median centering. Moreover, in all scenar-
ios, median BR provides the empirical coverages of Wald-type confidence intervals closest to the 95% nominal value. The
results in Figure 4 show that the improvement given by both mean and median BR over ML is substantial in all scenarios
and more pronounced than in the previous case with the intercept parameter only.

Finally, in Section S.5 of the Supplementary Material, we investigated by simulation the behavior of the methods when
the generating model has no overdispersion. In particular, samples of size n = 40 are generated from a Poisson regression
model with mean satisfying (6). As expected, in many samples the negative binomial fitting procedures did not converge.
In such cases, the corresponding procedure for Poisson regression14 was used. The results in Table S1 indicate that mean
and median BR are essentially equivalent to, and sometimes better than, ML for inference about 𝛽.

5 CASE STUDIES

We consider two case studies, namely the Ames salmonella assay data and the epileptic seizures data. The first data set
has one explanatory variable with 6 levels and 3 observations each. The second data set has counts of epileptic seizures
for 59 matched pairs.
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T A B L E 2 Ames salmonella assay: Parameter estimates and corresponding standard errors in parenthesis

ML Mean BC Mean BR Median BR

𝛽0 2.198 (0.325) 2.210 (0.348) 2.216 (0.352) 2.211 (0.359)

𝛽1 −0.001 (0.00039) −0.001 (0.00042) −0.001 (0.00042) −0.001 (0.00043)

𝛽2 0.313 (0.088) 0.311 (0.095) 0.309 (0.096) 0.309 (0.098)

𝜅 0.049 (0.028) 0.063 (0.033) 0.065 (0.033) 0.069 (0.035)

5.1 Ames salmonella data

We consider data from an Ames salmonella reverse mutagenicity assay, previously analyzed using negative binomial
regression by several authors6,18,21,28 in order to account for the observed overdispersion. The response variable Y corre-
sponds to the number of revertant colonies observed on a plate, while covariate x is the dose level of quinoline on the plate.
Three observations were taken at each of six dose levels leading to a total of 18 observations. We focus on the analysis
based on the log-linear model28

log𝜇i = 𝛽0 + 𝛽1xi + 𝛽2 log(xi + 10). (7)

In the above expression, the constant 10 represents the smallest non-zero dose level. The main interest is focused on testing
significance of mutagenic effect, that is, the null hypothesis H0 ∶ 𝛽2 = 0. The presence of overdispersion was confirmed
by the Pearson statistic based on the residuals of the Poisson model. We also compared Poisson and negative binomial
models using parametric bootstrap. The code is available in Section S.6 of the Supplementary Material. The results of both
tests support the choice of a negative binomial model.

Table 2 shows the estimates obtained with ML, mean bias correction (BC), mean BR, and median BR using the identity
transformation for the shape parameter (𝜙 = 𝜅). Estimates of the regression coefficients have the same interpretation
as in Poisson log linear models and the values here turn out to be comparable across methods. Mean and median bias
reduced estimates of the shape parameter are comparable, but slightly different from the maximum likelihood estimate.
This in turn reflects on the standard errors of the regression parameter estimates.

A simulation study, with covariates fixed at the observed values and true parameter value equal to the observed mean
BR estimate is included in Section S.6 of the Supplementary Material and confirms the findings of the previous section,
with mean and median BR showing an improved repeated sampling behavior with respect to ML.

5.2 Epileptic seizures data

We consider here the epileptic seizures data on 2-week seizure counts for 59 epileptics.22 The data were analyzed by several
Authors.3,29 The number of seizures was recorded for a baseline period of 8 weeks, and then patients were randomly
assigned to a treatment group or a control group. Counts were then recorded for four successive 2-weeks periods. The
response was the number of observed seizures. We analyzed the data by comparing the response before and after the
treatment, hence obtaining a set of 59 matched pairs. The only covariates in the linear predictor are then given by the two
treatment indicators. As in the previous example, Poisson overdispersion was confirmed both by Pearson statistic and
parametric bootstrap. The code is available in Section S.7 of the Supplementary Material. Therefore, we assume a negative
binomial model for the response Yij, i = 1, … , 59, j = 1, 2, with mean and variance

𝜇ij = exp(𝜆i + x⊤ij 𝛽), V(Yij) = 𝜇ij + 𝜅𝜇2
ij ,

where intercepts 𝜆i determine the stratified structure corresponding to each subject, xi1 = (0, 0)⊤, while xi2 = (1, 0)⊤ if
subject i received the placebo and xi2 = (0, 1)⊤ if subject i received the treatment. We focus on inference about 𝛽 = (𝛽1, 𝛽2)⊤
and 𝜅, while the intercepts 𝜆1, … , 𝜆59 are treated as incidental nuisance parameters. This is a rather extreme case of fixed
effects model for clustered data where it is well known that ML inference for the parameters of interest is problematic
(see p. 292 of Cox and Hinkley9). Therefore, it is of particular interest to assess the behavior of BR methods, which provide
improved estimates also for the nuisance parameters. Negative binomial regression for clustered data is considered in
section 7.5.5 of Demidenko.30
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Figure 5 displays the parameter estimates and the corresponding confidence intervals obtained with different
methods. In addition to ML, mean BC, mean BR and median BR, modified profile likelihood31 (MPL) for the
three-dimensional parameter of interest (𝛽1, 𝛽2, 𝜅)⊤ has also been included for comparison. MPL for this model was pre-
viously proposed by Bellio and Sartori29 due to its higher-order accuracy in models with many nuisance parameters.32 In
this setting, the same higher order accuracy is guaranteed by BR methods.8,33 The difference between mean and median
BR and MPL with respect to ML is particularly pronounced for 𝜅. This reflects on the lengths of confidence intervals, with
those from ML being inaccurately too short, as illustrated by the simulation results below.

We run 10 000 replications with covariates fixed at the observed value and true parameters set to the observed mean
BR estimates. We found only 13 samples out of 10 000 where the IWLS algorithm did not reach convergence for ML,
of these, 4 showed nonconvergence also for mean BR and median BR. The results are reported in Table 3 for the 9987
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F I G U R E 5 Epileptic seizures data: Points represent the parameter estimates while the vertical lines represent 95% Wald-type
confidence intervals

T A B L E 3 Epileptic seizures data: Simulation results for ML (hat), mean BC (tilde), mean BR (star), and median BR (dagger) of the
parameters of interest

PU RBIAS RMSE WALD IBMSE

𝛽1 50.21 −0.05 0.11 80.90 0.00

𝛽1 50.28 −0.30 0.11 89.44 0.00

𝛽∗1 50.38 −0.12 0.11 94.28 0.00

𝛽
†
1 50.37 −0.10 0.11 94.25 0.00

𝛽2 49.54 0.92 0.11 81.39 0.05

𝛽2 49.43 0.99 0.11 89.18 0.06

𝛽∗2 50.34 0.23 0.11 93.98 0.00

𝛽
†
2 50.36 0.22 0.11 93.96 0.00

�̂� 100.00 −67.31 0.08 0.25 3331.25

�̃� 96.21 −36.26 0.05 31.22 360.50

𝜅∗ 46.09 3.80 0.03 82.50 2.02

𝜅† 48.14 2.44 0.03 82.88 0.88



2414 KENNE PAGUI et al.

samples in which the IWLS algorithm achieved convergence for all the approaches. For the regression coefficients, all
the approaches are almost equivalent in terms of PU, RBIAS, and RMSE, while coverage of confidence intervals based on
BR methods substantially improves upon ML. Mean BC, while providing a noticeable improvement upon ML, is not as
good as BR methods. This is mainly related to estimation of the shape parameter. Indeed, in this extreme scenario, only
BR methods are seen to provide reasonable inference about 𝜅.

Although not of direct interest in the present example, both mean and median BR provide improved estimates also
of the nuisance parameters. The simulation results for these are presented in Figure S7 of the Supplementary Material.
Once again, we can appreciate the improved performance of mean and median BR by looking at the coverages of 95%
Wald-type confidence intervals which are closest to the nominal value.

6 DISCUSSION
For negative binomial regression, we developed inference based on adjusted score equations for mean and median bias
reduction.7,8 Simulation results confirm the theoretical properties of the methods and indicate that they are both effec-
tive in improving over standard likelihood inference and even over traditional mean bias correction. This is especially
notable when the number of parameters is large compared to the sample size, as is illustrated by the simulation results
for the case study in Section 5.2. These methods also solve in most cases numerical problems that may occur with ML,
and consequently with mean bias correction. Even though mean and median bias reduction aim at different centering
properties, in practice they lead to similar conclusions. On the other hand, median bias reduction seems slightly prefer-
able in terms of coverage accuracy of Wald confidence intervals. Other types of confidence intervals such as those based
on the asymptotic distribution of the likelihood ratio or score statistics could be preferable to Wald intervals. However,
these are not available for mean and median bias reduced estimators. Construction of adjusted score intervals could be
the object of future research.
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APPENDIX A

Quantities involved in A†(𝜽) for a general parametric model
As given in Section 2, the general expression of the median BR adjustment is A†(𝜃) = A∗(𝜃) − i(𝜃)F(𝜃). The vector F(𝜃)
has components Fr = [i(𝜃)−1]⊤r F̃r, where F̃r has elements

F̃r,t = tr[gr{(1∕3)P𝜃t (𝜃) + (1∕2)Q𝜃t (𝜃)}], r, t = 1, … , d,

with the matrix gr given by
gr = (irr(𝜃))−1[i(𝜃)−1]r[i(𝜃)−1]⊤r , r = 1, … , d.

Above and elsewhere, [C]r denotes the rth column of a matrix C, while irr(𝜃) is the (r, r) element of i(𝜃)−1.

Quantities involved in A∗(𝜽) and A†(𝜽) for negative binomial regression
Let diag{e1, … , en} denote a diagonal matrix having (e1, … , en) as its main diagonal. Let, in addition, 1n be a n-vector of
ones and In the identity matrix of order n.

In order to give the expressions of matrix quantities appearing in (3), we use the index s, s = 1, … , p, for elements of
𝛽 and the subscript 𝜙 for the 𝜙 parameter. For simplicity, the argument 𝜃 will be omitted. We get

P𝛽s + Q𝛽s =

[
X⊤XD

s D−1D′WX 0p

0⊤p 0

]
,

where XD
s denotes the diagonal matrix with elements of the sth column of the matrix X as its main diagonal and D′ =

diag{d′
1, … , d′

n}. Moreover, letting R = P𝜙 + Q𝜙, we have

R =

[
R𝛽𝛽 R𝛽𝜙

R𝜙𝛽 R𝜙𝜙

]
,
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with

R𝛽𝛽 = 𝜅′(𝜙)X⊤D2ΩM2


−2X ,

R𝛽𝜙 = R⊤
𝜙𝛽

= 𝜅′(𝜙)2X⊤DΩ{M(𝜅M + In)}−1{E1 − ME2 − M3(𝜅M + In)−1}1n,

R𝜙𝜙 = 𝜅′(𝜙)3
n∑

i=1
mi

{
−2E(S3i) +

2𝜅2𝜇3
i + 9𝜅𝜇2

i + 6𝜇i

𝜅3(𝜅𝜇i + 1)2 − 6
𝜅4 log(𝜅𝜇i + 1)

+2E(S1iS2i) −
2𝜇i

𝜅𝜇i + 1
E(S2iYi) −

2{𝜅𝜇i − (𝜅𝜇i + 1) log(𝜅𝜇i + 1)}
𝜅2(𝜅𝜇i + 1)

E(S2i)
}

+ i𝜅𝜅𝜅′(𝜙)𝜅′′(𝜙),

where Ω = diag{m1, … ,mn}, M = diag{𝜇1, … , 𝜇n},  = diag{v1, … , vn}, with vi = V(Yi), Sai =
∑y∗i

j=0ja∕(𝜅j + 1)a, a =
1, 2, 3, E1 = diag{E(S21Y1), … ,E(S2nYn)} and E2 = diag{E(S21), … ,E(S2n)}.

In order to give the expressions for the additional quantities u and S𝜙𝜙 appearing in (4), we denote by iss
𝛽𝛽

the (s, s)
element of i−1

𝛽𝛽
and we let v′i = dvi∕d𝜇i = 1 + 2𝜅𝜇i. Then, u = (u1, … ,up)⊤ with

us = [(X⊤WX)−1]⊤s X⊤

⎡⎢⎢⎢⎣
hs,1

{
d1v′1∕(6v1) − d′

1∕(2d1)
}

⋮

hs,n
{

dnv′n∕(6vn) − d′
n∕(2dn)

}
⎤⎥⎥⎥⎦ .

In the above expression, hs,i is the ith diagonal element of XGsXTW , with Gs = (iss
𝛽𝛽
)−1[i−1

𝛽𝛽
]s[i−1

𝛽𝛽
]⊤s .

Finally,

S𝜙𝜙 = 𝜅′(𝜙)3
n∑

i=1
mi

{
−2

3
E(S3i) +

1
3

2𝜅2𝜇3
i + 9𝜅𝜇2

i + 6𝜇i

𝜅3(𝜅𝜇i + 1)2 − 2
𝜅4 log(𝜅𝜇i + 1)

+1
2

E(S1iS2i) −
1
2

𝜇i

𝜅𝜇i + 1
E(S2iYi) −

𝜅𝜇i − (𝜅𝜇i + 1) log(𝜅𝜇i + 1)
2𝜅2(𝜅𝜇i + 1)

E(S2i)
}

+ 1
2

i𝜅𝜅𝜅′(𝜙)𝜅′′(𝜙) .
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