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ABSTRACT

In an attempt to elucidate the underlying longevity-
promoting mechanisms of mutants lacking SCH9,
which live three times as long as wild type
chronologically, we measured their time-course
gene expression profiles. We interpreted their
expression time differences by statistical inferences
based on prior biological knowledge, and identified
the following significant changes: (i) between 12
and 24 h, stress response genes were up-regulated
by larger fold changes and ribosomal RNA (rRNA)
processing genes were down-regulated more
dramatically; (ii) mitochondrial ribosomal protein
genes were not up-regulated between 12 and 60 h
as wild type were; (iii) electron transport, oxidative
phosphorylation and TCA genes were down-
regulated early; (iv) the up-regulation of TCA and
electron transport was accompanied by deep
down-regulation of rRNA processing over time;
and (v) rRNA processing genes were more volatile
over time, and three associated cis-regulatory
elements [rRNA processing element (rRPE),
polymerase A and C (PAC) and glucose response
element (GRE)] were identified. Deletion of AZF1,
which encodes the transcriptional factor that binds
to the GRE element, reversed the lifespan extension
of sch9D. The significant alterations in these time-
dependent expression profiles imply that the lack
of SCH9 turns on the longevity programme that
extends the lifespan through changes in metabolic
pathways and protection mechanisms, particularly,
the regulation of aerobic respiration and rRNA
processing.

INTRODUCTION

The ageing process in organisms ranging from yeast to
humans is complex, yet it is partially conserved from
yeast to mammals (1). Researchers have been making
efforts to understand the biological mechanisms of
ageing from various perspectives and have proposed
many theories including the free radical (2), the stress
(3), the disposable soma (4), the accumulated mutation
(5), the mitochondrial (6), the programmed longevity
and the programmed and altruistic ageing theories of
ageing (7). Since ageing is the composite effect of many
factors, it is our belief that these theories and hypotheses
may be interlinked. This perspective is consistent with the
network theory of ageing (8), where a systems biology
view was taken to integrate several ageing theories to
model the ageing processes (9,10).
Extensive experimental studies regarding these ageing

theories exist in the literature, particularly in the context
of Saccharomyces cerevisiae (11,12). The unicellular model
organism, budding yeast, is a good candidate to study
ageing process due to its short life cycle, rich literature
of genetic studies and relatively complete genomic
databases. In S. cerevisiae, two different models are used
to measure longevity: (i) the replicative lifespan (RLS),
defined as the number of daughter cells generated by a
single mother cell before senescence (13); and (ii) the
chronological lifespan (CLS), defined as the survival
time of a population of non-dividing yeast in the post-
diauxic and stationary phase (14,15).
Calorie restriction (CR) promotes longevity in a

variety of organisms, including yeast, worms, flies and
rats (1,16). In S. cerevisiae, CR increases lifespan in both
chronological and replicative ageing models. The Sch9,
Ras2/cAMP/PKA and TOR signalling pathways play
important roles in CR-modulated ageing (17,18).
Growing evidences support that these pathways are
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partially conserved from yeast to mammals (1,17). The
yeast Sch9 protein kinase is a homologue of mammalian
Akt and S6K (19,20). The yeast sch9D mutant has a
smaller cell size, grows at a slower rate and shows
extended CLS up to 3-fold compared with that of
wild-type cells (21). The deletion of the SOD2 gene,
which encodes a mitochondrial superoxide dismutase,
abolishes the lifespan extension of the sch9D mutant
(15). This demonstrates that the CLS longevity in the
sch9D mutant is at least partially due to the protection
against oxidative damage. Protein kinase Rim15 is
required for this lifespan extension (21). Rim15 functions
via the transcription factors (TFs) Msn2/4 and Gis1,
which bind to the stress response element (STRE) and
post-diauxic shift (PDS) element, respectively, and
activate a variety of stress response genes to promote
long-term survival in stationary phase (18).
Evidences from chronological ageing studies also

indicate that the regulation of lifespan and genomic
instability are tightly linked (22,23). The lifespan extension
of the sch9D mutant is associated with a decrease of age-
dependent mutation frequency (22). In fact, the rate of
rDNA recombination decreases approximately 4-fold in
the sch9D mutant compared with the wild type (24). The
lack of Sch9 activity also prevents the recombination
errors and protects against the genomic instability that
is associated with the accelerated ageing in the sgs1D
mutant (23).
In our previous study, we analysed the expression

profiles of three long-lived yeast strains ras2D, tor1D
and sch9D mutants together with that of wild-type cells
at one point of time after the diauxic shift. We identified
significant and systematic expression differentiation in the
three strains, including down-regulation of Tricarboxylic
Acid Cycle (TCA cycle), oxidative phosphorylation
compared with glycolysis and reduction of mitochondrial
activities (25,26). These results support the free radical (2)
and the programmed longevity theories of ageing (7).
In this study, we obtained the expression profiles of the

sch9D mutant and the wild type every 12 h from 12 h to
120 h. From the consecutive snapshots of the cellular
expression profiles, we traced the different paths taken
by the two strains. We monitored how they respond
to the nutrient depletion, the changes required to enter
stationary phases and those to their CLSs. The scheme
of our analyses is shown in Supplementary Figure S1.
The data processing of microarrays was based on a
series of work previously developed (26–29). The resulting
expression profiles were interpreted into cellular activities
by statistical inferences using biological instruments and
were graphically displayed. Finally, the dynamic and
systematic view of the cellular biological activities will
shed light on the mechanisms of ageing.

MATERIALS AND METHODS

Microarray experiment

We obtained the gene expression profiles of the wild-type
(DBY746) and the sch9D mutant every 12 h from 12 h to
120 h. We used the same growth conditions as described

previously (17,26). Briefly, each strain was inoculated
in 1ml synthetic dextrose complete (SDC) medium and
grown overnight. The overnight cultures were diluted to
an initial density of 1–2� 106 cells ml�1 (OD600 of 0.1–0.2)
by fresh SDC medium into two flasks each containing a
final volume of 50ml. Both strains were then maintained
at 30�C with shaking (220 r.p.m.) to ensure proper
aeration. Every 12 h, yeast cells were collected from each
flask by centrifugation, washed with cold water once and
resuspended in 400 ml of 10mM Tris pH 7.5, 10mM
Ethylenediaminetetraacetic Acid (EDTA) and 0.5%
Sodium Dodecyl Sulfate (SDS). After adding 400 ml of
warm acid phenol, the cell suspension was incubated at
65�C for 20min with vortexing every 5min, centrifuged
and the supernatant was extracted twice with acid
phenol and once with chloroform. Total RNA was
recovered by precipitation with ethanol and cleaned up
by using the RNAsy kit (Qiagen). RNA (5mg/sample)
was sent to the UCLA DNA array Core Facility. They
generated the complementary RNA (cRNA), which was
labelled by biotin and hybridized onto Affymetrix
GeneChip Yeast 2.0 arrays.

In the SDC medium, after �10 h of exponential growth,
yeast cells (wild type) undergo a diauxic shift, switching
the metabolism from fermentation to respiration.
The diauxic shift is followed by a post-diauxic phase, in
which growth continues slowly till �48 h, and then stops
(17). We carried out the time-course experiment for wild
type limited to first 5 days (before majority of cells die), so
that it is easier to keep enough mRNA for hybridization
experiments without further amplification. To make their
expression profiles comparable, we measured expressions
of the sch9D mutant in the same time frame in this round
of experiment.

Data processing

After image processing, each .CEL file contained the
probe fluorescent intensities of the corresponding array.
We applied the probe-treatment-reference method (29)
coupled with sub-array normalization (27,28) to estimate
gene expression from probe intensities. We carried out the
sub-array normalization between each reference-target
array pair illustrated in Supplementary Table S1.
Specifically, for each pair, we divided both arrays into
sub-arrays of size 50 by 50, and sub-arrays overlap by
half the sub-array size. Within each sub-array, we fitted
the reference intensities by a+ b*target intensities via
least trimmed squares (LTS), in which the trimming
fraction of LTS was 0.45. Finally, we replaced each
target intensity by the average of a+ b*target intensities
fitted from each sub-array that covered the spot.
The PTR method allows multiple references in
normalization, and models the normalized intensities
from one probe-set by the three-factor model: log2(intensi-
ty)= treatment effect+probe effect+ reference effect.
The model fitting was based on minimization of L1

norm, or the least absolute deviations (LAD). The three-
way median polishing algorithm (30) was used for
computation.
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Definition of gene sets from biological knowledge

We defined gene sets primarily based on three sources
of biological knowledge: Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
and protein localization data. The GO data are available
from SGD’s ftp site (ftp://genome-ftp.stanford
.edu/pub/go/). The whole GO data are organized as a
directed acyclic graph (DAG), where each node is a set
of genes with a specific annotation. These gene sets are
defined through three key biological concepts molecular
function, biological process and cellular component.
In order to avoid redundancy, we only selected informa-
tive GO nodes. In the GO DAG, one node was selected
as an informative node when it contained more than
30 genes and none of its children contained more than
30 genes. This selection ended up with gene sets of 41
cellular components, 50 molecular functions and 107
biological processes. In addition, we added some gene
sets that were particularly relevant to our interests. For
example, we considered three gene sets from GO: RNA
polymerases (RNAPs) I, II and III (GO:0005736,
GO:0005665 and GO:0005666). Although they are small
gene sets, we were interested in knowing their gene
expression patterns with the reference of each other. The
KEGG pathway database was downloaded from ftp://ftp
.genome.jp/pub/kegg/pathway/organisms/sce/. It provides
manually annotated metabolic and signalling pathways.
We selected 100 well-established S. cerevisiae pathways
to define KEGG gene sets. The protein localization data
were downloaded from http://yeastgfp.ucsf.edu/. It
provides subcellular localization information for 4156
proteins, representing 75% of the yeast proteome (31).
These proteins had been classified into 22 distinct
subcellular localization categories, including nucleus,
cytoplasm and other specific subcellular regions. We
defined 22 localization gene sets based on these subcellular
localization categories. In this article, we labelled the data
source of each gene set by the tag: ‘GO.cel’ for GO cellular
component, ‘GO.mol’ for molecular function, ‘GO.bio’
for biological process, ‘KEGG’ for KEGG pathway and
‘GFP’ for protein localization data.

Gene set enrichment analysis

Gene set enrichment analysis is a method to determine
whether a pre-defined set of genes show significantly
up- or down-regulation compared with other gene sets.
In this study, we conducted the enrichment analysis
based on expression time differences for each strain. The
analyses were based on the Wilcoxon scoring scheme as
previously described (26). Briefly, based on the expression
differentiation between one pair of adjacent time points,
we compared the fold changes of gene set Si against the
background expression changes denoted by G � Si, where
G is the union of all gene sets. We adopted the Wilcoxon
rank test to calculate P-value (one sided) and assigned the
final significance scores after multiple testing correction
using ‘q value’ package (32) in R. After we finished the
enrichment analysis for all pairs of adjacent time points,
we combined them together and displayed the significance
scores over time (Figure 2).

Volatility analysis

In this time-course expression profile, we used a volatility
score to quantify the fluctuation of gene expression during
a specific time period in each strain. Suppose we have the
log2 expression values (e1, e2, . . . , en) of a specific gene,
where n is the total number of time points in that time
period. We first calculated the rate of gene expression
change (REC) between each adjacent two time points as
follows,

RECi ¼
eiþ1 � ei

ei
,i ¼ 1, . . . , n� 1:

Then we defined the volatility score (V) of this gene to be
the standard deviation of these RECs. Namely,

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn�1
i¼1

ðRECi �RECÞ2

n� 2

vuuut
,

where REC is the average of RECs and n – 1 is the total
number of RECs.
In addition, we defined the trend score (T) as the ratio of

the sum of REC versus the sum of absolute REC values:

T ¼

Pn�1
i¼1 RECiPn�1
i¼1 jRECij

:

In this study, we calculated the volatility and trend scores
for all the genes in the 36–108 h time period.
We further compared the volatility scores of

each defined gene set between the two strains. Given a
gene set having m genes, we denoted volatility scores for
the wild type and the sch9D mutant to be Vwt ¼

ðVwt
1 ,Vwt

2 , . . . ,Vwt
m Þ and Vsch9 ¼ ðVsch9

1 ,Vsch9
2 , . . . ,Vsch9

m Þ,
respectively. We adopted the one-sided Wilcoxon rank
test on Vwt and Vsch9 to evaluate the significance of the
difference. Since there were a number of gene sets, once
again, we corrected the multiple comparisons by the
‘qvalue’ method (32). Those significant gene sets were
further examined by their median expression curves and
the significances of up-/down-regulation between each
adjacent time points.

Motif identification

To identify the regulatory motifs in the 50 most volatile
genes in the sch9D mutant, we extracted upstream regions
of 1000 bp in length for each gene. We applied the MEME
software (33) (version 3.5.7) to find overrepresented
motifs. The MEME program performs local multiple
sequence alignments with expectation–maximization
(EM) algorithm (34), and searches the most frequent
and significant sub-string pattern(s) [motif(s)], which
occurs repeatedly in the given sequences. The MEME
software was set to search both forward and reverse
strands of the given upstream sequences, assuming that
each gene contains at most one occurrence of each
motif. We also specified the software to search at most
eight different motifs and required that each motif must
occur in more than 10 genes. The minimum and maximum
motif widths were 5 and 15 bp, respectively.
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Based the position-specific scoring matrix (PSSM) of
the three motifs [polymerase A and C (PAC), ribosomal
RNA (rRNA) processing element (rRPE) and glucose
response element (GRE)], we conversely applied the
MAST software (35) to scan the 50 sequences to identify
the positions of each motif. The PSSM was obtained from
the MEME output. The MAST program was set to
identify non-overlapping motif positions with p-value
<0.0001. When we analysed the distances of each motif
to the gene start position, only the shortest distance was
used for the motif that had multiple positions on one
promoter sequence.

CLS assay

All the mutant strains were derivatives of DBY746
(MAT� leu2-3, 112, his3D, trp1-289, ura3-52 and
GAL+). Knockout strains were generated by one-step
gene replacement as described previously (36). Yeast
cells were grown in the SDC supplemented with 2%
glucose and various amino acids, as well as a 4-fold
access of tryptophan, leucine, uracil and histidine.
Yeast CLS was monitored by measuring colony-

forming units (CFUs). Overnight SDC culture was
diluted (1:200) into fresh SDC medium (with flask to
culture volume of 5:1) and was maintained at 30�C with
shaking (200 r.p.m.). After 24 h (Day 1), cells from the
culture were diluted appropriately and plated on Yeast
Peptone Dextrose (YPD) plates. The YPD plates were
incubated at 30�C for 2–3 days, and CFUs were
measured. Every 48 h, we repeated this step and got the
CFUs for each time. CFU of Day-3 culture was
considered to be the initial survival (100%) as the yeast
reached the stationary phase. Mean (50% survival) and
maximum life (10% survival) spans were calculated from
curve fitting of the survival data. Cell size was measured
by fluorescence microscope as previously described (18).
The cell size is quantified as the diameter (the average of
the long and short axes of the cell). On Day 1, 129–249
cells per genotype were measured.

RESULTS

Experimental design and microarray data

We measured gene expression profiles of the S. cerevisiae
wild type (DBY746) and the long-lived sch9D mutant
every 12 h from 12 h to 120 h. At each time point, one
sample was hybridized onto one Affymetrix GeneChip
Yeast 2.0 array. In total, 10 time points were measured
for each strain. We denoted the arrays hybridized with the
wild-type cDNA, respectively, as 12-h wt, . . . , 108-h wt
and 120-h wt. A similar notation was used to label
arrays hybridized with the sch9D mutant cDNA. Yeast
2.0 array has 11 probes for each probe-set, and probes
are laid out on a chip according to a random design.
Therefore, these 11 probes serve as replicates to some
extent. We bear in mind that the probe-specific effect
and spatial variation need to be well taken care of in the
microarray processing. These considerations together with
the cost issue led to our experimental design.

We first performed a check of the data quality. We
inspected the fluorescent intensity image of each array,
in particular, the internal and external spiked-in
controls. All arrays looked normal except for the 120-h
sch9D array. The probe intensities for this array were
extremely low; the alternating pattern of intensities on
the border and the chip name at the upper-left corner
were difficult to recognize; the external hybridization
controls, BioB, BioC, BioD and CreX (37), did not
show a desired low-to-high intensity pattern. Thus, we
excluded this array from further data analysis.

Normalization and summarization

The Affymetrix GeneChip Yeast 2.0 Array is a single-
channel technology, that is, one chip is hybridized with
only one cDNA sample. To fairly compare fluorescent
intensities between two arrays, we have to adjust the
‘block effect’ of each array due to uncontrollable variation
in order to detect possible expression differences between
the two cDNA samples. Technically, we need to find a
monotone transformation that matches the distributions
of hybridization levels of those probes corresponding to
undifferentiated genes between the two samples. This
procedure is referred to as normalization. We performed
normalization in a pairwise fashion among the raw array
data: one array was taken as a reference and the other was
taken as its target. The fluorescent intensities on the target
array were transformed so that the distribution of a large
portion of the intensities matched that on the reference
array.

We chose the sub-array method (27,28) to normalize
each pair of arrays. Namely, each Yeast 2.0 array of size
496 by 496 features was decomposed into sub-arrays of
smaller size, 50 by 50. At this sub-array level, a simple
linear transformation that represents the difference in
their average background and scale is sufficient for
normalization or close to be so. The parameter estimation,
however, is challenging because control genes or known
house-keeping genes are not available across the whole
array. It is possible that both strains might undergo
substantial expression changes at certain time points
along the ageing processes. In addition, the biochemical
properties of probes vary to some extent. Thus, a
reasonable estimator should be able to avoid statistical
breakdown due to these complications. In this study, we
estimated the parameters by LTS to capture the
biochemical feature of the majority of the probes and to
detect expression differentiation.

After normalization, hybridization intensities of probes
from one probe-set are summarized into an expression
value for the corresponding gene. Since each probe has
its own binding affinity (38,39), the summarization needs
to adjust for the probe-specific effect. We also expect the
treatment-specific information (a treatment refers to a
time point in this time-course data) to be, more or less,
separated from the block effect for each reference array as
the result of the sub-array normalization. Naturally, we
adopted the three-factor PTR model (29) that includes
probe-, treatment- and reference-specific effects to
summarize the fluorescent intensities into expression
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values. That is, the normalized data were fitted by the
three-factor PTR model according to the reference–
target relations for each probe-set, and the parameters
were estimated by LAD. The computation was imple-
mented by a three-way median polishing.

The measured time-course expression profiles covered
several stages of the yeast life. In the SDC medium,
when yeast cells exhaust glucose, they undergo the
diauxic shift and move from fermentative- to
respiratory-based growth. In the post-diauxic and
stationary phase, the carbon sources were approaching
depletion and cells were arrested in the G0 stage (17).
When cells approach the stationary phase, several
physiological and biochemical changes occur, including
the thickening of the cell wall, the accumulation
of reserve carbohydrates and the increase of stress
resistance (40). These changes are accompanied by
global gene expression changes over time. A long-
standing technique in the studies of non-stationary time
series data is to analyse them in a moving-window fashion.
Accordingly, we adopted a moving time-window scheme
(Supplementary Table S1), in which only the marked pairs
of reference–target were included in the normalization and
summarization. For example, the 12-h wt served as a
reference for normalizing the 24-, 36- and 48-h wt but
not others; the 24-h sch9D was normalized with respected
to the reference 12-, 36- and 48-h sch9D. In other words,
we conducted pairwise normalization in a time-window
and shifted this window along the time-course. In this
study, we focused on time-course expression patterns of
each strain, and cross-strain normalization was not
included in the summarization.

The Affymetrix Yeast 2.0 GeneChip contains probe-sets
for both S. cerevisiae and S. pombe. The observed
fluorescent intensities of S. pombe probes are primarily
due to cross-hybridization. We kept these probe-sets in
normalization. After summarization, we examined the
results by checking S. pombe probe-sets and the scale
factors estimated from LTS of the sub-array method as
previously described (26).

The expression M–A plots of adjacent time points are
shown in Supplementary Figures S2 and S3. M values are
the log2 ratios of expressions between two adjacent time
points and A values are the average of log2 expressions for
the two points (41). Most of the results were reasonable
according to the examination of S. pombe probe-sets and
the distribution of scale parameters. The expression
differentiations between 12 and 24 h, between 24 and
36 h, were relatively high compared with other time
points, particularly in the wild type.

Different time-course expression profiles in the wild-type
and the sch9D mutant

Since the wild-type and the sch9D mutant have different
ageing rates, it is difficult to match time points between
their time-course expression profiles. Thus, our analyses
focused on different features of the two time-courses
rather than the differences at a specific time point. For
convenience, we referred to the log2 ratio of gene

expression between adjacent time points as expression
time difference.
We illustrated the distributions of log2 expression

values for S. pombe and S. cerevisiae probe-sets at each
time point using box plots (Figure 1A–D). The estimated
expression values for S. pombe probe-sets were low and
almost unchanged over time in both strains. This valida-
ted, from one aspect, the proposed normalization and
summarization procedure. We further examined the
S. pombe probe-sets which had extremely high signal
values (the outliers in the box plots). They turned out to
be genes encoding cytosolic ribosomal units that are highly
conserved between S. pombe and S. cerevisiae (42,43).
The global expression patterns were different in the

two S. cerevisiae strains, whereas the intensity levels of
the S. pombe probe-sets were well aligned. In the wild
type, the global expression may undergo substantial
changes as cells move from the phases of late exponential
growth, diauxic shift, post-diauxic to the stationary phase
in the SDC medium (17). Indeed, we observed an up-then-
down pattern during the first 60 h in the wild type.
In contrast, the global gene expression in the sch9D
mutant was relatively stable over time. Statistically, we
tested the changes of expression marginal distribution
over time using one-sided Wilcoxon rank tests (see
p-values in Supplementary Table S2). These test scores
demonstrated that during the period covered by the
microarray experiment, which was up to 5 days, the
global expression changes occurred less often and less
drastically in the sch9D mutant than in the wild type
(also see the distributions of the expression time difference
in Figure 1E and F).

Interpretation of expression time differences as
changes of biological activities

Our next goal was to translate expression time dif-
ferences into changes of biological activities. Following
the enrichment analysis previously described (26), we
inferred significant biological changes by integrating
expression time difference with the gene sets defined by
the knowledge from informative GO category, KEGG
pathway, protein localization data (31) and other
sources (see ‘Materials and Methods’ section). We
graphically displayed the inference results for gene sets
involved in carbohydrate metabolism, energy production,
ribosome biogenesis (RiBi) and degradation (Figure 2). In
this heatmap, each column corresponds to a statistical
comparison of expressions between two adjacent time
points; each row corresponded to a gene set. The value
in each cell, depicted in various shades of red or green,
represented the significance score of up- or down-
regulation for the gene set between two specific time
points. The enrichment analyses were arranged along the
horizontal direction by time and along the vertical
direction roughly by clustering gene sets based upon the
similarities of significance scores over time. The gene sets
with relevant biological functions tended to be close to
each other after the clustering step. We deliberately put
the cluster including electron transport right above the
cluster including processing of 20S rRNA for a
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comparison that will be discussed later. The inferences
drawn from three different kinds of biological knowledge
were quite consistent. In the following sections, we
investigated the biological activities which exhibited
different expression patterns between the two strains
and elaborated the most significant results in an
integrative way.

Different transcript profiles of mitochondrial ribosomal
proteins in the wild-type and the sch9D mutant

Mitochondria are the organelles where the reactions of
TCA cycle, electron transport and oxidative phosphoryla-
tion occur. In the wild type, after �10 h, the glucose level
decreases to very low levels. Saccharomyces cerevisiae
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Figure 1. The marginal distributions of global time-course expression profiles of the two strains. (A–D) The box plots of the expression profiles of
S. pombe and S. cerevisiae probe-sets at each time points, respectively. (E and F) The box plots of expression time difference. There are a total of
5031S. pombe probe-sets and 5841S. cerevisiae probe-sets.
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cells activate the transcription of many respiratory-related
genes and switch from fermentation to aerobic respira-
tion (17). Later, the mitochondrial activity continues
to decrease, and then stabilizes when ethanol and
other non-fermentable carbon sources are approaching
depletion (44).

Part of the mitochondrial activities can, to some extent,
be measured by the gene expression of mitochondrial
ribosomal proteins (MRPs), which are nucleus encoded.
Meanwhile, the cytosolic ribosomal protein (CRP) gene
set is a perfect reference for the statistical comparison of
MRPs between the two strains, as previously described
(26). In that report, we compared the expression profiles

of long-lived strains including the sch9D, ras2D and tor1D
mutants with the wild type, and demonstrated that MRP
genes were significantly down-regulated with the reference
of CRP genes at one point of time during the PDS (26).
This observation was extended by the new time-course
data in this study (Figure 3A and B).
The expression profiles of CRP genes in the wild type

were quite stable after 24 h, while that in the sch9D mutant
exhibited a slight down- and up-regulation curve. In
contrast, the expression profiles of MRP genes were very
different between the two strains: the MRP genes in the
wild type were first up-regulated and then down-regulated
during the 12- to 60-h period (Figure 3A); while the
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Figure 2. Graphical display of enrichment analysis on expression time difference. We illustrated the inference results for gene sets involved in
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mRNA levels of MRP genes were relatively stable in the
sch9D mutant (Figure 3B), indicating that the sch9D cells
took a different path of diauxic shift.

Early down-regulation of electron transport and oxidative
phosphorylation gene expressions in the sch9D mutant

Under aerobic conditions, the electron transport chain in
the mitochondrial inner membrane is the site of oxidative
phosphorylation and of ATP production. The leakage of
electrons to oxygen generates reactive oxygen species
(ROS) which are toxic and are thought to be one of the
causes of ageing (2). The expression profiles of MRPs
in the wild type were different from those in the sch9D
mutant. We further investigated the expression profiles for
gene sets: oxidative phosphorylation, electron transport

and TCA. In the wild type, the expressions of these gene
sets were up-regulated dramatically between 12 and 24 h
and remained at a high level till 48 h (Figure 3C); in the
sch9D mutant, the respective gene expressions were
comparatively less up-regulated between 12 and 24 h,
and were immediately down-regulated to a lower level
that did not change much until 108 h (Figure 3D). The
down-regulation of oxidative phosphorylation and
electron transport gene sets between 24 and 36 h was
even more drastic than that of TCA gene set.

We also examined the expression patterns for
two key respiration genes, RSF1 and RSF2. Both gene
products are required for respiratory growth: they
influence mitochondrial transcription and coordinate
transcriptional regulation of respiration-related nuclear
genes (45,46). Their expression curves were consistent
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with the expression pattern of oxidative phosphoryla-
tion and electron transport gene sets in both strains
(Supplementary Figure S4).

These results implied that the expressions of genes
involved in the aerobic respiration were down-regulated
earlier in the sch9D mutant. These expression changes,
especially the change of electron transport, could lead
to the reduction of ROS generation and might account
for part of the lifespan extension of the sch9D mutant.
Moreover, these expression changes are in agreement
with the change of gene expression of MRP, and con-
sistent with our recent experimental study of the metabolic
switch in sch9D. In that study, we found that the ethanol
produced by the fermentation of glucose during the
exponential growth is depleted early in the sch9D
mutant, and that there is a metabolic switch from bio-
synthesis and release of ethanol in the wild type to that
of glycerol in the sch9D cells (47).

Volatility of gene expressions

As shown in Figure 2, expressions of several gene sets
fluctuate more than others over time. It motivated us to
conduct a volatility analysis (see ‘Materials and Methods’
section) based on the expression profiles. First, we
calculated the volatility score (V) of each gene to
quantify its expression fluctuation. Second, we calculated
the trend score (T) to quantify the upward or downward
trend of each gene embedded in the expression time-
course. The trend score takes values from �1 to 1. In
the extreme case of continuous up- or down-regulation,
we have T=1 and �1, respectively. Since we had
excluded the 120-h sch9D array and the expression
changes were extremely large during the early time
period of the experiments in both strains, we restricted
our volatility analysis to the 36- to 108-h period.
The volatility distributions of the two strains were quite

different from each other, as shown by the scatter plots of
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the volatility versus the trend (Figure 4A and B). We
considered a volatility score to be high if it was larger
than the 90% quantile of the pooled volatility scores
from both strains. We identified 668 and 512 genes with
high-volatility scores in wild type and sch9D, respectively.
In the wild type, 278 and 282 (41.62% and 42.22%) high-
volatile genes had trend scores in the range �3=5,� 1=5ð �

and �1=5,1=5ð �; in the sch9Dmutant, 329 and 141 (64.26%
and 27.54%) high-volatile genes have trend scores in
the range �1=5,1=5ð � and 1=5,3=5ð � (Supplementary
Table S3). It suggested that many genes were down-
regulated during the 36- to 108-h period in the wild
type. On the other hand, in the sch9D mutant, the highly
volatile genes had trend scores close to 0. In fact, the
distribution of volatility versus trend in the sch9D
exhibited an up-side-down T-shape, indicating that the
expressions of a portion of genes fluctuated but did not
exhibit an obvious trend.

rRNA processing gene expressions were more volatile
in the sch9D mutant

In S. cerevisiae, three of the four rRNAs (18S, 5.8S and
25S) are first transcribed by RNAP I, as a single 35S
rRNA precursor; the other rRNA (5S) is transcribed by
RNAP III (42). After the transcription, the 35S pre-rRNA
is extensively modified and processed into mature rRNAs
with the help of small nucleolar ribonucleoprotein
(snoRNP). Both rRNA transcription and processing
mainly take place in nucleolus (48). In our volatility
analysis, the gene sets related to the rRNA processing
were much more volatile in the sch9D mutant compared
with the wild type (q-value <0.05) (Figure 4).

The volatile expression pattern was also observed for
the RNAP I/III subunit genes and the RiBi regulon (49)
(Figure 4C and D). There are multiple copies (more than
100) of rRNA locus (rDNA) in the yeast genome, but only
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a fraction of them are actively transcribed (50). A study
of the exponentially growing yeast cells showed that the
rRNA synthesis rate is determined by the RNAP I loading
rate rather than by the copy number (51). Several studies
also point out that Rrn3 is the key regulatory factor for
the transcriptional initiation of RNAP I (51–53). In this
time-course data, the expression of RRN3 fluctuated over
time in the wild type but relatively stable in the sch9D
mutant. In contrast to RRN3, the expression of RRN11
gene, which encodes one component of the initiation core
factor (54), fluctuated in the similar way as RNAP I genes
in both strains (Supplementary Figure S5), indicating that
Rrn11 might play an important role in the regulation of
RNAP I during the synthesis of mature rRNA in the
sch9D mutant.

Up-regulation of TCA was accompanied by deep
down-regulation of rRNA processing genes

Not only were the rRNA processing genes in the sch9D
mutant volatile during the 36- to 108-h period, but they
were also down-regulated drastically between 12 and 24 h
(Figure 4D). The rDNA region occupies a large portion
of the genome and resides in the nucleolus. The stability
of rDNA is highly connected to ageing, as shown by the
accumulation of extrachromosomal rDNA circles (ERCs)
in ageing yeast cells (55). When we compared the rRNA
processing gene sets such as the nucleolus-localized gene
products, processing of 35S and 20S pre-rRNA, with
electron transport, oxidative phosphorylation and TCA
over time, we observed that the up-regulation of these
respiration gene sets was accompanied by deep down-
regulation of rRNA processing genes over time in the
sch9D mutant (Figure 5G–L; Supplementary Figure S6).
Take the TCA gene set for example, their genes were
significantly up-regulated in the 12- to 24-h, 48- to 60-h
and 84- to 96-h period (Figure 5H); correspondingly, the
genes encoding nucleolus-located proteins were down-
regulated at these time periods, particularly so during
the 12- to 24-h and 84- to 96-h period (Figure 5G).
During other time intervals, TCA genes were either
down-regulated or almost unchanged, whereas nucleolus
gene set (localization) was up-regulated.

More quantitatively, this phenomenon can be seen from
two aspects: first, at each adjacent time interval, if the
down-regulation of rRNA processing genes is coupled
with up-regulation of TCA or the non-down-regulation
of rRNA processing genes is coupled with non-up-
regulation of TCA, then we call it a match. Eight
adjacent time intervals exist for the sch9D mutant, while
nine exist for the wild type. In Supplementary Table S4,
we show the relevant statistical significance values of
enrichment analysis as displayed in Figure 2. If we
take the chance model of independent fair-coin flipping
for the eight events of sch9D, the chance of seeing eight
matches is 2�8 (�0.0039); the chance of observing
the matches in wild type is relatively larger (>0.05).
Second, in the sch9D mutant, when genes involving
respiration are up-regulated, the down-regulation of
genes involving rRNA processing is very deep (see the
medians of rRNA processing gene expression time

difference in Supplementary Table S4). Moreover, by
computing the complete expression correlation between
rRNA processing and respiration gene sets
(Supplementary Figure S6), we can further prove that
the anti-correlated expression pattern is more prominent
in sch9D. As another reference for comparison, in the
sch9D mutant, the nucleus gene set (genes encoding
nucleus-located proteins) did not show the opposite
expression differentiation as strong as the nucleolus gene
set (see the eighth row in Figure 2).

Cis-regulatory elements upstream of the most volatile
genes in the sch9D mutant

Next, we searched regulatory element(s) that may account
for the volatility in the sch9D mutant. Namely, we applied
the MEME algorithm (33) to the promoter regions, the
1000-bp upstream sequences, of the 50 most volatile genes.
These promoter regions were enriched with the motifs
of rRPE, PAC (56,57) and GRE (58,59) (Figure 6B).
The transcriptional regulation via these three cis-acting
elements is known to play an essential role in response
to nutrients (60).
We scanned the 50 sequences using the PSSM of the

three motifs, and identified 27 genes with PAC element,
41 genes with rRPE and 34 genes with GRE. The
combinations of their presence or occurrences are
shown in Figure 6A and B. Based on the clustering of
expression time difference and the distribution of
pairwise gene expression correlation, we noticed that the
genes with both rRPE and PAC were co-expressed
more tightly than the genes with rRPE only (Figure 6A
and D). The positions of rRPE were much closer to the
genes when they also contained the PAC element (Figure
6C). These findings are consistent with the previous results
on the two motifs (61,62), and further suggest their
combinatorial regulation roles on the volatile genes in
sch9D.

GRE element and Azf1

Azf1 has been identified as a positive transcriptional
regulator that binds to the GRE motif and activates the
transcription of the G1 cyclin gene CLN3 (58,59,63). Cln3
plays a critical role in coordinating cell growth with
proliferation (64) and in determining cell size (65).
As a matter of fact, we found that the expression of
CLN3 exhibited a volatile pattern similar to the rRNA
processing genes in the sch9D mutant (Supplementary
Figure S5). This supports that the GRE element and
Azf1 played active regulatory roles on genes, such as
CLN3 and the rRNA processing genes, in the sch9D
mutant.
The increased expression volatility of Azf1/GRE-

regulated genes in the sch9D mutant indicated that the
highly active regulation through Azf1 was important for
the longevity of the sch9Dmutant. We further conducted a
CLS assay using azf1D mutant strains and sch9Dazf1D
double mutant strains. The assay showed that the azf1D
mutant had a cell size smaller than the wild type but
larger than sch9D, and it survived almost as long as the
wild type. The sch9Dazf1D double mutant had a cell size
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smaller than sch9D (Supplementary Figure S7; Table S5).
Moreover, the deletion of AZF1 reversed the lifespan
extension of the sch9D mutant, indicating that Azf1 was
required for the lifespan extension of the sch9D mutant.
The underlying mechanism of the Azf1 regulation is still
under further investigation.

Stress response genes were up-regulated by larger fold
changes in the sch9D mutant

The nutrients starvation and other stress conditions,
including oxidative exposures, trigger the expressions of
stress response genes before yeast cells enter the stationary
phase. In this time-course expression profiles, the 12- to
24-h period was observed as the key time interval when
many stress response genes were up-regulated to a high
level. During this time period, we identified 120 and 101
stress response genes that were up-regulated by at least
1-fold (log2 ratio � 1), respectively, in the wild type and
the sch9D mutant; while 63 of them overlapped (Figure 7).
Compared with the wild type, we discovered that the
sch9D mutant had more extremely up-regulated genes
with fold changes larger than four or even eight (log2
ratio > 2 or even 3) (Figure 7; Supplementary Table S6).
Among them, we found cytosolic catalase gene CTT1;
mitochondrial superoxide dismutase gene SOD2; peroxi-
dase genes, GPX1, TSA2; heat shock genes, SSA3, SSA4,
HSP12, HSP26, HSP30, HSP42, HSP78 and HSP104;
and multi-stress-induced genes, GRE1 and DDR2. These
results further confirmed that the sch9D cells showed
enhanced stress protection while entering the non-
dividing phase, consistent with the previous stress-
resistance results (66).

DISCUSSION

Microarray technology provides us with a powerful tool
for monitoring transcriptional activities of cells under
certain conditions. In an earlier report, we analysed the
expression profiles of the three long-lived yeast strains
ras2D, tor1D and sch9D mutants together with the wild
type at one point after the diauxic shift, and identified

several expression patterns common to all three long-
lived strains (25,26). The expression results are in
agreement with not only the free radical theory (2) but
also the programmed longevity theory (7). In this study,
we performed the experiments to measure the gene
expression profiles of the wild-type and the long-lived
sch9D mutant from 12 to 120 h. Our goal was to identify
the modifications of cellular activities and biological
pathways that accounted for the longevity of the sch9D
mutant. The success of the expression comparative
analyses hinged on unbiased and accurate measurement
of the mRNA abundances. A large fraction of genes
were possibly differentially expressed in both strains. An
appropriate data processing method needs to detect the
expression differentiations while reducing random
variation. We chose the reference–target pairs in three
overlapped time windows (Supplementary Table S1) for
sub-array normalization and carried out summarization
based on the recently developed three-factor PTR model.
It has been reported that the overall transcription level

declines dramatically as yeast cells approach stationary
phase in the YPD medium (40). In the SDC medium, we
did observe a substantial increase between 12 and 24 h and
a substantial decline during the 48- to 60-h period in the
wild type (Figure 1C). The observation matched our
earlier understanding of the diauxic shift and post-
diauxic phase of wild-type cells in SDC medium (17).
In contrast, the global up- then down-regulation pattern
was not observed in the sch9D mutant (Figure 1D). Since
the TF and RNAP II activity can reflect the overall
transcription to a great extent, we drew the median gene
expression curves for gene sets: basal TFs (KEGG),
transcriptional factor activity (GO) and RNAP II (GO)
(Supplementary Figure S8). Their expression patterns
were in concert with the global expression changes
(Figure 1C).
A fraction of the genes accounting for the difference

between the wild type and the sch9D mutant encode
MRPs or relate to the mitochondrial activity. After
compiling over 1000 published microarrays, Ihmels et al.
(67) reported that expressions for MRPs and CRPs are
uncorrelated (even weakly anti-correlated) in S. cerevisiae
while they are strongly correlated in Candida albicans,
which is another form of yeast that primarily grows
aerobically (67). They argued that the change of MRP
gene expression in S. cerevisiae is connected to the
emergence of the capacity for rapid anaerobic growth.
Further upstream sequence analysis confirmed that
MRP and CRP genes are subject to different regulatory
mechanisms in S. cerevisiae (67). In this study, the
different regulatory patterns of MRP and CRP genes
were clearly observed in the wild type from the time-
course expression profiles (Figure 3A). However, the
difference was almost lost in the sch9D mutant
(Figure 3B). In other words, the deletion of SCH9
modified the transcription regulation of MRP genes
during chronological ageing.
The aerobic metabolism of S. cerevisiae takes place in

the mitochondria and the majority of harmful ROS may
be generated during this process (68). ROS have been
shown to be sufficient to induce apoptosis (69) and
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Figure 7. Venn diagram of the most up-regulated stress response genes
between 12 and 24 h. The numbers of up-regulated genes were counted
using three different log2 ratio cut-offs. In the sch9D mutant, we
identified more extremely up-regulated genes, based on log2 ratio >2
or even 3.
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accelerate yeast chronological ageing (17). The change of
MRP gene expressions suggested that in the sch9D
mutant, the mitochondria did not require additional
activity during the PDS. The early down-regulation of
gene sets related to electron transport, oxidative
phosphorylation and TCA further suggested that there
were changes of chemical reactions on the electron
transport chain that could lead to the reduction of ROS
generation, in agreement with our experimental results
showing that sch9D cells have less age-dependent
increase of ROS-induced damage (21,70). In addition,
we also observed that the stress response genes were
up-regulated by larger fold changes in the sch9D mutant,
which is in agreement with our recent data showing
that the sch9D cells have enhanced cellular protection
against oxidative stress (70). These findings suggest that
the change in metabolic pathways together with the
enhanced cellular protection through the regulation of
stress resistance genes contribute to the longevity of the
sch9D mutant.
The rRNA locus (rDNA) is a region of fluctuation

because it is the primary site of repeated recombination
(71). Quantitatively, we defined the volatility score for
each gene and found indeed that rRNA processing genes
were volatile, especially in the sch9D mutant. In contrast,
the expressions of CRPs were more stable. One of the
primary functions of Sch9 is to regulate ribosome
biosynthesis (49). In yeast, the production of cytosolic
ribosome, including the synthesis of mature rRNA and
ribosomal proteins, demands numerous resources (72).
Thus the regulation of ribosome synthesis is critical for
the determination of growth rate and cell size (49).
In this time-course expression profiles, the gene
expressions related to rRNA synthesis were more
volatile than that of ribosomal proteins. This was particu-
larly true in the sch9D mutant and supports the hypothesis
that the control of rRNA synthesis is the primary target of
regulatory mechanisms, and the regulation of ribosomal
protein synthesis is a consequence of rRNA production
regulation (73).
A portion of genes exhibited increased expression

volatility in sch9D while other genes were expressed
stably. One explanation is that the volatile genes are
directly and actively regulated in response to the environ-
mental changes such as nutrition and stress. We identified
three cis-regulatory elements enriched in the most volatile
genes in the sch9D mutant. Among them, transcriptional
activities via PAC and rRPE elements are involved in
rRNA processing and RiBi (56). In the sch9D mutant,
the expressions of the genes containing both PAC and
rRPE motifs were co-expressed more tightly than the
genes with rRPE only, and the positions of rRPE were
much closer to the genes when they also contained the
PAC element. Recently, Pbf1 and Pbf2 (also known as
Dot6) were identified as PAC-binding factors (74). Stb3
also has been discovered as one rRPE-binding protein,
but it only binds to a small portion of rRPE-containing
gene (61,75). The verification of these binding factors in
volatile genes and their regulations are under further
investigation.

The discovery of the GRE motif in these volatile genes
was particularly interesting. The known factor Azf1 binds
to GRE, and its well-known target, CLN3, showed the
similar volatile expression pattern as the rRNA processing
genes in the sch9D mutant, which provided evidence that
Azf1 binds to these volatile genes. We have conducted the
lifespan assay of the azf1D mutant and the sch9Dazf1D
double mutant. The experimental results indicate that
phenotypes of the sch9D mutant including lifespan
extension and cell size are associated with the regulation
of Azf1.

Many studies supported the importance of rDNA in
the ageing process. For example, ERCs are formed in
the rDNA regions (55). Some recent suggestions and
discussions regarding the importance of rDNA to ageing
can also be found in Kobayashi (71). With the observation
of the striking opposite expression differentiation over
time between rRNA processing genes and electron
transport, oxidative phosporylation and TCA, it is
conceivable that in the non-dividing condition the
up-regulation of aerobic respiration is counter-balanced
by the down-regulation of rRNA synthesis and it is a
possible way to protect the rDNA region from the ROS
damage in the sch9D mutant.

Our comparative analyses of the time-course expression
profiles of the sch9D mutant and the wild type indicated
that the sch9D cells followed a different metabolic path
during chronological ageing. We believe that the lack of
SCH9 promotes entry into a longevity programme that
extends the lifespan through metabolic changes and the
activation of protective systems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
The supplementary information consists of eight figures
and six tables. The microarray data set published in
this paper has been deposited in the Gene Expression
Omnibus (GEO) Database under the series accession no.
GSE14227. We also created a webpage (http://www-rcf
.usc.edu/�lilei/yeast_ageing.html) that will allow user to
query the time-course expression profiles of yeast genes
in both wild type and sch9D interactively.
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