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In relation to recent advances in nanobiotechnologies, cancer-targeted therapy

using nano-scaled drug carriers (nanocarriers) has been attracting enormous atten-

tion with success in clinical studies. Polymeric micelles, core–shell-type nanoparti-

cles formed through the self-assembly of block copolymers, are one of the most

promising nanocarrier, because their critical features such as size, stability, and

drug incorporation efficiency and release rate can be modulated by designing the

constituent block copolymers. The utilities of polymeric micelles have been

reported not only in experimental tumor models in mice but also in clinical studies.

In this article, we aim to explain the rationale of designing polymeric micelles for

targeting intractable cancers such as pancreatic cancer, glioblastoma, and metas-

tases. Also, we review recent progress in clinical studies on polymeric micelles

incorporating anticancer drugs. In addition, we introduce the next generation of

polymeric micelles as the platform integrated with smart functionalities such as tar-

getability, environmental sensitivity, and imaging properties. Thus, polymeric

micelles can realize safe and effective cancer therapy, and offer tailor-made medici-

nes for individual patients.

P olymeric micelles, core–shell-type nanoparticles formed
through the self-assembly of block copolymers, have been

widely recognized as a promising nanocarrier in cancer tar-
geted therapy (Fig. 1). (1–11) Various molecular interactions,
such as hydrophobic interactions, hydrogen bonding, electro-
static interaction, and metal complex formation in the core-
forming segments, can be a driving force of the formation of
polymeric micelles.(5–9) Accordingly, a wide range of thera-
peutic molecules including hydrophobic substances, charged
compounds, and metal complexes can be stably and efficiently
incorporated into the micellar core, and their release can be
controlled in a sustained or environment-sensitive manner.(5–9)

Compared with surfactant micelles, polymeric micelles show
excellent stability characterized by low critical micelle concen-
tration, glass state (solid) core, and kinetic stability.(12,13) Poly-
meric micelles have a narrowly distributed size controllable in
the range of 10–100 nm,(14) which should be in contrast with
other clinically approved nanocarrier formulations (e.g., Doxil
(Janssen Pharmaceutical Co., Titusville, NJ, USA), Abraxane
(Celgene Co., Summit, NJ, USA)) with the size of 100 nm.
Importantly, these properties, which might critically affect the
performance as a drug carrier, can be optimized by fine-tuning
chemical structures and compositions of the micelle-forming
block copolymers.(5–9,15) In addition, installation of functional
molecules such as environment-responsive cleavable linkages

and targetable ligands on the block copolymers allows con-
struction of polymeric micelles with smart functionalities.(5–
9,16–19) Owing to the above-mentioned prominent advantages
beyond other drug vehicles, several micellar formulations of
anticancer drugs are currently under evaluation in preclinical
and clinical studies.(8,10) In this article, we review design ratio-
nales and recent advances of polymeric micelles for the deliv-
ery of anticancer drugs.

Design Rationale of Polymeric Micelles

Optimization of block copolymers and in vivo behavior of poly-

meric micelles. As aforementioned, AB-type block copolymers
assemble into polymeric micelles with characteristic core–shell
structures and narrow size distributions in the range of 10–
100 nm (Fig. 1).(3–10) The dense PEG palisade protecting the
drug-loaded core can effectively hinder interaction with plasma
proteins and cells, avoiding the recognition of the micelle by
the reticuloendothelial system in the bloodstream.(20,21) There-
fore, polymeric micelles can display prolonged circulation with
a half-life longer than 10 h.(3–7,14,15) Note that polymeric
micelles finally dissociate into the constituent block copoly-
mers, the size of which is below the threshold of glomerular
excretion, thereby avoiding long-term accumulation in the
body. Long-circulating polymeric micelles effectively
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accumulate in solid tumors(3–7,14,15) due to the augmented leak-
iness of tumor neovasculature and impaired lymphatic drai-
nage, which is known as the enhanced permeability and
retention (EPR) effect.(22) Subsequently, polymeric micelles
release incorporated drugs in a sustained or microenvironment-
responsive manner.(3–7,14,15) Thus, polymeric micelles can
achieve tumor-selective drug activity while minimizing side-
effects in normal tissues.(3–8,10) Depending on the formulations,
polymeric micelles are internalized by cancer cells, and then
exert the drug effect in an organelle-specific manner.(5–7,9) In
such a way, polymeric micelles potentially circumvent drug
efflux or intracellular detoxification mechanisms, overcoming
drug resistance in cancer cells.(23,24)

Polymeric micelles are formed from various block copoly-
mers. Poly(ethylene glycol) is widely used as a shell-forming
polymer due to its hydration property and large excluded volume
effect preventing interaction with serum proteins.(25) The micel-
lar core is composed of a variety of synthetic polymers, which
critically affect the critical properties of polymeric micelles as
drug vehicles, including size, association number, critical
micelle concentration, drug loading and release, and stability in
the bloodstream.(4–7,13–15) Biodegradable polyesters such as poly
(D,L-lactide-co-glycolide),(26) poly(D,L-lactide),(13) poly(e-
caprolactone),(27,28) and long-chain alkyl derivatives(29) appear
to be widely used as a core-forming polymer. We have used
PEG-b-poly(amino acids) (PEG-b-PAA) copolymers due to free-
dom of the choice of amino acids and versatile side chain modi-
fication to optimize the micelles’ properties.(3–10) Compared
with aforementioned polyesters and long-chain alkyl derivatives,
PAA can form stabilized core structures due to various inter-
molecular interactions such as van der Waals interaction, hydro-
gen-bonding, ion-pair interaction, and dipole interaction.(5,6)

Formation of secondary structures of PAA also improves the sta-
bility of polymeric micelles. Recently, we reported that the for-
mation of a-helix of poly(L-glutamate) might greatly contribute
to prolonged blood circulation and effective tumor accumulation
of cisplatin-loaded micelles,(15) which are under phase III clini-
cal evaluation (described below). Considering that the plasma
clearance of drug vehicles in humans is approximately four
times slower than that in mice,(30) the micellar structure and drug
release rate should be respectively stabler and slower than their
expectations in the evaluation using animal models.

Drug loading and controlled drug release. Enabling on-
demand drug incorporation is one of the most prominent fea-
tures characterizing polymeric micelles. The method of drug
incorporation can be classified into “non-covalent” and “cova-
lent” manners.(5) In the non-covalent drug loading, water-inso-
luble compounds are physically entrapped into the micellar
core by the dialysis, ultrasound-aided dispersion or oil in water
emulsion methods. A relatively high drug loading capacity of
approximately 20% can be achieved without chemical modifi-
cation of drug molecules. For successful drug incorporation, the
compatibility (the matching of chemical structures) between
drug molecules and the core-forming segments should be taken
into consideration. Also, the properties of the core-forming seg-
ments such as hydrophobicity, the glass transition temperature,
the degree of crystallinity, and secondary structure (e.g., a-helix
formation) should be critical factors. These properties critically
affect the efficiency and capacity of drug loading as well as its
release behavior. In the covalent drug loading, drug molecules
are chemically conjugated to the core-forming segments. For
drug conjugation, the environment-responsive cleavable linkage
is exploited to ensure the drug release at the target site.(5,7,31,32)

Because the tumor microenvironment is known to develop an
acidic condition due to the production of lactate by predomi-
nant anaerobic glycolysis in cancer cells (Warburg effect),(33)

the acid-cleavable linkage such as hydrazone bond is useful for
tumor-selective drug release.(5,7,31,32)

The PEG-b-PAA copolymers are useful for aforementioned
on-demand drug incorporation due to freedom of the choice of
amino acids and versatile side chain modification. For the
“non-covalent” drug incorporation, we reported that chemical
conjugation of doxorubicin (DOX) to the side chain of PAA
by a stable amide linkage resulted in loss of cytotoxic activity
of conjugated DOX but contributed to stable physical entrap-
ment of free DOX through the p–p interaction between the
anthracycline structures of conjugated and unconjugated
drugs.(3,5) Thus, optimization of chemical structures of the
micellar core-forming segments depending on drug molecules
is feasible. Meanwhile, as an example of “covalent” drug
incorporation, DOX was conjugated to the core-forming seg-
ments through the hydrazone bond between the carbonyl group
at C13 of DOX and the hydrazide group introduced to poly(D,
L-aspartate).(7,34) The DOX-conjugated block copolymers

Fig. 1. Polymeric micelles constructed through the
self-assembly of block copolymers as nano-scaled
drug carriers. Polymeric micelles have a core–shell
structure, where the drug-loaded core is
surrounded by a biocompatible PEG shell, with a
narrowly distributed size controllable in the range
of 10–100 nm. Engineering the micelle-forming
block copolymers endowed polymeric micelles with
on-demand and smart functionalities such as
environment-sensitivity and targetability.
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formed polymeric micelles, which showed acidic pH-respon-
sive DOX release. Currently, the micellar formulation of a less
cardiotoxic epimer, epirubicin (code name NC-6300/ K-912)
is under phase I clinical study.(35,36) In addition to hydro-
philic molecules, metal complexes can be incorporated into
PEG-b-PAA micelles. cis-Damminedichloroplatinum(II) (cis-
platin, CDDP) and (trans-l-1,2-diaminocyclohexane) platinum
(II) (DACHPt, an active complex of oxaliplatin) were com-
plexed with PEG-b-poly(L-glutamate) through Pt(II)–carboxy-
late complex formation, leading to the formation of narrowly
distributed micelles with the size of 30 nm.(37,38) In these sys-
tems, the reversible ligand exchange reaction of Pt(II) enables
the preferable release of active platinum complexes from the
micelles, ensuring their potent cytotoxic activities. After sys-
temic administration, CDDP and DACHPt-loaded micelles
were revealed to show prolonged circulation and effective
tumor accumulation, achieving remarkable in vivo antitumor
efficacies with reduced side-effects.(37,39–41) Currently, CDDP
and DACHPt-loaded micelles (code names NC-6004 and
NC-4016) are under phase III and I clinical studies,
respectively.(8,10)

Intracellular drug release using the vehicles may enhance the
drug potency. For instance, N-(2-hydroxypropyl) methacry-
lamide copolymer–Dox conjugate and pH-responsive Dox-
loaded polymeric micelles were reported to overcome the
Dox-resistance in cancer cells as a result of intracellular drug
release.(23,42) As we noticed that DACHPt-loaded micelles
accelerate the drug release in the pH and [Cl�] conditions
mimicking the late endosomal environment, we tested their
in vitro and in vivo efficacies against oxaliplatin-resistant can-
cer cells.(24) Confocal microscopic observation revealed that
DACHPt-loaded micelles achieved intracellular drug release
under both in vitro and in vivo conditions.(24) Consequently,
DACHPt-loaded micelles showed remarkable in vitro and
in vivo antitumor activities against oxaliplatin-resistant cancer
cells (Fig. 2a).(24) We assume that DACHPt-loaded micelles
might circumvent detoxification of DACHPt by metalloth-
ionein and methionine synthase overexpressed in the cytoplasm
of oxaliplatin-resistant cancer cells. Thus, polymeric micelles
with the function of intracellular drug delivery may behave
like a nanoscale Trojan horse, thereby potentially overcoming
drug resistance (Fig. 2b).
Nucleic acids-based drugs such as plasmid, antisense DNA,

and siRNA can be incorporated into polymeric micelles
through polyion complex formation between negatively

charged nucleic acids and positively charged PEG-b-PAA
copolymers.(43,44) Polymeric micelles greatly improve the sta-
bility of nucleic acids-based drugs under in vivo conditions,
leading to prolonged blood circulation.(16) Integration of endo-
some escape and organelle-selective release functionalities led
to remarkably enhanced in vitro and in vivo efficacies of
nucleic acids-based drugs in various disease models.(16) For
details of the delivery of nucleic acids-based drugs, refer to
other expert review papers.(9,45,46)

Design of Polymeric Micelles for Targeting Intractable
Cancers

Optimization of the size of polymeric micelles. The clinically
approved PEGylated liposomes such as Doxil (Janssen Phar-
maceutical Co.) and albumin nanoparticles termed Abraxane
have the size of approximately 100 nm. This size might be
adequate for effective tumor accumulation based on the EPR
effect. Although the transvascular transport of nanoparticles
depends on the origin of tumor cells and the microenviron-
ment, solid tumors have a pore cut-off size larger than 200 nm
except for some intractable cancers such as glioblastoma
(GBM).(47) In this regard, pancreatic cancers and diffuse-type
gastric cancers (scirrhous gastric cancers) have characteristic
histological features characterized by less permeable vascula-
ture with pericyte coverage and thick fibrosis (Fig. 3a), which
might be an obstacle to extravasation and penetration of
nanoparticles.(48) Indeed, we have shown that PEGylated lipo-
somes show heterogeneous accumulation in tumor stroma and
cannot reach tumor nests in a s.c. model of human pancreatic
cancer BxPC3 cells (Fig. 3b). This result motivated us to study
the accumulation and penetration of polymeric micelles with
different sizes ranging from 30 to 100 nm in BxPC3
tumors.(14) As a result, the accumulation of 30-nm micelles is
twofold higher than that of 50-nm micelles and fourfold higher
than that of 70- and 100-nm micelles.(14) Note that all the
micelles of 30–100 nm displayed similar accumulation levels
in a s.c. model of murine colon carcinoma C26 cells, in which
the pericyte coverage and tumor stroma are minimal. Co-
administration of 30 and 70 nm micelles in mice bearing
BxPC3 tumors revealed that 30-nm micelles show a uniform
intratumoral microdistribution while 70-nm micelles show
heterogeneous localization at perivascular regions (Fig. 3c).(14)

These results strongly suggest that the accumulation and pene-
tration of polymeric micelles in pancreatic cancer models

Fig. 2. (a) In vivo antitumor activity of (trans-l-1,2-diaminocyclohexane) platinum(II) (DACHPt)-loaded micelles (DACHPt/m) against oxaliplatin-
resistant human colon adenocarcinoma HT29 (HT29/ox) tumors. (9) Saline; (○) oxaliplatin (8 mg/kg); (●) DACHPt/m (4 mg/kg); (↑) injection of
oxaliplatin and DACHPt/m. †P > 0.1; **P < 0.01. Data are expressed as mean � SEM (n = 4). Reprinted from Murakami et al.,(24) with permission
from [AAAS, Washington, DC, USA]. (b) Hypothetic mechanism of overcoming oxaliplatin resistance by DACHPt/m. DACHPt/m are assumed to be
internalized through the endocytic pathway, and reach the late endosomes and lysosomes closed to the nuclei, leading to facilitated drug
release. Therefore, DACHPt/m may bypass the cytoplasmic detoxification pathways consisting of metallothionein (MT1Q) and methionine syn-
thase (MTR), which are overexpressed in HT29/ox cells.
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largely depend on their size, that is, the 30-nm micelles can
bypass the barriers in transvascular transport and penetrate
tumor stroma, deeply penetrating tumor nests. Such enhanced
tumor accumulation of 30-nm micelles was observed in spon-
taneous murine pancreatic tumors in transgenic mice express-
ing SV40 T antigen and luciferase regulated by the elastase-1
promoter.(41) The 30-nm DACHPt-loaded micelles showed
remarkably prolonged survival in mice bearing clinically rele-
vant tumors (Fig. 3d).(41) Furthermore, a similar size effect
was observed in an orthotopic model of human diffuse-type
gastric cancer OCUM-MLN cells.(49)

The size of polymeric micelles is also important for target-
ing tumor metastasis. Lymph nodes are a common route for
metastasis in some tumors. It is known that local administra-
tion of nanoparticles to primary tumors leads to accumulation
in a neighboring lymph node though the lymphatic vessels,
which is clinically applied in the sentinel lymph node
biopsy.(50) However, such local administration cannot be appli-
cable to systemic delivery of antitumor drugs due to the lack
of selectivity, especially when targeting cancer cells are dis-
seminated in the body. Recently, we found that polymeric
micelles can accumulate selectively in lymph node metastases
through the blood vascular route, which is believed to be
specific to active recruitment of lymphocytes to lymph
nodes.(51) We evaluated the accumulation of systemically
injected 30- and 70-nm micelles and 100-nm PEGylated lipo-
somes in branchial metastatic lymph nodes formed by inocula-
tion of murine melanoma B16-F10-luc cells to the left forepaw
of mice. As a result, only 30-nm micelles accumulated and
penetrated in the metastatic focus, whereas 70-nm micelles and
PEGylated liposomes did not (Fig. 4a). The 30-nm micelles
did not accumulate in contralateral healthy lymph nodes, sug-
gesting selective accumulation of 30-nm micelles in metastatic
lymph nodes. Importantly, 30-nm micelles showed comparable

accumulation in metastatic lymph nodes and following tumor
growth inhibition by antitumor drugs in mice with their pri-
mary tumors resected. This result suggests the targeting of
lymph node metastasis though the blood vascular route
(Fig. 4b). Thus, 30-nm micelles may be used for systemic
delivery of antitumor drugs for the treatment of lymph node
metastasis.
Furthermore, we studied the targeting of liver metastases of

colon carcinoma C26 cells.(52) In this study, we investigated
the accumulation of the micelles in different stages of tumor
metastasis (from day 2 to day 10 after inoculation). Interest-
ingly, polymeric micelles accumulated not only in overt liver
metastases, where the EPR effect is highly expected, but also
in early-stage pre-angiogenic metastases on day 3. Polymeric
micelles showed prolonged retention in the whole metastatic
niche (cluster of C26-GFP cells), where a-SMA positive stel-
late cells and CD68-positive Kupffer cells were recruited.
Administration of COX-2 inhibitor (celecoxib) resulted in sig-
nificant decrease in accumulation of polymeric micelles in pre-
angiogenic metastases; therefore, the inflammatory microenvi-
ronment seems to be a mechanism for the retention of micelles
in the metastatic niche. Note that the targeting pre-angiogenic
metastases of C26 cells was not affected by the size of poly-
meric micelles. Thus, polymeric micelles can target early-stage
pre-angiogenic metastases.

Actively targetable polymeric micelles. As mentioned, GBM is
characterized by limited vascular permeability.(47) The pore
cut-off size in GBM is reported to range from 7 to 100 nm,
whereas that in other tumors is beyond 200 nm.(47) Such lim-
ited vascular permeability in GBM is known as the blood–
brain tumor barrier (BBTB),(53) attenuating the efficacy of
some antitumor drugs and nano-scaled drug vehicles. The inte-
gration of targetable ligands on drug vehicles is a promising
approach for overcoming BBTB. Recently, we developed

Fig. 3. (a) Histology of s.c. inoculated human
pancreatic BxPC3 tumors. Red, a-smooth muscle
actin; green, platelet/endothelial cell adhesion
molecule-1; blue, nucleus. T, tumor cells. Reprinted
from Kano et al.,(48) with permission from [pnas,
Washington, DC, USA]. (b) Microdistribution of
PEGylated liposomes (cyan) in BxPC3 tumors. (c)
Microdistribution of fluorescently labeled 30-nm
(green) and 70-nm (red) micelles 1 h after injection
into BxPC3 tumors. Yellow, colocalization; white
arrows, 70-nm micelles localizing at perivascular
regions. Reprinted from Cabral et al.,(14) with
permission from [NPG, London, UK]. (d) Overall
survival of EL1-luc/TAg mice developing
spontaneous pancreatic tumors without treatment,
treated with oxaliplatin at 2 mg/kg and 4 mg/kg,
and treated with (trans-l-1,2-diaminocyclohexane)
platinum(II) (DACHPt)-loaded micelles (DACHPt/m).
Drugs were injected weekly. P-value calculated
using the log–rank test. Reprinted from Cabral
et al.,(41) with permission from [pnas, Washington,
DC, USA].
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DACHPt-loaded micelles modified with cyclic Arg-Gly-Asp
(cRGD) peptide.(17) The cRGD peptide has a high affinity to
avb3 integrin overexpressed on the tumor vasculature,(54) and
has been approved in Europe as an orphan drug named Cilen-
gitide (Merck KGaA, Darmstadt, Germany) for the anti-angio-
genic treatment of GBM.(55) The cRGD-conjugated micelles
showed more than twofold higher accumulation in a s.c. model
of human GBM U87MG cells compared with non-targeted
micelles having cyclic Arg-Ala-Asp ligand, thereby achieving
remarkably enhanced efficacy of platinous antitumor drug in
orthotopic U87MG tumors.(17) The observation by intravital
confocal laser scanning microscopy revealed that cRGD-conju-
gated micelles show very fast transvascular movement to
tumor tissues (Fig. 5), which may not be explained by the pas-
sive targeting based on the EPR effect.(17) We hypothesize that
cRGD-conjugated micelles might bypass BBTB through the
active transvascular transport system, such as transcytosis.
Antibody and its fragments are also useful as targetable

ligands to design actively targetable micelles. Several antibody-
conjugated micelles (immunomicelles) have been reported for
delivery of antitumor drugs.(29,56–58) These immunomicelles
were conjugated with antibodies targeting osteopontin,(29) epi-
dermal growth factor receptor,(57) human epidermal growth fac-
tor receptor-2,(58) and others. Recently, we reported
immunomicelles conjugated with anti-tissue factor (TF) anti-
body fragments.(18,19) Tissue factor is known as a primary initia-
tor of blood coagulation, and plays an important role in tumor
proliferation, invasion, and metastasis.(59) It is reported that the
expression level of TF on cancers is associated with patient
prognosis.(59) We have reported that anti-TF antibody fragment-
conjugated micelles incorporating epirubicin and DACHPt were
efficiently internalized by TF-overexpressing cancer cells and
showed superior in vitro and in vivo antitumor activity to non-
targeted micelles.(18,19) Recently, antibody–drug conjugates
(ADCs) have been receiving great attention and many ADCs are
under clinical evaluation.(60) However, ADCs can load only two
to four cytotoxic drugs per antibody, leading to limitation of ver-
satile use, potential side-effects due to overdose, and rising drug
prices. In contrast, immunomicelles can deliver hundreds of drug

molecules per antibody, expanding the choice of anticancer
drugs and functional design. Thus, immunomicelles are expected
to be more versatile platforms for drug delivery than current
ADC formulations.

Polymeric Micelles Under Clinical Evaluation

Paclitaxel (PTX)-loaded polymeric micelles formed from
PEG-b-poly(D,L-lactide) (Genexol-PM) (Samyang Biopharm
Co., Seoul, Korea) have been approved for the treatment of
breast cancer, non-small-cell lung cancer, and ovarian can-
cer.(61,62) Expansion of clinical applications of Genexol-PM
to other cancers is under clinical evaluation.(63,64)

In our system, five micellar formulations incorporating PTX
(NK105), cisplatin (NC-6004), SN-38 (NK102), dachplatin (ac-
tive complex of oxaliplatin) (NC-4016), and epirubicin (NC-
6300/K-912) are currently under clinical evaluation.(8,10)

Among them, NC-6004 progressed to phase III study and
approval application of NK105 will be undertaken in 2016.
NK105 was reported to show enhanced antitumor activity

and reduced PTX-induced peripheral neuropathy in a preclini-
cal study.(65) Also, NK105 can solubilize PTX without Cre-
mophor EL (CEL) (BASF Co., Ludwigshafen, Germany),
preventing CEL-induced hypersensitive reactions. In a phase I
study, NK105 was given by i.v. infusion for 1 h without anti-
allergic premedication.(66) Of 19 patients, only one experienced
allergic reactions. A partial response in one pancreatic cancer
patient and stable disease lasting 10 to seven courses depend-
ing on the patients with colon or gastric cancers were
observed. In a pharmacokinetic study, NK105 (at 150 mg/m2)
showed 30-fold higher plasma area under the receiver–operat-
ing characteristic curve than conventional PTX-CEL formula-
tion (at 210 mg/m2). Dose-limiting toxicity (DLT) of NK105
was grade 4 neutropenia. In a phase II study against advanced
stomach cancer, as a second-line therapy, patients received
NK105 by i.v. infusion for 0.5 h once every 3 weeks without
anti-allergic premedication.(67) As a result, the overall response
rate of NK105 accounted for 25% of patients, with two achiev-
ing complete response and 12 partial responses. The most

Fig. 4. (a) Effect of the size of (trans-l-1,2-
diaminocyclohexane) platinum(II)-loaded micelles
(DACHPt/m) on their targeting against lymph node
metastasis of murine melanoma B16F10-GFP cells.
Time-lapse intravital microscopies of metastatic
lymph nodes after co-injection of fluorescent-
labeled 30-nm (green) and 70-nm (red) DACHPt/m.
Blue, B16F10-GFP metastasis; yellow, micelles
colocalization. To facilitate observation, the tumor
region was magnified (white square) and the tumor
signal was removed in 30-min and 1-h snapshots.
White arrowheads indicate extravasation for 30-nm
DACHPt/m. The results suggest that 30-nm micelles
penetrated the metastatic focus. (b) Hypothetic
mechanism of the accumulation of DACHPt/m in
lymph node metastasis. DACHPt/m are assumed to
accumulate in lymph node metastasis through not
only the lymphatic route from primary tumors but
also the blood vascular route. Reprinted from
Cabral et al.,(51) with permission from [American
Chemical Society, Washington, DC, USA].

Cancer Sci | July 2016 | vol. 107 | no. 7 | 871 © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Cancer Association.

Review
www.wileyonlinelibrary.com/journal/cas Nishiyama et al.



observed grade 3/4 hematological toxicity was neutropenia;
there was no grade 3/4 non-hematological toxicity and no
hypersensitive reactions without anti-allergic premedication.
Importantly, grade 3 neurotoxicity was observed for only one
in 57 patients (1.8%), which is in contrast with other PTX
delivery systems such as Xyotax (CTI BioPharm Co., Seattle,
WA, USA) and Abraxane, showing grade 3 neurotoxicity in
10–15% of patients. Since 2012, the phase III study of NK105
for comparison with conventional PTX-CEL formulation has
started in multiple countries including Japan, Taiwan, and
Korea, and patient registration was completed in 2014. Pend-
ing the successful outcome of the phase III study, approval
application of NK105 will be undertaken in 2016.
NC-6004 has undergone clinical studies in different coun-

tries. In a preclinical study, NC-6004 was shown to prevent
renal toxicity, DLT of CDDP, because 30-nm micelles do not
undergo glomerular filtration, and decreasing Cmax of CDDP in
the proximal tubule.(39) NC-6004 also prevented CDDP-
induced ototoxicity.(40) As a result, the phase I study of NC-
6004 in the UK was carried out using 1-h infusion once every
three weeks and hydration with 1000 mL saline on the day of
drug treatment.(68) In all the patients, NC-6004 was given
without hospitalization. Although nausea and vomiting caused
by NC-6004 were milder than conventional CDDP treatment,
hypersensitive reactions were more frequently observed in NC-
6004 treatment. The maximum tolerated dose and recom-
mended dose for the phase II study were determined to be 120
and 90 mg/m2, respectively. In a phase I/II study, NC-6004 in
combination with gemcitabine was tested in advanced pancre-
atic cancer patients.(69) In these studies, the dose of NC-6004
reached 90 mg/m2 without hydration, and hypersensitivity
observed in phase I study was prevented by dexamethasone

premedication. Currently, NC-6004 has progressed to phase III
study for comparison between the combination of NC-6004
and gemcitabine and gemcitabine alone in advanced or meta-
static pancreatic cancer in Asian countries. A phase I/II study
of NC-6004 against non-small-cell lung cancer patients is
ongoing in the USA.
NC-6300/K-912 is a pH-responsive polymeric micelle that

can selectively release epirubicin under acidic conditions of
intratumoral microenvironment or the endo-/lysosomal com-
partment in cancer cells.(34) In preclinical study, NC-6300/K-
912 was reported to show improved accumulation in solid
tumors and reduced accumulation in normal tissues.(35)

Importantly, NC-6300/K-912 prevented cardiotoxicity and
DLT of anthracycline anticancer drugs, due to decreased
accumulation in cardiac muscle tissues.(36) Currently, a phase
I study of NC-6300/K-912 is ongoing at the National Cancer
Center in Japan.

Future Formulations and Applications of Polymeric
Micelles

The preferential tumor accumulation of nano-scaled drug vehi-
cles has been reported not only for animal models but also for
patients with various cancers including non-small-cell lung
cancer, squamous cell lung cancer, breast cancer, and ovarian
cancer.(30,70) However, it is likely that the accumulation level
and intratumoral distributions of drug vehicles might depend
on different types of cancers in individual patients.(71) Such
interpatient and intratumoral variations may change during
treatment, and finally should affect the therapeutic outcome.
Therefore, it might be important to evaluate such interpatient
and intratumoral variations in individual patients before and

Fig. 5. Time-lapse intravital microscopies of human glioblastoma U87MG tumors after co-injection of non-targeted cyclic Arg-Ala-Asp-conju-
gated (green) and targeted Arg-Gly-Asp (cRGD)-conjugated (red) (trans-l-1,2-diaminocyclohexane) platinum(II) (DACHPt)-loaded micelles. Yellow,
micelles colocalization. Microdistribution of cRGD-conjugated micelles (red) at 5 h postadministration and quantitative analysis of the number of
micelles in tumor sites (center) revealed that cRGD-conjugated micelles show very fast translocation from the vasculature to tumor tissues. Rep-
rinted from Miura et al.,(17) with permission from [American Chemical Society, Washington, DC, USA].

Fig. 6. (a) Magnetic resonance images (T1-
weighted) of mice bearing an orthotopic pancreatic
cancer (BxPC3) before and after injection of
gadolinium-diethylenetriaminepentaacetic acid (Gd-
DTPA) or Gd-DTPA/(trans-l-1,2-diaminocyclohexane)
platinum(II) (DACHPt)-loaded micelles. (b) Relative
MRI intensity in tumor and each organ after
injection of Gd-DTPA or Gd-DTPA/DACHPt-loaded
micelles. Micelles showed tumor-specific enhance-
ment of MRI signal. Reprinted from Kaida et al.,(74)

with permission from [AACR, Philadelphia, PA, USA].
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during treatment with anticancer drugs formulated in nano-
scaled vehicles. This information may be helpful for estimating
the therapeutic effect and designing and optimizing the thera-
peutic protocols for individual patients (tailor-made nanomedi-
cine). In this regard, we have devoted great efforts to develop
polymeric micelles incorporating MRI contrast agents such as
gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) (for
T1-weighted images)(72) and superparamagnetic iron-oxide
nanoparticles (for T2-weighted images).(73) These diagnostic
micelles were shown to visualize s.c. and orthotopic models of
various cancers, including pancreatic cancers. In addition,
DACHPt-loaded micelles have been integrated with imaging
functionality by incorporating Gd-DTPA through the reversible
complex formation between DACHPt and Gd-DTPA.(74) Inter-
estingly, incorporation of Gd-DTPA into polymeric micelles
drastically increased longitudinal relaxivity, r1 (from 3.5 to
80.5 mmol/L/s) due to the flexibility reduction per Gd mole-
cule and the increase of the rotational correlation time. In the
animal experiment, the accumulation of Gd-DTPA/DACHPt-
loaded micelles in orthotopically inoculated pancreatic cancer
was successfully visualized in a real-time manner by MRI
(Fig. 6). The non-invasive monitoring of tumor volume during
treatment was also feasible by Gd-DTPA/DACHPt-loaded
micelles. Such dual diagnostic and therapeutic functions are
called “theranostic”, and have been attracting increasing atten-
tion.(75,76) In the future, diagnostic and theranostic nanoparti-
cles will evolve functions of molecular imaging to detect
cellular responses to therapeutic agents and histological infor-
mation. Thus, imaging functionality is expected to improve
reliability and safety of targeted therapy.

Conclusion

Increasing numbers of important drugs have been confronting
the problem of forfeiture of patent; therefore, product life

cycle management has been recognized as being increasingly
important. It is getting more difficult to find new drug com-
pounds by traditional drug discovery and development tech-
nologies. Even if new lead compounds are identified, most of
them show serious side-effects in preclinical and clinical stud-
ies, as potent compounds often target the molecules in the
upstream signal transduction pathways. In this regard, drug
delivery systems (DDS) can improve the efficacy and safety of
existing drug molecules, offering usefulness for product life
cycle management. Drug delivery systems can solve the toxic-
ity problems of potent new compounds and promote their prac-
tical applications. They can provide new functions to drug
molecules by integrating functional molecules to the DDS plat-
form. Thus, we believe that DDS will be more important in
drug discovery and development. Among various DDS plat-
forms, polymeric micelles are the most promising due to their
versatile and tailor-made designs based on polymer chemistry
and nanobiotechnology. During the last two decades, poly-
meric micelles as drug vehicles have made rapid progress and
several formulations are already being evaluated in late-stage
clinical trials. We expect the approval of these micellar anti-
cancer drugs and generation of innovative micellar
nanomedicines with smart functionalities in the near future.
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