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Simple Summary: Automated enumeration of circulating tumor cells (CTC) from immunofluores-
cence images starts with a selection of areas containing potential CTC. The CellSearch system has a
built-in selection algorithm that has been observed to fail in samples with high cell density, thereby
underestimating the true CTC load. We evaluated the deep learning method StarDist for the selection
of possible CTC. In whole blood sample images, StarDist recovered 99.95% of CTC detected by
CellSearch and segmented 10% additional CTC. In diagnostic leukapheresis (DLA) samples, StarDist
segmented 20% additional CTC and performed well, whereas CellSearch had serious failures in 9%
of samples.

Abstract: After a CellSearch-processed circulating tumor cell (CTC) sample is imaged, a segmentation
algorithm selects nucleic acid positive (DAPI+), cytokeratin-phycoerythrin expressing (CK-PE+)
events for further review by an operator. Failures in this segmentation can result in missed CTCs. The
CellSearch segmentation algorithm was not designed to handle samples with high cell density, such
as diagnostic leukapheresis (DLA) samples. Here, we evaluate deep-learning-based segmentation
method StarDist as an alternative to the CellSearch segmentation. CellSearch image archives from
533 whole blood samples and 601 DLA samples were segmented using CellSearch and StarDist
and inspected visually. In 442 blood samples from cancer patients, StarDist segmented 99.95% of
CTC segmented by CellSearch, produced good outlines for 98.3% of these CTC, and segmented 10%
more CTC than CellSearch. Visual inspection of the segmentations of DLA images showed that
StarDist continues to perform well when the cell density is very high, whereas CellSearch failed
and generated extremely large segmentations (up to 52% of the sample surface). Moreover, in a
detailed examination of seven DLA samples, StarDist segmented 20% more CTC than CellSearch.
Segmentation is a critical first step for CTC enumeration in dense samples and StarDist segmentation
convincingly outperformed CellSearch segmentation.

Keywords: circulating tumor cell (CTC); diagnostic leukapheresis (DLA); image segmentation;
StarDist; CellSearch; ACCEPT

1. Introduction

The circulating tumor cell (CTC) load detected by the CellSearch system reflects the
state of disease [1,2]. Accurate enumeration of CTC is important for its use as a biomarker in
patient risk assessment and to evaluate treatment response [3,4] or disease progression [5,6]
during the course of the disease by true changes in CTC counts. After sample processing
and imaging, CTCs are identified in 140 four-channel immunofluorescence images. This
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process starts with the identification of events of interest in the images through segmenta-
tion [7]. Based on this segmentation, CTC candidates are selected and the corresponding
thumbnail images are presented to the user. Ideally, the task of segmentation is to identify
every single event of interest inside a sample. Segmentation should not join multiple events
together, nor split single events into multiple ones. As cell density increases, the segmen-
tation task becomes more challenging. In samples derived from diagnostic leukapheresis
(DLA) and run on the CellSearch system [8,9] we noticed that in these cell dense samples
the segmentation used by CellSearch failed to identify single objects, leading to artificially
low CTC counts. A better segmentation was achieved by the open-source image analysis
program ACCEPT [10]. However, ACCEPT employs an active contour method for segmen-
tation and joins objects that are in contact with each other into a single event, thus failing to
identify single objects in denser samples. StarDist is a Deep Learning based method that
describes all events with a star-convex shape and which is quite effective in segmenting
single cells in tissue sections [11]. Here, we evaluate StarDist for the segmentation of all
objects as single events in CellSearch images corresponding to peripheral blood and DLA
samples. Using StarDist, we demonstrate a clear improvement in the segmentation of
CellSearch images leading to a more accurate CTC count.

2. Materials and Methods
2.1. Sample Archives to Evaluate

For the comparison of CellSearch and StarDist segmentations, 1163 CellSearch archives
of previously scored CellSearch images were used. This set included peripheral blood
samples of 90 healthy donors (NCT00133913 [12]), 442 castration-resistant prostate cancer
patients (NCT00133900 [13]), and 601 DLA samples of prostate (n = 24), breast (n = 49), and
non-small cell lung cancer patients (n = 528) [8,14,15]. The time between sample collection
and sample preparation was known for 436 whole blood prostate cancer samples and for
322 of the DLA non-small cell lung samples. All study participants had signed informed
consent forms per the Helsinki declaration and all protocols were approved by the Ethics
Committees of the respective studies.

2.2. Stardist Segmentation

The StarDist method from github (https://github.com/stardist/stardist, accessed
on 1 June 2021) was applied with a few non-default parameters. Specifically, for net-
work “n_channel_in” was set to 3 and “u_net_n_depth” was set to 4, for optimization
“train_background_reg” was set to 0.0004, “train_learning_rate” was set to 0.001 and
train_batch_size” was set to 8, and for post-processing “nms_thresh” was set to 0.3
and “prob_thresh” was set to 0.3. The input images were locally contrast-enhanced.
Training data were generated in QuPath 0.2.3 [16] using the procedure described in the
StarDist documentation.

2.3. Performance in High Density Samples

The cell density of CellSearch samples varies greatly from sample to sample, with
occasional high densities in blood samples and more often in DLA. To assess the perfor-
mance of StarDist in higher density samples, we created samples with increasing amounts
of magnetically labeled white blood cells and a fixed amount of tumor cells. For this, we
magnetically labeled, separated, and fluorescently stained white blood cells from blood
using the CellSearch system with the standard reagents, except for the EpCAM-ferrofluid,
which was replaced by streptavidin ferrofluid (Biomagnetic solutions, State College, PA,
USA) coupled to CD45-biotin. Cells of the prostate cancer cell line LNCaP were processed
using the regular CellSearch reagents. The cell concentrations of the resulting samples were
determined and an increasing number of white blood cells together with ~6000 cells from
the prostate cancer cell line LNCaP were spiked into a mixture of PBS and CS-fixative to
reach a final volume of 325 µL. The spiked samples were manually placed in CellSearch
cartridges and scanned using the CellTracks Analyzer II system.

https://github.com/stardist/stardist
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In our experience, an increase in the time between blood draw and sample prep causes
a higher white blood cell carry-over during enrichment and therefore a higher cell density
in the resulting samples, while as mentioned DLA samples show an even higher cell density.
To test this assumption, we evaluated the number of segmented events by StarDist using
436 whole blood and 322 DLA samples for which the time between sample collection and
sample prep was known.

2.4. Recovery of CellSearch CTC by StarDist and Potential Gain in CTC

As CellSearch is the gold standard in the enumeration of CTC, we compared the
StarDist segmentations to those from CellSearch. The CellSearch segmentation draws
rectangular segmentations with a 10-pixel margin around the event, whereas StarDist
draws a star-convex segmentation without any margin. The vast majority of StarDist
segmented events are cytokeratin-PE negative white blood cells, whereas CellSearch only
segments events that express some cytokeratin-PE and some DAPI. A direct comparison of
segmentations is therefore not meaningful. To ensure that the StarDist algorithm does not
cause any losses of events that were scored by a reviewer as CTC in CellSearch, we selected
CellSearch segmentations in which a CTC was detected (with a maximum of 20 from a
single sample). Together with the corresponding StarDist segmentation, these were shown
to a reviewer, who evaluated whether (1) the CTC found by CellSearch were segmented by
StarDist, and (2) whether the segmentations were correct. A correct segmentation outlines
the whole event and only the event, so it does not split a single event into two segmentations
and it does not join multiple events together. For CTC enumeration by a human reviewer, a
CTC just needs to be included in the segmentation; however, for automated enumerations,
a correct outline is also important.

To assess whether StarDist segments any CTC that were not detected by CellSearch,
we presented to four reviewers all events detected in 442 blood samples as well as seven
DLA samples that were CTC candidates based on their staining properties, but which were
not selected by the CellSearch segmentation and therefore had not been evaluated by the
original reviewer. For this purpose, a possible CTC was defined as an event meeting all of
the following requirements: cytokeratin-PE intensity maximum >75 and mean >45, DAPI
intensity maximum >60 and mean >50, CD45-APC mean intensity <50 or mean PE intensity
>1000 (because some crosstalk exists from PE to the APC channel), and a total event area
between 36 and 1000 pixels, with a stained area in PE of at least 30 pixels. These boundaries
were loosely based on an existing ACCEPT CTC definition [17]. We do not expect that
this definition will include all CTC, and we know that the majority of events included by
this definition are not CTC. To assess if the more sensitive StarDist segmentation would
lead to an increase in false positives, we also performed this selection and evaluation for
93 healthy donor samples for which the CellSearch results were reported previously [9].

2.5. Code Environment

All trainings and evaluations were performed in Python 3.7, utilizing StarDist 0.6.2 [11],
Pandas 1.1.5 [18], Numpy 1.18.5 [19], OpenCV 4.0.1 [20], Matplotlib 3.3.4 [21], scipy 1.4.1 [22],
tifffile 2021.3.31 and skimage 0.18.1 [23] packages and associated dependencies.

3. Results
3.1. Performance of Segmentation Algorithms on Dense CellSearch Images

Segmentation algorithms developed for CellSearch images include the built-in algo-
rithm and the active contour method employed by ACCEPT. However, both the ACCEPT
as well as the CellSearch segmentation methods were developed for CTC samples in which
the cell density is such that adjacent cells do not touch each other. In high cell density
samples, including most DLA samples and some whole blood samples, the segmentation
algorithms join all cells that are in contact with each other into a single event, as shown
in Figure 1. In addition, CellSearch seems to miss cells that should have been presented
to a reviewer. In contrast, StarDist achieved segmentation of almost all single events, as
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illustrated in Figure 1. An overview of the capabilities of the different methods is given in
Table 1.
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Figure 1. Four example images with the accompanying segmentations as performed by CellSearch,
ACCEPT, and StarDist. The first column shows a false-color image in which the nuclear staining is
colored blue (DAPI), the cytokeratin staining green (CK-PE), and CD45 staining red (CD45-APC).
The second column shows the same image in black and white with the yellow rectangular CellSearch
segmentation areas. In the third and fourth columns, the ACCEPT and StarDist segmentations are
depicted as a separate color for each segmented event. StarDist clearly performs best in segmenting
all single events separately, especially in areas containing a high cell density.

Table 1. Suitability of CellSearch, ACCEPT, and StarDist for segmentation tasks. Overview of the
suitability of the CellSearch, ACCEPT and StarDist for the pre-selection of likely CTC, identification
of cell outlines, segmentation of cells in high-density samples, and ability to resolve cells that are part
of a cluster.

Segmentation Method CTC Pre-Selection Cell Outlines High Cell Density Segments Cells inside Clusters

CellSearch YES NO NO NO
ACCEPT YES YES NO NO
StarDist YES YES YES YES

3.2. Extent of the Problem in CellSearch Segmentation

In the CellSearch segmentation algorithm, a single cell of 20 µm diameter will result
in a segmentation of 2500 pixels. Therefore, we reasoned that those segmentations larger
than 2500 pixels, the equivalent of 32 × 32 µm2, are likely to contain more than one cell.
For these sizes, it becomes probable that multiple CTCs are contained within a single
segmentation, leading to an undercount of CTCs. Furthermore, when the segmentations
get even larger, the review becomes more difficult due to presentation issues, likely leading
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to misclassifications. Presentation issues become noticeable when segmentations are around
70 × 70 µm2 (equivalent to 11,881 pixels) and become much worse for larger segmentations.
The occurrence of ‘regular’ (≤2500 pixels), larger than a cell (2500 to 25,000 pixels), too
large to review (25,000–100,000), and very large segmentations (>100,000 pixels), as well as
the area of the cartridge and the segmented area consisting of these segmentation sizes, are
listed in Table 2.

Table 2. CellSearch segmentation sizes in blood and DLA samples. The percentage of samples with
different segmentation sizes present in whole blood and DLA samples, the mean percentage of the
total cartridge area covered, and the mean percentage of the total segmented area by the different
CellSearch segmentation sizes. The ranges are shown in parentheses.

Diagnostic Leukapheresis

Segmentation Size (Pixels) % of Samples % of Cartridge Area % of Area
Segmented

<2500 100 3.43 (0.00–38.32) 54.77 (7.79–100)
2500–25,000 99.83 3.10 (0.00–35.83) 43.11 (0.00–84.15)

25,000–100,000 38.94 0.31 (0.00–11.28) 0.95 (0.00–14.19)
>100,000 9.15 0.83 (0.00–51.78) 1.17 (0.00–69.81)

Overall, in whole blood of cancer patients, 40% of segmentations are larger than a
large single cell, and 0.2% of segmentations are so large that review is possibly affected.
In whole blood of healthy donors, 35% of segmentations are larger than a large single
cell, and 0.07% of segmentations are so large that review is possibly affected. Very large
segmentations of more than 100,000 pixels were observed in 9% (55 of 601) of DLA samples,
comprising up to 70% of the segmented area. One out of 442 whole blood samples from
cancer patients also had very large segmentations, which comprised 0.7% of the segmented
area. For these cartridges, the accuracy of the CTC count is compromised. To illustrate
these sizes, Figure 2 shows an example for a segmentation of approximately 2500, 25,000,
and 160,000 pixels.
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Figure 2. Examples of different segmentations sizes (A) Segmentation of 2500 pixels, (B) segmentation
of 25,000 pixels, and (C) segmentation of 160,000 pixels.

3.3. Cell Density

To assess the performance of StarDist in cartridges with various cell densities, spike-in
experiments were performed. The number of cells spiked was approximately 6000 LNCaP
cancer cells together with zero, 50-, 100-, 150-, 200-, 300- and 400-thousand white blood cells.
In a CellSearch cartridge and scan, 400,000 cells correspond to ~3000 cells per image and
about 50% of the surface area covered by cells. Larger cell concentrations are not evaluable
as the CellTracks Analyzer II fails to perform autofocus in denser samples. Figure 3 shows
the result of these spike-in experiments. It can be seen that at very low concentrations,
StarDist detects an excess of approximately 30.000, mostly small, events, while a good
correlation is seen up to the maximal density. Although useful to evaluate the ability of
StarDist to segment high-density samples, these titrations do not contain the clumped and
broken cells often seen in high-density DLA samples.
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Figure 3. Performance of StarDist segmentation on increasing numbers of spiked cells. Comparison
of number of spiked cells in the cartridge versus the number of events detected by Stardist showing
a good correlation up to the maximal density that can be imaged using the CellTracks Analyzer II
(scale bar is 10 µm).

To assess the dependence between white blood cell carry over, causing high cartridge
densities, and the time between sample collection and sample preparation, we calculated
the number of events in 436 blood as well as 322 DLA samples. In Figure 4 the empirical
cumulative distribution functions (CDF) for the number of StarDist events per sample is
shown for blood as well as DLA samples with one, two, three, and four days between
sample collection and sample prep. There is a large variation in the number of events per
sample and it can be seen that for blood the total number of events increases when there
is more than one day between the sample collection and sample prep. In fact, for whole
blood, there is first-order stochastic dominance of the empirical CDF for one day between
collection and prep and the empirical CDFs for two, three, and four or more days. The
median number of events for whole blood samples with one day between collection and
prep was 13-thousand, in contrast to 28-, 37- and 54-thousand events for two, three, and
four or more days respectively. DLA samples have a much less pronounced dependence
on the time between sample collection and sample prep. For DLA samples, the median
number of events was 108-, 136-, 138- and 156-thousand for one, two, three, and four or
more days respectively.

3.4. Recovery of CellSearch CTC by StarDist and Potential Gain in CTC

We evaluated 1948 CTC identified by reviewers after CellSearch segmentation to verify
that these CTC were also segmented by StarDist and assessed whether the segmentation
was within a few pixels of the true outline. We found that one CTC was not segmented by
StarDist, resulting in a StarDist segmentation of 99.95% of CTC segmented by CellSearch. Of
the segmentations, 14 (0.7%) were split into multiple events, while 8 (0.4%) segmentations
included only part of the event. In 11 (0.6%) segmentations, the CTC was merged with
(part of) an adjacent object into a single event. Such splitting and merging errors are not
problematic for a human reviewer, but may cause automated enumeration methods to
exclude such events, leading to a lower recovery of CTC.
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Figure 4. Cumulative distribution functions (CDF) of (A) blood and (B) DLA samples with different
collection to prep intervals. (A) The cumulative distribution functions of samples with one, two,
three, and four+ days (d) between blood draw and sample preparation show a clear increase in cell
density for time intervals of more than one day in (A) whole blood and (B) DLA samples. While a
dependence of the number of events on the time from sample collection to sample preparation may
also be observed in DLA samples, the difference is less pronounced than in blood.

To determine the extent to which CTCs were missed by the CellSearch segmentation,
we reviewed a total of 36,996 events from 442 whole blood image archives that were CTC
candidates based on their staining properties, but had not been reviewed in the original
review because they were not segmented by CellSearch. Of these events, 762 were CTC by
consensus of a panel of four reviewers. Ordinary least-squares linear regression showed an
average increase of 8.7% of the number of CTC found in the original review plus 0.214 CTC
(CTCStarDist = 1.087 × CTCCellSearch + 0.214, R2 = 0.99). Of the 218 samples that originally
had zero CTC, 20 samples (9.2%) gained at least one CTC after implementing StarDist
segmentation and CTC review. In two of the 442 samples, the increase in CTC led to a
conversion from a ‘lower risk’ (<5 CTC) to ‘a higher risk’ (≥5 CTC) group, see Figure 5.
Additionally, in seven image archives of prostate cancer DLA samples we reviewed a total
of 4666 events that were CTC candidates based on their staining properties, but were not
reviewed because they were not segmented by CellSearch. Of these events, 219 were CTC
by consensus of the reviewers. Ordinary least squares linear regression showed an average
increase of 19.8% of the number of CTC found in the original review plus 1.136 CTC
(CTCStarDist = 1.198 × CTCCellSearch + 1.136, R2 = 0.99).

In image archives from 90 healthy donor samples, two events segmented by StarDist
but not by CellSearch were selected by the reviewers as CTC. Human reviewers had
previously identified three CTC in these samples. Taken together, 5.4% of the healthy
donors had one (false positive) CTC, while none had two or more. This percentage is in
line with the 5.5% of healthy donor samples containing one CTC-like event as found in the
original CellSearch study [24] and does not indicate a large number of false positives as a
result of the segmentation.
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Figure 5. CTC found by CellSearch and StarDist segmentation in archive images of whole blood and
DLA. (A) Comparison of the original number of CTC found by CellSearch and the combined number
of CTC found after evaluation of additional StarDist segmentation for all samples. (B) Zoom in of
A showing the samples with <40 CTC only. (C) Fraction of total CTC found by original review and
StarDist review for each sample. Samples are sorted on the total number of CTC as depicted by the
orange line. The first 198 samples have no detected CTC and therefore have no fractions.

As a sample archive consists of a number of adjacent images, some events will be
present on the image edges. The segmentation of events on an edge is more challenging for
segmentation algorithms that employ pixels surrounding the event, for example in the local
contrast enhancement employed in CellSearch. Additionally, the non-uniformity of the
sample illumination means events near the edge have lower signal to noise, which could
reduce the likelihood of being segmented. To assess if the events missed by CellSearch
are predominantly present on the edges of the image, we created a heat map consisting of
25 × 31 bins (~25 × 25 µm per bin) displaying the locations of the CTC segmented only
by StarDist. In the heatmap, as shown in Figure 6, it can be seen that although additional
events are found throughout the image, there is a higher incidence at the edges, with
36.6% of events being present in an edge bin, compared to 14.5% expected for a uniform
distribution. The highest concentration of missed events is on the left and top edges, which
could be attributed to the implementation details of the CellSearch algorithm.
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Figure 6. Heatmap of the image location for the additional CTC segmented by StarDist. Heat map of
25 × 31 bins displaying the number of additional CTC segmented by StarDist for each bin. Heat map
shows an increased concentration of events on the left and top edges of the image.

4. Discussion

For the classification of objects in fluorescence images, single objects need to be
identified and presented to a reviewer, an algorithm, or a combination of both. During the
development of the CellSearch system, an algorithm segmenting image sections containing
both DAPI and CK-PE staining was chosen to facilitate CTC enumeration. These sections
are presented to a reviewer who decides which ones contain a CTC. Failure to segment a
CTC means this CTC will not be presented to the reviewer, and thus, not accounted for in
the final CTC count. Furthermore, incorrect segmentations can contain two or even more
clearly separated CTC. Another possibility is that the segmentations are too large to be
reviewed effectively, as they can encompass a whole image or more. Such failures can also
lead to underestimation of the real CTC load, albeit less dramatically than when the CTC is
not presented at all.

Here, we evaluated StarDist as an alternative to the CellSearch segmentation and
demonstrated that it would lead to the segmentation of on average 8.7% + 0.21 more CTC
in whole blood, while barely missing any (0.05%) of the CTC detected using the CellSearch
segmentation. In DLA samples, the advantage of StarDist is even more profound, since
we detected on average 19.8% + 1.14 more CTC, albeit in a small sample size of only seven
DLA samples. For the current evaluation, a pre-selection of CTC candidates was made
that likely missed some CTC. The average 10.5% CTC gain found with this selection thus
represents a lower bound for the number of CTC not segmented by the original CellSearch
segmentation. Using a deep learning classification algorithm currently in development [25],
we estimate the upper bound of the average CTC gain due to improved segmentation to be
38%. Considering the large number of events segmented per sample (mean 54 × 103) using
the StarDist method, a review of all segmented events is neither feasible nor meaningful.
If StarDist was applied in the current CellSearch workflow, a pre-selection of events to
be presented to the reviewer would be needed to reduce the number of candidate CTC.
Fully automated classification could be performed using a fully designed gating strategy as
applied in ACCEPT [17], or through a deep learning approach as presented previously [25].
The main advantage of the ACCEPT approach is that it is relatively simple and thus
interpretable. The main downside is that it has a limited ability to encode more complex
classification rules. A deep learning approach would be able to encode very complex
classification rules, and the major downside is that these classification rules are typically
not interpretable. While deep learning classifiers have been shown to outperform fully
designed classifiers in many classification tasks, deep learning classifiers require a large
number of annotated segmented image sections before they are reliable and can be quirky
when trained on insufficient data. For the identification of clusters, it is expected that
regardless of the used method also the properties of the surrounding events will need
to be taken into account during classification, as StarDist segments adjacent cells into
separate segmentations.
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Recent data revealed that the enumeration of tdEV in the original CellSearch images
further improves the prognostic stratification of CTC [26]. The CellSearch segmentation
algorithm however does not present the tdEV for manual review. This shortcoming
was overcome by the introduction of ACCEPT which allows gating and enumeration
of tdEVs [26]. ACCEPT employs a Bregman active contour method that finds the outline of
each event. The event outline permits quantitative characterization of the event in terms of
signal intensity (e.g., mean intensity and max intensity) and morphology (e.g., area and
eccentricity). These extracted values are useful for the identification of CTC [17] as well as
for the quantification of marker expression on the CTC [27] which can for instance be used to
identify epithelial to mesenchymal transition (EMT). We expect that this identification and
characterization will also be possible with StarDist segmentations as they are sufficiently
accurate event outlines, and the segmented events include tdEV, bare nuclei, and white
blood cells. Furthermore, in high cell densities, as found in some whole blood samples
and most DLA samples, StarDist continues to perform well while ACCEPT fails to find the
outline of single events.

The StarDist network was optimized to detect all cell types as well as tdEVs in the
CellSearch archives, because we wish to investigate the prognostic potential of all sample
constituents. Another possible approach for CellSearch samples would be to train two
networks separately for the identification of CTC and tdEV. This may be a more performant
approach if the aim is only to enumerate CTC or tdEV. However, the current training
allowed us to look at the impact of sample age on the total number of cells in a cartridge.
Here we found that for whole blood the number of events in a cartridge is on average more
than two-fold higher when more than one day has passed between sample collection and
preparation. No relationship was observed between sample age and the total number of
CTC nor on the number of CTC segmented only by StarDist. This suggests non-specific
binding for white blood cells is increased in older samples. For DLA samples, a similar,
albeit relatively smaller, effect could be observed.

The star-convex model that is applied by StarDist also has its limitations, some ex-
amples of which are shown in Figure 7A–C. Panel A shows two cells that are difficult to
describe with a star-convex model, and StarDist splits these cells into multiple segmenta-
tions. Such cells are relatively rare in CTC samples, but do mean that StarDist could not
be applied for the segmentation of circulating endothelial samples. Furthermore, Panel B
shows very faint events that are close to bright events. These are false negative events in
both StarDist and CellSearch. This behavior could be improved for StarDist by reducing
the local window size used in pre-processing, but this would result in false-negatives for
areas with densely packed cells such as CTC clusters. Panel C shows the plastic edge of a
CellSearch cartridge, where StarDist segments small variations in autofluorescence.

In the aforementioned cases, the true segmentation can be easily identified by the
human reviewer, but there are also instances in which the true segmentation is difficult to
ascertain. Panel D in Figure 7 shows some examples of events where StarDist does perform
a segmentation, but the human reviewer cannot determine whether this segmentation is
correct or not.
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segmentation is unknown.

5. Conclusions

Here, we demonstrated the occurrence of critical failures in samples segmented by
the built-in CellSearch segmentation algorithm. The ACCEPT algorithm developed for
CellSearch samples did not perform well in dense (DLA) samples, because it joined nearby
objects together into a single event. To overcome this we evaluated the StarDist deep-
learning-based segmentation method and found it outperforms both ACCEPT and the
current CellSearch segmentation in both whole blood as well as DLA samples. The StarDist
method segments individual outlines up to the maximal cell density that can be scanned
using the CellTracks system while also segmenting tdEV. The StarDist segmentations
closely follow the cell outline in most cases, enabling precise quantification of signal
intensities. These intensities subsequently enable quantitative phenotypic characterization
of the segmented events. Furthermore, we also found that StarDist segmented at least an
additional 10% of CTC in CellSearch whole blood samples, and an additional 20% of CTC
in CellSearch DLA samples, while recovering 99.95% of all CellSearch selected CTC.

Author Contributions: Conceptualization, L.W.M.M.T. and F.A.W.C.; methodology, M.S. and F.A.W.C.;
software, F.A.W.C.; formal analysis, M.S. and F.A.W.C.; investigation, M.S., A.N., C.D., N.H.S.,
L.W.M.M.T. and F.A.W.C.; writing—original draft preparation, F.A.W.C.; writing—review and editing,
M.S., A.N., L.W.M.M.T. and F.A.W.C.; visualization, F.A.W.C.; supervision, F.A.W.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Institutional Review Boards of all institutes participating in
NCT00133913, NCT00133900, Cancer-ID studies.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Cancers 2022, 14, 2916 12 of 13

References
1. Cristofanilli, M.; Hayes, D.F.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Reuben, J.M.; Doyle, G.V.; Matera, J.; Allard, W.J.; Miller, M.C.;

et al. Circulating tumor cells: A novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 2005, 23,
1420–1430. [CrossRef] [PubMed]

2. De Bono, J.S.; Scher, H.I.; Montgomery, R.B.; Parker, C.; Miller, M.C.; Tissing, H.; Doyle, G.V.; Terstappen, L.W.W.M.; Pienta, K.J.;
Raghavan, D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer.
Clin. Cancer Res. 2008, 14, 6302–6309. [CrossRef] [PubMed]

3. Lorente, D.; Olmos, D.; Mateo, J.; Bianchini, D.; Seed, G.; Fleisher, M.; Danila, D.C.; Flohr, P.; Crespo, M.; Figueiredo, I.; et al.
Decline in Circulating Tumor Cell Count and Treatment Outcome in Advanced Prostate Cancer. Eur. Urol. 2016, 70, 985–992.
[CrossRef] [PubMed]

4. Krebs, M.G.; Sloane, R.; Priest, L.; Lancashire, L.; Hou, J.; Greystoke, A.; Ward, T.H.; Ferraldeschi, R.; Hughes, A.; Clack, G.; et al.
Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 2011,
29, 1556–1563. [CrossRef] [PubMed]

5. Budd, G.T.; Cristofanilli, M.; Ellis, M.J.; Stopeck, A.; Borden, E.; Miller, M.C.; Matera, J.; Repollet, M.; Doyle, G.V.; Terstappen,
L.W.M.M.; et al. Circulating tumor cells versus imaging—Predicting overall survival in metastatic breast cancer. Clin. Cancer Res.
2006, 12, 6403–6409. [CrossRef]

6. Toss, A.; Mu, Z.; Fernandez, S.; Cristofanilli, M. CTC enumeration and characterization: Moving toward personalized medicine.
Ann. Transl. Med. 2014, 2, 108. [CrossRef]

7. Coumans, F.; Terstappen, L. Detection and characterization of circulating tumor cells by the CellSearch approach. In Whole Genome
Amplification: Methods and Protocols; Humana Press: New York, NY, USA, 2015. [CrossRef]

8. Andree, K.C.; Mentink, A.; Zeune, L.L.; Terstappen, L.W.M.M.; Stoecklein, N.H.; Neves, R.P.; Driemel, C.; Lampignano, R.; Yang,
L.; Neubauer, H.; et al. Toward a real liquid biopsy in metastatic breast and prostate cancer: Diagnostic LeukApheresis increases
CTC yields in a European prospective multicenter study (CTCTrap). Int. J. Cancer 2018, 143, 2584–2591. [CrossRef]

9. Fischer, J.C.; Niederacher, D.; Topp, S.A.; Honisch, E.; Schumacher, S.; Schmitz, N.; Zacarias Fohrding, L.; Vay, C.; Hoffmann, I.;
Kasprowicz, N.S.; et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer
patients. Proc. Natl. Acad. Sci. USA 2013, 110, 16580–16585. [CrossRef]

10. Zeune, L.L.; de Wit, S.; Berghuis, A.M.S.; IJzerman, M.J.; Terstappen, L.W.M.M.; Brune, C. How to Agree on a CTC: Evaluating
the Consensus in Circulating Tumor Cell Scoring. Cytom. Part A 2018, 93, 1202–1206. [CrossRef]

11. Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons; Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International
Publishing: Cham, Switzerland, 2018. [CrossRef]

12. Cohen, S.J.; Punt, C.J.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.;
et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with
metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 3213–3221. [CrossRef]

13. Cristofanilli, M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin. Oncol. 2006, 33,
9–14. [CrossRef] [PubMed]

14. Fehm, T.N.; Meier-Stiegen, F.; Driemel, C.; Jäger, B.; Reinhardt, F.; Naskou, J.; Franken, A.; Neubauer, H.; Neves, R.P.L.; van
Dalum, G.; et al. Diagnostic leukapheresis for CTC analysis in breast cancer patients: CTC frequency, clinical experiences and
recommendations for standardized reporting. Cytom. Part A 2018, 93, 1213–1219. [CrossRef] [PubMed]

15. Tamminga, M.; Andree, K.C.; Hiltermann, T.J.N.; Jayat, M.; Schuuring, E.; van den Bos, H.; Spierings, D.C.J.; Lansdorp, P.M.;
Timens, W.; Terstappen, L.W.M.M.; et al. Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of
Non-Small-Cell Lung Cancer Patients Comparing CellSearch® and ISET. Cancers 2020, 12, 896. [CrossRef] [PubMed]

16. Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.;
Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [CrossRef]

17. Nanou, A.; Coumans, F.A.W.; Dalum, G.; Zeune, L.L.; Dolling, D.; Onstenk, W.; Crespo, M.; Fontes, M.S.; Rescigno, P.; Fowler, G.;
et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer
patients. Oncotarget 2018, 9, 19283–19293. [CrossRef]

18. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,
Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 56–61. [CrossRef]

19. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

20. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125.
21. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
22. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
23. van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. The scikit-image

contributors scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [CrossRef]

http://doi.org/10.1200/JCO.2005.08.140
http://www.ncbi.nlm.nih.gov/pubmed/15735118
http://doi.org/10.1158/1078-0432.CCR-08-0872
http://www.ncbi.nlm.nih.gov/pubmed/18829513
http://doi.org/10.1016/j.eururo.2016.05.023
http://www.ncbi.nlm.nih.gov/pubmed/27289566
http://doi.org/10.1200/JCO.2010.28.7045
http://www.ncbi.nlm.nih.gov/pubmed/21422424
http://doi.org/10.1158/1078-0432.CCR-05-1769
http://doi.org/10.3978/j.issn.2305-5839.2014.09.06
http://doi.org/10.1007/978-1-4939-2990-0_18
http://doi.org/10.1002/ijc.31752
http://doi.org/10.1073/pnas.1313594110
http://doi.org/10.1002/cyto.a.23576
http://doi.org/10.1007/978-3-030-00934-2_30
http://doi.org/10.1200/JCO.2007.15.8923
http://doi.org/10.1053/j.seminoncol.2006.03.016
http://www.ncbi.nlm.nih.gov/pubmed/16797376
http://doi.org/10.1002/cyto.a.23669
http://www.ncbi.nlm.nih.gov/pubmed/30551262
http://doi.org/10.3390/cancers12040896
http://www.ncbi.nlm.nih.gov/pubmed/32272669
http://doi.org/10.1038/s41598-017-17204-5
http://doi.org/10.18632/oncotarget.25019
http://doi.org/10.25080/majora-92bf1922-00a
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.7717/peerj.453


Cancers 2022, 14, 2916 13 of 13

24. Allard, W.J.; Matera, J.; Miller, M.C.; Repollet, M.; Connelly, M.C.; Rao, C.; Tibbe, A.G.J.; Uhr, J.W.; Terstappen, L.W.M.M. Tumor
cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases.
Clin. Cancer Res. 2004, 10, 6897–6904. [CrossRef]

25. Zeune, L.L.; Boink, Y.E.; van Dalum, G.; Nanou, A.; de Wit, S.; Andree, K.C.; Swennenhuis, J.F.; van Gils, S.A.; Terstappen,
L.W.M.M.; Brune, C. Deep learning of circulating tumour cells. Nat. Mach. Intell. 2020, 2, 124–133. [CrossRef]

26. Nanou, A.; Miller, M.C.; Zeune, L.L.; de Wit, S.; Punt, C.J.A.; Groen, H.J.M.; Hayes, D.F.; de Bono, J.S.; Terstappen, L.W.M.M.
Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br. J. Cancer 2020, 122,
801–811. [CrossRef] [PubMed]

27. Zeune, L.; Van Dalum, G.; Decraene, C.; Proudhon, C.; Fehm, T.; Neubauer, H.; Rack, B.; Alunni-Fabbroni, M.; Terstappen,
L.W.M.M.; Van Gils, S.A.; et al. Quantifying HER-2 expression on circulating tumor cells by ACCEPT. PLoS ONE 2017, 12, e0186562.
[CrossRef] [PubMed]

http://doi.org/10.1158/1078-0432.CCR-04-0378
http://doi.org/10.1038/s42256-020-0153-x
http://doi.org/10.1038/s41416-019-0726-9
http://www.ncbi.nlm.nih.gov/pubmed/31937922
http://doi.org/10.1371/journal.pone.0186562
http://www.ncbi.nlm.nih.gov/pubmed/29084234

	Introduction 
	Materials and Methods 
	Sample Archives to Evaluate 
	Stardist Segmentation 
	Performance in High Density Samples 
	Recovery of CellSearch CTC by StarDist and Potential Gain in CTC 
	Code Environment 

	Results 
	Performance of Segmentation Algorithms on Dense CellSearch Images 
	Extent of the Problem in CellSearch Segmentation 
	Cell Density 
	Recovery of CellSearch CTC by StarDist and Potential Gain in CTC 

	Discussion 
	Conclusions 
	References

