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Voluntary control of semantic neural
representations by imagery with conflicting
visual stimulation
Ryohei Fukuma 1,2,3, Takufumi Yanagisawa 1,2,3,4✉, Shinji Nishimoto 5,6, Hidenori Sugano 7,

Kentaro Tamura8, Shota Yamamoto 1, Yasushi Iimura7, Yuya Fujita 1, Satoru Oshino 1, Naoki Tani 1,

Naoko Koide–Majima5,6, Yukiyasu Kamitani2,9 & Haruhiko Kishima 1,4

Neural representations of visual perception are affected by mental imagery and attention.

Although attention is known to modulate neural representations, it is unknown how imagery

changes neural representations when imagined and perceived images semantically conflict.

We hypothesized that imagining an image would activate a neural representation during its

perception even while watching a conflicting image. To test this hypothesis, we developed a

closed-loop system to show images inferred from electrocorticograms using a visual

semantic space. The successful control of the feedback images demonstrated that the

semantic vector inferred from electrocorticograms became closer to the vector of the ima-

gined category, even while watching images from different categories. Moreover, modulation

of the inferred vectors by mental imagery depended asymmetrically on the perceived and

imagined categories. Shared neural representation between mental imagery and perception

was still activated by the imagery under semantically conflicting perceptions depending on

the semantic category.
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Neural activities in the visual cortex reflect both externally
driven bottom-up sensory information and internally
generated top-down signals, such as mental imagery1,2

and attention3. Neural decoding using machine-learning techni-
ques has revealed relations between top-down signals and
bottom-up information by evaluating their neural representations
in the visual cortex. Perceived images can be inferred (decoded)
from visual cortical activities as reconstructed images4–6

or semantic attributes of the images7,8. A trained decoder for
the perceived images can successfully infer mental imagery
content5,9, establishing that perception and imagery have com-
mon neural representations in the early9 and higher5,10,11 visual
cortices. Similarly, attention can be inferred by the decoder for
perceived images12. These results suggest that there are common
neural representations for both externally driven bottom-up
sensory information and internally generated top-down signals of
mental imagery and attention.

However, little is known about how the bottom-up information
and the top-down signals related to mental imagery interact with
each other with regard to neural representations. Previous studies
revealed that attention modulates neural representations3 on the
basis of semantic similarity to the category of the attended
object13. In addition, behavioral studies have suggested that
imagery acts like a weak perception in facilitating subsequent
perception14,15. However, it is not known how the neural repre-
sentations of perceiving images are modulated by imagery when
they semantically conflict with each other. For example, when
people imagine a human face while watching a landscape such as
a mountain view, it remains unclear how the resulting neural
representations differ from the neural representations while
watching the same landscape without imagining something (e.g.,
a human face). Here, we hypothesized that imagining an image
would activate a neural representation of perceiving the imagined
image even while watching a conflicting image. We evaluated how
neural representations resulting from watching an image in
category (A) become closer to those in a different category (B) by
imagining an image in category (B).

To compare the neural representations while perceiving and
imagining various categories of images, we applied neural
decoding to electrocorticograms (ECoGs). ECoGs are character-
ized by high temporal resolution and wide coverage of the
cortices16; these characteristics make ECoGs suitable for evalu-
ating visual information that is sparsely represented in the visual
cortex7. Moreover, ECoGs have been used to infer several
semantic categories of visual stimuli17–19. In this study, neural
decoding was combined with a visual semantic space in which the
semantic attributes of an image were embedded into a vector
representation7; therefore, the changes in neural representations
were evaluated as changes in semantic vectors.

Moreover, to explore the effects of imagery on neural repre-
sentations while perceiving and imagining different images from
various categories, we developed a closed-loop system in which
the subject was presented images that corresponded to semantic
vectors inferred from real-time neural activities. The semantic
vector was inferred by a decoder trained on neural activities when
the subject watched images from various semantic categories.
Accordingly, if a subject views a feedback image of a certain
category without any imagery or attention, images of the same
category will be displayed in the closed-loop system. In contrast,
if our hypothesis is true for a certain category, imagining an
image from that category would make the semantic vector
inferred from the neural activities closer to the semantic vector of
the imagined category while watching images from different
categories, resulting in the display of an image closer to the
imagined category. Even if the change in the semantic vector due
to the imagery is small, successive changes in the semantic vectors

in the same direction will eventually show the image representing
the imagined category. We refer to this intentional control of the
semantic vector represented by a feedback image as representa-
tional brain-computer interaction (rBCI), in which the feedback
images are embedded in a representational space and controlled
through the interaction between the decoding-based visual feed-
back and the top-down intention to alter the feedback. Using the
rBCI, we evaluated how neural representations are modulated by
imagery in the presence of various types of conflicting bottom-up
sensory information.

In this study, we demonstrated that subjects can control
feedback images from an rBCI using ECoGs of the visual cortical
areas by intending to show images related to specific semantic
categories. Moreover, for categories in which the subjects suc-
cessfully controlled the feedback image, we also demonstrated
that the ECoGs during perception of a particular category are
modulated by the imagery associated with a different category,
resulting in a semantic vector inferred from the ECoGs that was
closer to the imagined category.

Results
ECoG recordings and experimental procedure. ECoGs were
recorded from 21 subjects with epilepsy (E01–E21) who had
subdural electrodes implanted on their occipital or temporal
lobes, including the ventral visual cortex (Fig. 1a and Supple-
mentary Figs. 1 and 2a; also see Supplementary Table 1). Among
them, 17 subjects (E01–E17) watched six 10-min videos (training
videos) consisting of short movies with various semantic attri-
butes (video-watching task). In addition, 12 of these subjects
(E01, E03, E06, E07, and E09–E16) watched a 10-min video
(validation video) consisting of four repetitions of a 2.5-min
movie that was different from the movies in the training video.
Based on ECoGs obtained while subjects watched the training
video, we constructed a decoder to infer the semantic attributes of
the presented scenes. Then, for four subjects (E01–E04), we
applied the decoder in a closed-loop condition to present images
that were selected based on the semantic attributes inferred from
the ECoGs (Fig. 1b). Last, for 13 subjects (E01–E09 and
E18–E21), we recorded ECoGs while the subjects watched images
from a particular category with and without imagery associated
with a different category.

High-γ features of ECoGs respond to semantic attributes of
movies. Initially, the ECoG frequency bands that consistently
responded to the videos were evaluated by the replicability of
their power while subjects watched the repeated movies in the
validation video. Power in four frequency bands (α, 8–13 Hz; β,
13–30 Hz; low γ, 30–80 Hz; high γ, 80–150 Hz) was calculated
for nonoverlapping 1000-ms time windows from the ECoGs
during the validation video and were compared across the
repeated movies by Pearson’s correlation coefficients. Among
the four frequency bands, power in the high-γ band responded
most consistently to the video stimuli in the early visual area
(V1–V4) and the higher visual area (middle temporal complex
and neighboring visual areas, ventral stream visual cortex,
medial temporal cortex, and lateral temporal cortex) (Fig. 2a;
for consistency depending on the time window, see Supple-
mentary Fig. 2b).

Semantic attributes of each scene in the training videos were
embedded into a 1000-dimensional visual semantic space to
reveal how the normalized high-γ powers (features) responded to
the semantic attributes of the videos. First, the training videos
were converted into still images at one-second intervals (3600
images) and annotated by cloud workers. Then, the annotation of
each scene was converted into a 1000-dimensional vector in the
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space learned by a word-embedding model called the skip-gram
model20 (Vtrue :¼ fvitrueji ¼ 1; � � � ; 3600 ðsceneÞg; see “Methods”
and Supplementary Fig. 2c; also see Supplementary Fig. 2d for the
consistency of the semantic vectors across annotators). When we
applied principal component analysis (PCA) to the proposed
semantic vectors of the training videos (Vtrue), the first and
second principal components contrasted “human face” scenes
from other scenes and “landscape” scenes from “word” scenes,
respectively (Fig. 2b, Supplementary Fig. 2e, f, and Supplementary
Table 2). To clarify the distribution of scenes in the first and
second principal components, we selected 50 scenes with the
highest Pearson’s correlation coefficient among the 1000 values of
vitrue and vcategory (Rðvcategory; vitrueÞ) (vcategory: vword, vlandscape, or
vface; the semantic vector of the word “word”, “landscape”, or an
average of the semantic vectors of “human” and “face”) from the
3600 scenes of the training video. The selected 50 scenes in each

category were separately distributed in the first and second
principal components of the semantic vectors (Fig. 2b; also see
Supplementary Fig. 2g). Vtrue successfully captured these semantic
attributes of the presented videos.

The high-γ features during the presentation of the selected
scenes in the training videos were compared to elucidate cortical
regions that differentially responded to the categories. The high-γ
features were calculated from the 1000-ms ECoGs centered at the
time when the annotated image of the selected scenes was
presented. The high-γ features in the higher and early visual areas
significantly differed depending on the categories (P < 0.05,
n= 50 for each group, one-way analysis of variance [ANOVA],
adjusted using the Benjamini–Hochberg procedure21; Fig. 2c; for
partial η2, see Supplementary Fig. 2h). The high-γ features in the
visual areas differentially responded to the semantic categories.

To evaluate how the high-γ features responded to the semantic
attributes while excluding the contribution of these low-level
features such as contrast and sounds, we inferred the high-γ
features from each electrode based on the semantic features
(semantic vectors) and low-level visual and auditory features
from the training videos using ridge regression with a tenfold
nested cross-validation. By applying motion energy filters8,22 to
the videos and modulation-transfer function models23 to the
sound of the videos, 2139 low-level visual features, and 2000 low-
level auditory features were acquired for each scene in the
training video (see “Methods”). The high-γ features from the
visual areas were significantly explained by semantic features and
low-level visual and auditory features (Fig. 2d). Even when
the regression weights for the low-level visual and auditory
features were set to zero, the high-γ features in the visual
areas were still significantly explained by the semantic features
(P < 0.05, n= 3600 for each electrode, one-sided Pearson’s
correlation test, adjusted using the Benjamini–Hochberg proce-
dure for each feature; Fig. 2d), suggesting that the high-γ features
in these visual areas responded not only to the low-level visual
and auditory features of the training videos but also to the
semantic attributes of the videos that were represented by the
semantic vectors.

Decoding of semantic vectors corresponding to the presented
scenes. The semantic vector for the ith scene (vitrue) in the training
videos was inferred from the high-γ features using ridge regres-
sion with tenfold nested cross-validation. The scenes for training
and testing in the cross-validation were selected from different
movie sources (see “Methods” and Supplementary Fig. 3a). The
accuracy of inferring the semantic vector was evaluated for each
principal component of Vtrue. The inferred semantic vectors
(Vinferred :¼ fviinferredji ¼ 1; � � � ; 3600 ðsceneÞg) were projected to
the kth direction vector of the PCA (k= 1, � � �, 1000) so that the
Pearson’s correlation coefficient between the projected values and
the kth principal component of Vtrue were calculated for the
3600 scenes to obtain the projected correlation coefficient (PrjRk

(Vinferred, Vtrue)). For 14 principal components, PrjRk (Vinferred,
Vtrue) showed a significant positive correlation (Fig. 3a and
Supplementary Fig. 3b–d). It should be noted that PrjRk(Vinferred,
Vtrue) was especially high for the first several principal
components.

In addition, for the previously selected 50 scenes from among
3600 scenes in the training videos for each of the three categories,
we evaluated the accuracy of classifying the category of the
presented scene from the inferred semantic vector. For each
semantic vector inferred from the high-γ features from all
implanted electrodes (viinferred), Pearson’s correlation coefficients
with the semantic vectors of the categories were calculated
(Rðvcategory; viinferredÞ, where vcategory was vword, vlandscape, or vface).

Fig. 1 Location of electrodes and schematic of a closed-loop system.
a Locations of subdural electrodes are color-coded for each subject who
participated in this study (n= 21). b ECoGs were acquired in real time to
infer a semantic vector of 1000 dimensions in the visual semantic space
from power in the high-γ band. An image that had the nearest semantic
vector to the inferred semantic vector was presented to the subject as a
feedback image. Because of copyright restrictions, the actual images used
in the tasks have been replaced with illustrations throughout this paper.
Details of the creation of the illustrations are presented in “Methods”.
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The classification was considered to be correct when the
Rðvcategory; viinferredÞ was the highest for the category of the
presented scene. The accuracies to classify two of the three
categories (binary accuracies) were 67.5 ± 4.7% (mean ± 95%
confidence intervals [CIs] among subjects) for word versus
landscape, 70.8 ± 4.8% for landscape versus human face, and
73.1 ± 4.5% for human face versus word, all of which were
significantly higher than chance level (50%) (P < 1.0 × 10−6, n=
17, one-sided one-sample t-test with Bonferroni-adjusted α-level
of 0.0167 [0.05/3]; for accuracy in the higher and early visual
areas, see Fig. 3b). The accuracy across the three categories was
56.2 ± 5.6% (also see Supplementary Fig. 3e–g). The three

categories of the presented scenes were successfully classified by
the high-γ features.

Control of inferred images in the closed-loop condition. Four
subjects (E01–E04) participated in a real-time feedback task to
control the rBCI using the online decoder that was trained with
the high-γ features for all 3600 scenes of the training videos
(Fig. 1b and Fig. 4a, b; also see Supplementary Fig. 4a–d for the
accuracy and consistency in the validation video using the online
decoder). Prior to this task, the subjects were first informed that
images would be presented based on their real-time brain activity,
and they were instructed to display a feedback image representing

Fig. 2 Visual semantic space and high-γ powers/features in the video-watching task. a The Fisher z-transformed Pearson’s correlation coefficients
between the 150 powers corresponding to repeated 2.5-min movies in the validation video were averaged across all possible combinations of the
repetitions to be color-coded on each electrode. Areas shaded with blue and green denote the higher and early visual areas, respectively. b Each scene in
the training videos is shown at a position based on the first and second principal components (PCs) of the semantic vectors. Green, red, and blue points
represent the positions of 50 scenes selected as representative of the categories of “word”, “landscape”, and “human face”, respectively. c In the training
videos, the high-γ features corresponding to the 50 selected scenes from the three categories were averaged within each category and were color-coded at
the location of the electrodes. For visibility, features of each electrode were z-scored within 3600 scenes. The F-values of ANOVA for the high-γ features
were similarly color-coded at each electrode (P < 0.05, n= 50 for each group, one-way ANOVA, adjusted using the Benjamini–Hochberg procedure).
d Pearson’s correlation coefficients between the high-γ features while subjects watched the training videos and the inferred high-γ features were color-
coded and shown at the location of the electrode. For each outer fold of the tenfold nested cross-validation, a decoder (ridge regression model) was first
trained to infer high-γ features using all features (semantic features, and the low-level visual and auditory features) from the videos; then, for each feature
set, the weights corresponding to the other two feature sets were set to zero before the regression model was applied to the test data. A correlation map of
each feature set was calculated from the entire 3600 scenes. Only electrodes that showed significant positive correlations are shown (P < 0.05, n= 3600
for each electrode, one-sided Pearson’s correlation test, adjusted using the Benjamini–Hochberg procedure for each feature).
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a particular category (i.e., word, landscape, or human face) by
visually imagining it. In particular, they were asked to maintain
displaying images related to the particular category as long as
possible. It is worth noting that subjects were instructed to freely
imagine images that they felt well represented the particular
category; that is, we did not specify images to be imagined. At the
beginning of each trial, a black screen was displayed, and one of
the categories (target category) was given orally in Japanese
(Fig. 4a). High-γ features of 1000-ms ECoGs were calculated to

infer the semantic vector in real-time (online vector: vonline) with
the online decoder. The feedback image was selected based on the
highest Rðvonline; vitrueÞ in the 1000-dimensional semantic space.

Figure 5a shows a representative result for three consecutive trials
in the real-time feedback task (cf. Supplementary Movies 1–4). The
accuracy of the online control was evaluated as a three-choice task
based on the Fisher z-transformed correlation coefficient between
vonline and vtarget (z(R(vonline, vtarget)); vtarget: semantic vector of
the target category, vword, vlandscape, or vface). When we defined a

Fig. 3 Decoding accuracy in the video-watching task. a PrjRkðVinferred; VtrueÞ was Fisher z-transformed and averaged across the 17 subjects
(zðPrjRkðVinferred; VtrueÞÞ), which is shown in the order of principal components. For visibility, the first 25 components are shown (for all components, see
Supplementary Fig. 3b). Individual values are shown with dots. Error bars denote 95% CIs among the subjects. *P < 0.5 × 10−4 (Bonferroni-adjusted α-level;
0.05/1000), two-sided permutation test. b Binary classification accuracies for all three pairs from the three categories (word, landscape, and human face)
were averaged to show the subject-averaged binary classification accuracy with the bars. Individual values are shown with dots. Error bars denote 95% CIs
among subjects. The accuracy was calculated based on the semantic vectors inferred from high-γ features from the higher visual area (n= 17), early visual
area (n= 10), and all implanted electrodes (n= 17). There was no significant difference between the accuracies based on the higher and early visual areas
(P= 0.5767, t(23.3)=−0.57, uncorrected two-sided Welch’s t-test). *P < 1.7 × 10−2 (Bonferroni-adjusted α-level; 0.05/3), one-sided one-sample t-test
against chance level (50%).

Fig. 4 Real-time feedback task. a Timing of ECoG acquisition and feedback image presentation during the real-time feedback task is shown with a
schematic. Immediately after delivery of the instruction, 1000-ms ECoGs were acquired while the subject was watching the black screen to infer the
semantic vector in real-time (online vector: vonline) with the online decoder. Next, the first feedback image was selected from among the images in the
training videos based on the highest Rðvonline; vitrueÞ and presented to the subject. Then, successive 1000-ms ECoGs were acquired every 250 ms to
calculate the next online vector (vonline), which was the linear interpolation between the inferred vector from the ECoGs and the previous online vector. A
total of 32 feedback images were presented for each instruction. The order of instructions was randomized. The system delay from the end of the
acquisition to the image presentation was approximately 200ms. All four subjects participated in four sessions of 30 trials each, with breaks between
sessions to minimize their fatigue. b Locations of subdural electrodes used for decoding in the real-time feedback task are mapped on a normalized brain
surface. Red and blue markers denote electrodes in the left and right hemispheres, respectively. The number of depth electrodes used in the real-time
decoding is shown in parentheses.
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successful trial as that in which frame-averaged zðRðvonline; vtargetÞÞ
was larger than the other two zðRðvonline; vnontargetÞÞ (vnontarget ∈
{vword, vlandscape, vface}\{vtarget}), the trials with target categories of
word and landscape in Fig. 5a were successful. Overall, E01 suc-
ceeded in following instructions with a three-choice accuracy of
45.83%, which was significantly greater than chance (P= 0.0021,
one-sided permutation test; word vs. landscape, 70.00%; landscape
vs. human face, 61.25%; human face vs. word, 58.75%). For the
other three subjects, the accuracies were also significant (E02:
50.00%, P < 0.0001; word vs. landscape, 55.00%; landscape vs.
human face, 73.75%; human face vs. word, 72.50%; E03: 41.67%,
P= 0.031; word vs. landscape, 62.50%; landscape vs. human face,
46.25%; human face vs. word, 58.75%; E04: 41.67%, P= 0.0065;
word vs. landscape, 60.00%; landscape vs. human face, 52.50%;
human face vs. word, 60.00%; for comments from the interviews

after each session, see Supplementary Table 3). Therefore, all four
subjects succeeded in controlling the inferred semantic vector to be
closer to the instructed category.

During the real-time feedback task, E01 succeeded in
increasing z(R(vonline, vtarget)) more than other two z(R(vonline,
vnontarget)) under the target category of word and landscape
(Fig. 5b), resulting in the three-choice accuracy at each frame
increasing up to 52.5% in the middle of the trials (Fig. 5c,
Supplementary Fig. 5a–c, and Supplementary Table 4). Along
with this increase in accuracy, the high-γ power from electrodes
in the higher visual area differed depending on the instructions
(Fig. 5d), and these differences were associated with high one-way
ANOVA F-values (Fig. 5e; also see Supplementary Fig. 5d, e).

The accuracy to control the online vector during the real-time
feedback task was also evaluated in the 1000-dimensional

Fig. 5 Closed-loop performance in controlling the inferred images. a Representative feedback images are shown for E01 during trials 28–30 of the first
session with the corresponding target categories shown on the top. Due to the figure size, one of every two images is shown. The images underlined in red are
the correct decoding in the context of a three-choice task in each frame; because the evaluation of the three-choice task is based on the inferred vector (vonline),
some frames have the same feedback images, but are differently classified. b For E01, the trial-averaged z(R(vonline, vcategory)), where (vcategory: vword, vlandscape, or
vface), are shown as green, red and blue lines, respectively, with 95% CIs by the shaded area. The title of each panel indicates the target categories for the
averaged trials. c The three-choice accuracy at each frame is shown. Dotted line denotes chance level (33.3%). d Power in the high-γ band during the feedback
trials for each target category were averaged to be color-coded for each electrode and frame. The black line on the right side of the plot indicates the electrodes
in the higher visual area. For visualization, the powers were z-scored across all trials and frames for each electrode. e For each electrode and frame, F-values of
one-way ANOVA across the high-γ powers during the three target categories in (d) were color-coded. The black line on the right side of the plot indicates the
electrodes in the higher visual area. f PrjRk (Vonline, Vtarget) (Vonline :¼ fvi; jonlineg andVtarget :¼ fvi; jtargetgwhere i ¼ 1; � � � ; 120 ðtrialÞ; j ¼ 1; � � � ; 32 ðframeÞ) were Fisher
z-transformed and averaged across all four subjects to be shown in order of the principal components. Here, PrjRk (Vonline, Vtarget) was evaluated only for the 14
principal components whose zðPrjRkðVinferred; VtrueÞÞ was positively significant in the video-watching task. The zðPrjRkðVonline; VtargetÞÞ was compared with the
corresponding chance distribution for each component (k) (zðPrjRkðVonline; fvi; jtargetgÞÞwhere i is shuffled ð1; � � � ; 120Þ; j ¼ 1; � � � ; 32). Individual values are shown
with dots. *P < 3.6 × 10−3 (Bonferroni-adjusted α-level; 0.05/14), two-sided permutation test.
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semantic space. The projected correlation coefficients between the
online vector and the semantic vector of the target category

(zðPrjRkðVonline; VtargetÞÞ) were positively significant for four
principal components (#1, #2, #10, and #15) (P < 0.05, n= 4,
two-sided permutation test with Bonferroni-adjusted α-level of
3.6 × 10−3 [0.05/14]; Fig. 5f). The online vectors were successfully
controlled along several dimensions in the semantic space in this
closed-loop condition.

Modulation of inferred vectors by mental imagery. To evaluate
the degree to which the inferred semantic vectors could be
modulated by mental imagery, an imagery task was performed by
13 subjects (E01–E09 and E18–E21) to compare the ECoGs while
watching an image with or without imagining an image from a
different category. From among the 3600 annotated images in the
training videos, we selected five images representing “word” and
five images representing “landscape” that had high Rðvitrue; vwordÞ
and Rðvitrue; vlandscapeÞ, respectively, and did not have content
relating to another meaning (Supplementary Fig. 6a). In each
trial, the subject was first presented an image of a word or
landscape for 2 s to memorize (i.e., nonimagery period) and was
then presented an image from a different category for another 2 s
(i.e., imagery period); during the imagery period, the subject was
instructed to visually imagine the first image while watching the
second image (Fig. 6a).

The high-γ powers while watching the images from one category
were altered by imagining an image from another category.
Figure 6b shows a representative time–frequency map of an
electrode implanted at V1 in E05. Powers in the high-γ band
increased ~100–1000 ms after the presentation of images
representing “word” and “landscape” without any imagery; however,
when imagining an image from another category, power in the
same high-γ frequency band decreased, although the subjects were
watching the same image. Similarly, decreases in power in the high-
γ band were observed in the early visual area across the 13 subjects
(Fig. 6c). The imagery altered power in the high-γ band although
the same images were being watched.

A decoder was trained for each of the nine subjects who
participated in both the video-watching task and the imagery task
(E01–E09). The decoder was trained using the high-γ features of
the subdural electrodes while the subject was watching the
training videos; subsequently, the decoder used the high-γ
features of the same electrodes to infer a semantic vector
(vinferred) from 0 to 1 s after the presentation of each image in the
imagery task. Figure 7a shows the R(vinferred,vword) and R(vinferred,
vlandscape) for each image presented to E01. In the nonimagery
period, each category of images was distributed separately so that
two categories of images were classified with areas under the
curves (AUCs) of 0.9248 and 0.7936 from the receiver operating
characteristic curves of R(vinferred, vword) and R(vinferred, vlandscape),
respectively (binary accuracy between the two categories:
80.00%); however, in the imagery period, the distribution of the
landscape image moved toward the word image. In fact, the
z(R(vinferred, vword)) while imagining word images and watching a
landscape image significantly increased compared to that while
watching a landscape image without the imagery (ΔZword=
0.1570, P= 0.0006, t(47.81)= 3.44, n= 25 for each group,
uncorrected one-sided Welch’s t-test; Supplementary Fig. 6b);
in contrast, the z(R(vinferred, vlandscape)) while imagining landscape
images and watching a word image was not significantly
increased compared to that while watching a word image without
the imagery (ΔZlandscape=−0.0040, P= 0.57, t(47.10)=−0.17).

Among all nine subjects included in this analysis, the
inferred semantic vectors were modulated in the direction of
the semantic vectors of “word” and “landscape” by imagery.

Initially, R(vinferred, vword) and R(vinferred, vlandscape) successfully
classified the images of words and landscapes during the
nonimagery period using the high-γ features of the subdural
electrodes from 0 to 2.0 s (Fig. 7b; binary accuracy between the
two categories for 0–1.0 s: 80.8 ± 9.0% [mean ± 95% CIs among
subjects]; for AUC during the imagery period, see Supplementary
Fig. 6c). The z(R(vinferred, vword)) with the landscape image
significantly increased while imagining word images using the
high-γ features from 0 to 1.0 s and 1.0 to 2.0 s (n= 9, one-sided
one-sample t-test with Bonferroni-adjusted α-level of 0.0083
[0.05/6]; Fig. 7c; for the difference in the correlation coefficient
for the perceived category attributable to the imagery, see
Supplementary Fig. 6d). Similarly, the z(R(vinferred, vlandscape))
with the word image significantly increased while imagining
landscape images using the high-γ features from 0.5 to 1.5 s
(Fig. 7c; for other frequency bands, see Supplementary Fig. 6e, f).
In addition, although the accuracies to classify the images of
“word” and “landscape” showed a tendency to be higher with the
early visual area than with the higher visual area (Fig. 7d), the
modulations using the high-γ features from the higher visual area
showed a tendency to be higher than those from the
early visual area (Fig. 7e). Similar to the modulations using the
high-γ features of all subdural electrodes (Fig. 7c), ΔZword
increased immediately after image presentation (0–1.0 s), whereas
ΔZlandscape increased at 1 s after image presentation (0.5–1.5 s)
using the high-γ features from the higher visual area. Therefore, it
was demonstrated that the modulation of the semantic vector
depends on time from the initiation of imagery, the imagined
category, and/or the category of the presented image (for the
results of the representational similarity analysis, see Supplemen-
tary Fig. 7). Moreover, different anatomical areas were suggested
to contribute to the modulations.

Discussion
This study tested the hypothesis that imagining an image from
one category while watching a conflicting image from another
category results in neural representations closer to those obtained
while watching the image of the imagined category. Using rBCI,
the subjects succeeded in controlling the inferred semantic vector
to move closer to the semantic vector associated with the
instructed category. The rBCI enabled an exploratory search for
the semantic category for which the hypothesis stood because the
successful control of the feedback image required that the
semantic vector inferred from the neural activities becomes closer
to the semantic vector corresponding to the imagined category
while feedback images from the various categories were presented
to the subject. Then, for the semantic categories successfully
controlled with rBCI, modulation of the semantic vector by
imagery was evaluated in the imagery task. The imagery task
revealed that the inferred vector was modulated such that it
moved significantly closer to the imagined category even when
watching an image from a different category, although this
modulation depended on the particular image category and time
from the initiation of imagery. These results supported our
hypothesis, at least regarding the imagery associated with words
and landscapes.

Mental imagery1,2 and attention3 are possible top-down
mechanisms by which neural representations are intentionally
modulated24 to achieve rBCI control of the inferred images. In
fact, during the real-time feedback control, the subjects tended
to focus their attention on specific parts of the feedback image
that were close to the instructed category (e.g., subtitles in the
images when the word instruction was given; see Supplemen-
tary Table 3), although we instructed them to imagine the
instructed category. However, it is difficult to explain feedback
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control only by attention. Among the 2926 images used for the
feedback, the human face was a common attribute. In fact, 1691
images (57.8%) contained the human face attribute; never-
theless, it was difficult to display the images of the human face
as instructed. Moreover, the significant modulation in the
imagery task, in which no images contained both meanings,
suggested that the neural representation was modulated by the
imagery, not by the attention to a part of an image. Notably, it
might be possible to use various strategies other than imagery
and attention—for example, internal verbalization—to control
the inferred vector. However, because we trained the decoder
using the ECoGs while the subjects were simply watching
videos, it is unlikely that the trained decoder responded to
mental strategies other than vision-related strategies. Our
results suggested that real-time feedback was controlled by both
attention and mental imagery, which modulated the informa-
tion inferred from the visual areas.

Little is known about how the perception and imagery share
their neural representations, although their activated areas are
known to largely overlap25. In the present study’s real-time
feedback task, the decoder trained using neural activity during
perception showed significant control for a part of the semantic
space (#1, #2, #10, and #15 of 14 significant principal components
in the video-watching task). Although interpreting the meaning
of the components (except #1 and #2) was difficult (Supple-
mentary Table 2), the results were consistent with the previous
study demonstrating that only a subset of the features of the
imagined images (e.g., emotional features) are encoded in brain
activity when images are imagined than when they are perceived,
depending on the imagined category26. Interestingly, the previous
study also suggested that some of those features activate neural
representation differently during perception and imagery, which
is in line with our result showing negative correlation during the
real-time feedback task (#6 in Fig. 5f). In addition, the imagery

Fig. 6 ECoGs during the imagery task. a Schematic of the imagery task. After the presentation of the word or landscape image (nonimagery period), the
subjects imagined the word image during the presentation of the landscape image, or imagined the landscape image during the presentation of the word
image (imagery period). For all combinations of images, the trials were repeated in randomized order, resulting in 50 trials. To obtain modulation of
R(vinferred, vword) due to imagining the word image (ΔZword), the R(vinferred, vword) during the presentations of landscape images were Fisher z-transformed and
averaged within the nonimagery period and the imagery period to calculate the difference between them (zðRðvinferred; vwordÞÞ during imagery period –

zðRðvinferred; vwordÞÞ during nonimagery period). Similarly, ΔZlandscape was evaluated from the R(vinferred, vlandscape) during the presentation of word images.
b Results of time–frequency decomposition for the ECoGs of the electrode indicated by the black arrow in (c). The upper and middle panels represent the
time–frequency maps of ECoGs while watching the image of words (left) and landscapes (right) during the nonimagery period and imagery period,
respectively. The difference between these two maps of each column is shown in the bottom panel. c Powers in the high-γ band from 0 to 1 s after the
presentation of word images (left) and landscape images (right) were subtracted between the two periods (imagery period – nonimagery period) to be
shown on the cortical surface at the location of each subdural electrode with color-coding.
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task revealed that modulation of the inferred vector by imagery
was asymmetrical between word and landscape; ΔZword was the
largest in the early time period of the imagery, whereas ΔZlandscape
became significant at 1 s after initiation of the imagery. Moreover,
the modulation might depend on the anatomical locations of the
implanted electrodes, being greater in the higher visual area than
in the early visual area. This observation is consistent with
findings in a previous study that, in the ventral stream, the higher
visual areas rather than the early visual areas more similarly
represent imagery and perception15, because similar representa-
tion makes the perception decoder controllable by imagery.
Lastly, the temporal dynamics of the shared neural representation
are interesting. Previous studies showed that θ- and γ-activity
convey the bottom-up information, and the α- and β-activity
convey top-down signals27,28. In line with these studies, our
results showed the highest decoding accuracy in the high-γ band
(Supplementary Fig. 3e). Moreover, the imagery task revealed that
the neural representation in the high-γ band was modulated by
the imagery, suggesting shared neural representation between
perception and imagery in that band. The suggested explanation
is that coupling of the high-γ activity caused by a visual stimulus
with a lower frequency band such as α29 or β30 serves as top-
down control for stimulus processing. On the other hand, a recent
study using electroencephalograms reported shared neural
representations in the α band31. Further studies are necessary to
reveal how the bottom-up information represented by the spa-
tiotemporal pattern of cortical activities is modulated by top-
down signals.

This study was characterized by the use of semantic space to
test the hypothesis. We constructed the semantic space based
on the skip-gram model using annotations by humans, which
were consistent across annotators (Supplementary Fig. 2d), and
confirmed that the semantic vectors of the images represented
the semantic attributes of images such as word, landscape, and
human face (Fig. 2b). Moreover, it was shown that the high-γ
features in the visual areas while watching the training videos
were significantly inferred from the semantic vectors even when
excluding the contribution of the low-level visual and auditory
features (Fig. 2d). These results demonstrate that the semantic
vectors used in our study contained the semantic information
of visual stimuli and succeeded in explaining the visual cortical
responses for various semantic attributes. Compared with
previous studies demonstrating such semantic representation in
ECoGs19,32,33, our study enrolled a large number of subjects
and various visual stimuli to reveal semantic representations in
the ECoGs.

It should be noted that the semantic space might affect the
controllability of the rBCI. Semantic space can be based on
semantic categories by human judgment34–36 or automatically
learned from a large text corpus by language models20,37. Inter-
estingly, both methods extract similar spaces38. Moreover, recent
studies have demonstrated that intermediate layers of deep neural
networks are applicable for decoding visual stimuli5. It should not
be forgotten that the best space for decoding might differ from
that for the control of rBCI. The decoding accuracy results in the
video-watching task was higher for the first principal component

Fig. 7 Modulation of the inferred semantic vectors by mental imagery. a The R(vinferred, vword) (vertical axis) and the R(vinferred, vlandscape) (horizontal axis)
for each image were plotted with color-coded (blue, presentation of landscape image; red, presentation of word image) points for E01. b For each 1-s time
window, the AUC to identify the category of the presented image (word or landscape) in the nonimagery period solely using R(vinferred, vword) or R(vinferred,
vlandscape) is shown with white and black bars, respectively. Individual values are shown with dots. Error bars denote the 95% CIs among subjects (n= 9).
c ΔZword and ΔZlandscape averaged across the subjects (n= 9) are shown with white and black bars, respectively, for each 1-s time window. Individual values
are shown with dots. Error bars denote 95% CIs among subjects. *P < 0.0083 (Bonferroni-adjusted α-level; 0.05/6), one-sided one-sample t-test. d For
each of three 1-s time windows in the nonimagery period, the AUC to identify the category of the presented image based on R(vinferred, vword) or R(vinferred,
vlandscape) is shown from using the high-γ features from the higher visual area (left; n= 9) and early visual area (right; n= 5). Individual values are shown
with dots. Error bars denote 95% CIs among subjects. e For each 1-s time window and for the high-γ features from higher visual area (left; n= 9) and early
visual area (right; n= 5), ΔZword and ΔZlandscape averaged across the subjects are shown with white and black bars, respectively. Individual values are shown
with dots. Error bars denote 95% CIs among subjects.
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than for the second principal component (Fig. 3a), but in the
closed-loop condition, the opposite relation held (Fig. 5f). The
controllability of the inferred image did not seem to depend on
the decoding accuracy in the video-watching task but might
depend on the semantic attributes. The difference in controll-
ability based on the target category could not be evaluated
because of the decoding scheme (Supplementary Fig. 5c); how-
ever, our result seems consistent with previous studies suggesting
that the high accuracy of identifying perceiving images by per-
ception decoders does not guarantee high accuracy in identifying
mental imagery by the decoder39,40. The optimum space with the
best controllability for the rBCI should be investigated in further
studies under closed-loop conditions.

Compared with the condition without feedback, the closed-
loop condition might improve the accuracy with which the
imagined category could be inferred. A previous study demon-
strated that a decoder to infer perceived visual stimuli can identify
some objects imagined by eyes-closed subjects; however, the
accuracy to identify the imagined objects was low compared to
the accuracy to identify the perceived objects10. Consistently in
the closed-loop condition, the accuracy to infer the imagined
category was low at the beginning of each trial when the subject
imagined images based on instruction, but the feedback screen
was black (Fig. 5c and Supplementary Fig. 5a). However, as
feedback continued, the subjects succeeded in controlling the
online vector to be closer to the instructed semantic vectors with
higher accuracy. The low accuracy at the beginning might be also
explained by a too short duration to form vivid imagery; however,
the decoders also failed to identify the category of the imagined
images even in the later time windows of the imagery period in
the imagery task (Supplementary Fig. 6c), in which significant
modulations were observed. The suggestion is therefore that the
accuracy of inferring the imagined category was improved in the
closed-loop condition compared with the imagined category
being decoded without feedback.

Last, rBCI might be useful as a communication device for
severely paralyzed patients, such as those with amyotrophic lat-
eral sclerosis (ALS)41, to display patients’ thoughts as images. For
these individuals, a brain-computer interface (BCI)42 is in high
demand43 and succeeds in expressing their thoughts by control-
ling some communication tools16,44–46, although most BCIs rely
on motor-related activities, which degenerate in patients with
ALS. Because visual cortical activity persists for a long time47

even in patients with ALS, rBCI using visual cortical activity
might be used as a stable communication device for patients with
severe ALS48. Further study of rBCI will allow the development of
novel communication devices for severely paralyzed patients.

Methods
Subjects. This study included a total of 21 subjects with drug-resistant epilepsy
(14 males; 25.0 ± 11.2 years old, mean ± standard deviation [SD] on the day of the
experiment) from three sites. One subject participated twice because of a second
surgery after an interval of 2 years (E07 and E11). The subjects were implanted
with intracranial electrodes prior to the study for the purpose of treating their
epilepsy (number of subdural electrodes: 64.4 ± 17.0; the number of depth elec-
trodes: 10.8 ± 10.0). All participants were recruited from patients implanted with
electrodes at three university sites (Osaka University, Juntendo University,
and Nara Medical University). Participants were recruited based on recommen-
dations from the surgeons who placed the electrodes. Prior to the experiment,
written consent was obtained from all subjects after explaining the nature and
possible consequences of the study. The experiment was performed in accordance
with the experimental protocol approved by the ethics committee of each hospital
(Osaka University Medical Hospital: Approval No. 14353, UMIN000017900;
Juntendo University Hospital: Approval No. 18-164; Nara Medical University
Hospital: Approval No. 2098).

Sample size. The amount of data collected per patient depended on their clinical
treatment schedule and the amount of time each participant was willing to
volunteer for the study. According to our previous work33, the duration of the

training videos in the video-watching task and the number of trials in the real-time
feedback and imagery tasks were determined to be sufficient to train a decoder and
to show the modulation of the neural activities in their corresponding analyses,
respectively. No data were excluded from the analysis. Reproducibility of the
control of semantic vectors in the real-time feedback task was confirmed with four
independent study participants.

Experimental settings and ECoG recordings. The subjects either sat on beds in
their hospital rooms or were seated on chairs to perform the experimental tasks. A
computer screen was placed in front of the subjects to show the video stimuli, the
real-time feedback image, or stimuli for the imagery task. During the experiment,
ECoGs were recorded at 10 kHz by EEG-1200 (Nihon Koden, Tokyo, Japan) by
referencing the average of two intracranial electrodes. The presentation timing of
the visual stimuli and real-time feedback images was monitored by DATAPixx3
(VPixx Technologies, Quebec, Canada) such that the digital pulse at the timing of
the presentation was recorded synchronously with the ECoG. Gaze data were also
recorded using an eye-tracking system (Tobii, Danderyd, Sweden) to monitor if the
subjects were performing tasks, with the exception of those who wore glasses for
vision correction or those in whom the position of wirings to the intracranial
electrodes interfered with the system.

Experimental procedures. Seventeen subjects (E01–E17) participated in the
video-watching task to evaluate the relationship between the semantic vector of
each scene and ECoGs while watching the scenes. Four subjects (E01–E04) par-
ticipated in the real-time feedback task, in which a decoder trained with ECoGs
recorded during the video-watching task was used to determine feedback images.
Moreover, 13 subjects (E01–E09 and E018–E21), including the four subjects from
the real-time feedback task, participated in the imagery task to elucidate mod-
ulation of inferred semantic vectors (output of the decoders) by visual mental
imagery.

Video-watching task: task procedures. While ECoGs were recorded, 17 subjects
(E01–E17) watched the six 10-min videos (training videos). Among them,
12 subjects (E01, E03, E06, E07, and E09–E16) watched a 10-min video (validation
video) composed of four repetitions of a 2.5-min movie. ECoGs of baseline brain
activity were recorded prior to the presentation of each video using one of the
following two methods. (1) Thirteen subjects (E05–E17) were instructed not to
think of anything or move and to remain calm for 30 s (resting without images). (2)
The remaining four subjects (E01–E04) were presented with sixty images for 1 s
each and subsequently participated in the real-time feedback task; the subjects were
instructed to watch the images by keeping their eyes on the red fixation point at the
center of the images without thinking of anything or moving while remaining calm
(resting with 60 images). The images were selected from ImageNet49 and cropped
at their center to create square images; the order of the images was randomized for
each video. In addition, ECoGs were recorded during a 30-s resting period (which
is the same condition as in method 1).

Immediately after recording the baseline brain activity, one of the 10-min
videos was presented to the subject with audio of the video played from a pair of
speakers. No fixation point was presented during the video, and the subjects were
instructed to watch the video freely. To minimize the subject’s fatigue, some
interval was taken between the presentations of the six training videos;
consequently, the entire task for the training videos took 1–3 days to complete. The
validation video was presented after the presentation of training videos.

Video-watching task: videos for visual stimuli. We created the training videos
and the validation video composed of 224 and 44 short cinema or animation clips,
respectively, each of which was cut out from one of 75 trailers or behind-the-scene
features downloaded from Vimeo. Those trailer or behind-the-scene features ori-
ginated from 70 video sources (cinema or animation). The median duration of the
clips was 16 s (interquartile range, 14–18 s), and they were sequentially con-
catenated to create six 10-min videos as training videos and a 2.5-min video to be
repeated four times, resulting in a 10-min validation video. The videos contained
scenes that varied widely in semantic content, such as scenery of nature, space,
animals, food, people, and text. No overlapping scenes were included in the videos
except the repetitions in the validation video; it should be noted that the training
videos and the validation videos did not have any overlap although they originated
from the same trailers or behind-the-scenes features.

Video-watching task: construction of the skip-gram model. A skip-gram model
was trained using the Japanese Wikipedia dump data following the procedure
described in a study by Nishida and Nishimoto7. The Japanese text of the articles in
the Wikipedia dump was segmented into words and lemmatized to create a text
corpus. This conversion was performed using MeCab50, an open-source text seg-
mentation software, and the Nara Institute of Science and Technology (NAIST)
Japanese dictionary, a vocabulary database for MeCab. Words other than nouns,
verbs, and adjectives were discarded from the text corpus, in addition to those that
appeared fewer than 120 times. After these pre-processing steps, the text corpus
had 365,312,470 words, including 94,337 nouns, 4922 verbs, and 631 adjectives. A
skip-gram model was trained with the text corpus using the Gensim Python library
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with the following parameters: the dimension of word vector representation, 1000;
window size, 5; number of negative samples, 5; use of hierarchical Softmax, no. For
presentation in this article, Japanese words (i.e., annotations and the instructions in
the real-time feedback task) were translated to English using Google Translate.

Video-watching task: construction of the semantic vector. From the six 10-min
training videos and the 2.5-min movie in the validation video, a still image of the
video scene was extracted every second (Supplementary Fig. 2c). Each image
(scene) was manually annotated by five annotators with descriptive sentences that
had 50 or more Japanese characters. The annotators were native Japanese speakers
who were neither authors nor subjects. Semantic vectors for each scene were
constructed based on the vector representations learned by the skip-gram model20,
which enables linear operation between vectors representing words (e.g., vector
operation of “king” – “man” + “woman” results close to “queen”51,52). All anno-
tations were first segmented into words and lemmatized using MeCab and the
NAIST Japanese dictionary. Among the lemmatized words in the annotations,
words that did not exist in the text corpus were discarded. Each word was con-
verted into the corresponding 1000-dimensional vector representation using the
trained skip-gram model. Based on the linear relationships between semantic
vectors, semantic vectors were constructed by averaging the vector representations
of the lemmatized word, first within each annotation, and then across the five
annotations for each scene (denoted as Vtrue :¼ fvitrueji ¼ 1; � � � ; 3600 ðsceneÞg for
the training videos). It should be noted that the average of the correlation coeffi-
cients across vectors for the five annotators for the same scene was 0.7523 ± 0.0013
(mean ± 95% CIs among the scenes), suggesting the high consistency of the vectors
across the annotators.

Video-watching task: evaluation of the visual semantic space. To visualize the
space spanned by the semantic vectors, PCA was applied to the 3600 semantic
vectors (Vtrue) from the training videos to reveal their major components. To create
the vector representation for “human face” (vface), the vectors for “human” and
“face”, which were learned by the skip-gram model, were averaged. For the vector
representation for “word” and “landscape”, the corresponding vectors in the skip-
gram model (vword and vlandscape) were used.

Video-watching task: extraction of low-level visual and auditory features.
Low-level visual and auditory features were extracted by applying motion energy
filters8,22 to the training videos and modulation-transfer function models23 to the
sound of the training videos, respectively. To extract low-level visual features, the
videos were down-sampled in frame rate and in spatial resolution to create videos
with 15 fps and 171 × 96 pixels of RGB colors. The videos were then cropped at
their center and converted to Commission Internationale de l’Éclairage L*A*B*

color space. Motion energies were acquired from the luminance of the videos by
applying spatiotemporal Gabor filters differing in motion direction (0, 45,� � �, 315°;
orientation of each filter was perpendicular to the motion direction), spatial fre-
quency (0, 1.5, 3, 6, 12, and 24 cycles/image), and temporal frequency (0, 2, and
4 Hz), spatially positioned on a square grid with a distance of 4.0 SDs of the spatial
Gaussian envelope. By averaging the log-transformed motion energies within the
1-s time window corresponding to each scene, low-level visual features were cal-
culated as 2139-dimensional vectors. Meanwhile, the low-level auditory features
were extracted from the sound of the videos using modulation-transfer function
models53. The sound of the videos was converted to a spectrogram using 128
bandpass filters with a window size of 25 ms at a step of 10 ms. By applying 100
modulation-selective filters (10 spectral modulation scales and 10 temporal mod-
ulation rates) to the spectrogram, modulation energies were calculated. The
modulation energies were then log-transformed and averaged within the 1-s time
window corresponding to each scene and within 20 nonoverlapping frequency
bands evenly spaced in log-space from 20 Hz to 10 kHz, resulting in 2000-
dimensional vectors of low-level auditory features.

Real-time feedback task: task procedures. Four subjects (E01–E04) participated
in the real-time feedback task that was conducted on a different day from the
video-watching task. The subjects were first informed that the images would be
presented based on their real-time brain activity and were instructed to control the
feedback image on the screen by visual imagery so that the feedback image keeps
showing the instructed category (Fig. 1b).

The real-time feedback task was composed of four sessions, each consisting of
30 trials. Prior to the first session, ECoGs of the baseline brain activity were
recorded while subjects watched the same 60 images that had been presented
before the video-watching task (i.e., resting with 60 images). Each image was
presented for 1 s in randomized order without intervals. During this period, the
subjects were instructed to watch the images by keeping their eyes on the red
fixation point at the center of the images without thinking of anything or moving
while remaining calm.

On each trial, a black screen was first presented for 4.5 s; 2.5 s after display of
the black screen, one of the following three instructions (target categories) whose
durations were less than 1.0 s was given orally in Japanese: “Moji” (word), “Fuukei”
(landscape), or “Hito-no-kao” (human face). After the presentation of the black
screen, 32 frames of feedback images were presented, each with a duration of

250 ms (Fig. 4a). The feedback image shown on the screen was one of 2926 images
out of 3600 annotated images in the training videos. The other 674 images were
discarded because they were blurry or otherwise unclear or because they contained
text that might evoke negative feelings (e.g., “death”).

Real-time feedback task: real-time decoding. In the real-time feedback task,
ECoGs were acquired and decoded in real time to infer a semantic vector. The
ECoGs of the most recent 1 s were re-referenced by pre-processing, converted into
raw features, and compensated with the re-referenced baseline ECoGs from the
resting with 60 images condition recorded just before the real-time feedback task
(for details, see “Signal pre-processing” and “Calculation of high-γ features”; for
electrodes used in the real-time decoding, see Fig. 4b). Then, the semantic vector
was inferred from the compensated decoding features for the feedback. The
feedback image was determined based on the highest Pearson’s correlation coef-
ficient between the online vector (vonline) and the true semantic vectors of the
2926 scenes. The first vonline, used to determine the first feedback image in each
trial, was the inferred vector (vinferred) from the 1-s ECoGs during the presentation
of the black screen. The subsequent vonline was calculated as the linear interpolation
of the previous online vector (vprevonline) and the inferred vector of the most recent 1-s
ECoGs, which were acquired at 250-ms intervals with the previous decoding
(vonline ¼ α � vinferred þ ð1� αÞ � vprevonline). The interpolation weight (α) was manually
adjusted prior to the first real-time feedback session by experimenters and fixed
throughout all sessions (E01 and E04, α= 0.5; E02, α= 1.0; E03, α= 0.4). Within
each real-time feedback session, each instruction was given ten times in rando-
mized order, and the sessions were repeated four times for each subject at such an
interval that the subject could take a break. The system delay from the acquisition
of ECoGs to the presentation of the feedback image was 195.2 ± 29.2 ms (mean ±
SD; measured from the real-time sessions with E01).

Imagery task: task procedure. The subjects visually imagined mental images in
one category while watching various images in another category (Fig. 6a). The
images shown in this task originated from the 3600 annotated images of the
training videos. We selected five images for both the word and landscape categories
based on the highest Pearson’s correlation coefficients between the true semantic
vector and the semantic vector for word and landscape (Rðvitrue; vwordÞ and
Rðvitrue; vlandscapeÞ), although some images were rejected such that no images
included meanings related to a different category, and the selected images had a
clear meaning of either word or landscape (for selected images, see Supplementary
Fig. 6a). At the beginning of the task, baseline ECoGs were acquired for 30 s, during
which period the subject was instructed not to think of anything or move and to
remain calm (resting without images). Then, on each trial, the first image was
presented for 2 s (nonimagery period), and the second image, selected from a
different category, was presented for another 2 s (imagery period). No fixation
points were shown during the presentation of these images. The intertrial interval
was 1 s, and the subject was presented with a black screen with a white cross at its
center during this period. For all combinations of images between the two cate-
gories, the trials were repeated; hence, the number of trials for one session was 50.
The presentation order was randomized. The subjects were instructed to memorize
the first image and then to visually imagine the memorized image while watching
the second image. Twelve subjects (E01–E08 and E18–E21) participated in the
imagery task for one session, whereas E09 participated in two sessions.

Signal pre-processing. Based on visual inspection of the recorded ECoGs in the
video-watching task (E01–E17) or in the imagery task (E18–E21), noisy channels
were discarded from subsequent analyses. Neither down-sampling nor filtering was
performed as signal pre-processing.

Signal pre-processing: video-watching task and imagery task. ECoGs obtained
during the video-watching task and the imagery task were re-referenced by com-
mon averaging across the noise-free channels.

Signal pre-processing: real-time feedback task. During the real-time decoding
(and for the training of the decoder used in the real-time feedback task), a subset of
the noise-free channels was used to re-reference the ECoGs to increase perfor-
mance in the real-time feedback task. (1) We first discarded channels in regions
that were considered to not contribute to the control of the inferred vector (e.g.,
channel whose electrode was located in the frontal lobe). (2) Channels that did not
show a stable response to the visual stimuli were discarded as follows: (2–1) ECoGs
from the video-watching task were re-referenced using common averaging across
the remaining channels. (2–2) From the re-referenced signals, raw features during
the presentation of the images in the resting with 60 images condition were cal-
culated to discard channels that satisfied the following criteria in at least one video:
standard deviationðfeaturebaseline; rawi =featurebaseline0; rawi Þ > 0:5 (see “Calculation of
high-γ features”). (2–3) The ECoGs in the video-watching task were again re-
referenced using common averaging across the remaining channels to train the
decoder. Re-referencing using the same subset of the noise-free channels was
performed during the real-time decoding and in the analysis of the ECoGs
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recorded in the real-time feedback task (for locations of selected electrodes,
see Fig. 4b).

Calculation of powers for consistency analysis. For the consistency analysis,
powers were calculated from 1-s ECoGs of a channel (Xsignal(t)) while the subjects
were watching the validation video. Using a Hamming window and fast Fourier
transformation (FFT), the power spectrum density was calculated
(PSDf ðXsignalðtÞÞ ½μV2=Hz�; f : frequency ½Hz�) to be averaged within the α
(8–13 Hz), β (13–30 Hz), low-γ (30–80 Hz), and high-γ (80–150 Hz)
frequency bands.

Calculation of high-γ features. From 1-s ECoGs of a channel (Xsignal(t)) and the
corresponding baseline signals from the same channel (Xbaseline(t)), decoding fea-
tures were calculated. The power spectrum density of the signal was calculated
using a Hamming window and FFT; the power spectrum density was then averaged
across the high-γ frequency band to calculate the raw features as follows:
featuresignal; raw :¼ ð 1

jff2½80;150�gj ∑
f2½80;150�

PSDf ðXsignalðtÞÞÞ0:5 ½μV=Hz0:5�.
To compensate for impedance changes for each intracranial electrode from the

condition during the first training video presentation in the video-watching task,
we evaluated the compensation factor (comp) to calculate decoding features
(featuresignal= featuresignal, raw/comp) using one of the following two methods,
each of which corresponded to the recording method for the baseline signals.

(1) Resting without images
The ECoGs during the 30-s resting baseline (Xbaseline(t)) were divided into 30
time windows of 1 s each. For each time window, the raw feature
(featurebaseline; rawi ; i ¼ 1; � � � ; 30 ðtime windowÞ) was calculated. The same
procedure was applied to the ECoGs during the 30-s resting baseline
recorded just before the presentation of the first training video (Xbaseline0(t))
to acquire raw features (featurebaseline0; rawi ). The compensation factor was
defined as follows: comp :¼ ∑i feature

baseline; raw
i =∑i feature

baseline0; raw
i .

(2) Resting with 60 images
The ECoGs from 0 to 1 s after the presentation of each of the 60 images were
extracted from the baseline ECoGs (Xbaseline(t)) to obtain raw features
(featurebaseline; rawi ; i ¼ 1; � � � ; 60 ðimageÞ). In the same manner, from the
ECoGs recorded prior to presentation of the first training video
(Xbaseline0(t)), the signals from 0 to 1 s after presentation of the images
were extracted and converted to the raw features (featurebaseline0; rawi ). By
paring raw features for the same image, the compensation factor was defined
as follows: comp :¼ ∑iðfeaturebaseline; rawi =featurebaseline0; rawi Þ=60.

Construction of the decoder. Throughout this study, ridge regression was used to
infer semantic vectors from decoding features. To train a regression model from a
dataset that consisted of decoding features and corresponding true semantic vec-
tors, cross-validation54 was applied; the decoding features in the training dataset of
each fold were standardized by z-scoring using its mean and SD for each dimension
of the features. The decoding features in the testing dataset were standardized using
the same means and SDs calculated solely with the training dataset to prevent any
data leakage55. For each candidate of the regularization parameter of the ridge
regression (10−8, 10−7, � � �, 108), a regression model was trained for each
dimension of the visual semantic space to decode the standardized decoding fea-
tures of the testing dataset. Finally, all decoding features in the entire dataset were
again standardized by z-scoring, using the mean and SD for each dimension of the
features; a ridge regression model was trained for each dimension of the visual
semantic space with the regularization parameter that maximized the average of the
dimension-wise correlation coefficients in the visual semantic space

(fDimRkðVinferred ; VtrueÞg; see “Measure of accuracy for the inferred semantic
vectors”) between the sequence of the inferred semantic vector
(Vinferred :¼ fviinferred ji : scene in entire datasetg) and the true semantic vector

(Vtrue :¼ fvitrueg). When the trained decoder was applied to new decoding features,
the new decoding features were standardized by the same means and SDs of the
entire dataset before applying the regression models.

Measure of accuracy for the inferred semantic vectors. To evaluate the
decoding accuracy of the semantic vectors inferred from the ECoGs, we used the
following four measures.

(1) Dimension-wise correlation coefficients (DimRk)
Dimension-wise correlation coefficients were calculated as a Pearson’s
correlation coefficient between sequences of the true semantic vectors
(Vtrue :¼ fvitrueji : tested sceneg) and the inferred semantic vectors
(Vinferred :¼ fviinferredg) for each dimension ðfDimRkðVinferred ; VtrueÞjk ¼
1; � � � ; 1000 ðdimension in the visual semantic spaceÞgÞ.

(2) Projected correlation coefficients (PrjRk)
Projected correlation coefficients ({PrjRk (Vinferred, Vtrue) | k= 1, ⋯, 1000})
were measured using the direction vectors of the true semantic vectors
acquired by PCA for the training videos (see “Video-watching task:

evaluation of the visual semantic space”). Each inferred semantic vector
from the tested scenes (Vinferred :¼ fviinferred ji : tested sceneg) was projected
to the kth direction vector of the PCA to calculate Pearson’s correlation
coefficients between the projected values and the kth principal component of
the corresponding true semantic vectors (Vtrue :¼ fvitrueg).

(3) Scene-wise correlation coefficient (Rðviinferred ; vitrueÞ)
The scene-wise correlation coefficient was calculated to evaluate the
accuracy for each image. The scene-wise correlation coefficient was defined
as the Pearson’s correlation coefficient between the true and inferred
semantic vectors for each scene (Rðviinferred ; vitrueÞ).

(4) Scene-identification accuracy
Scene-identification accuracy indicated the accuracy in identifying the
corresponding scene from the inferred semantic vector. For a scene (i) to be
tested, the true scene-wise correlation coefficient (Rðviinferred ; vitrueÞ) between the
inferred semantic vector (viinferred) and the true semantic vector (vitrue) was
compared in a pairwise manner with other scene-wise correlation coefficients
between the inferred semantic vector and true semantic vectors of other scenes
to be compared (fvjtrueji≠j; j : scene to be comparedg). The proportion of
compared scenes with which the inferred semantic vector correlated less than
or equal to the true scene-wise correlation coefficient was calculated, and the
average of the proportions was defined as the scene-identification accuracy of
the tested scene (acci :¼ ∑jðCi;jÞ=jfjgjwhereCi;j :¼ 1 if Rðviinferred ; vitrueÞ>
Rðviinferred ; vjtrueÞ otherwise 0).

Analysis for the video-watching task: consistency analysis of cortical activity
while watching the validation video. To determine the frequency band that
responded to the visual stimulus most consistently, the consistency of the cortical
activity was evaluated using the four repetitions in the validation video. For each
electrode, powers in four frequency bands (α, β, low γ, and high γ) were calculated
from 1-s ECoGs obtained without overlap (150 values for each electrode, band, and
repetition). For all six possible pairs among the four repetitions, Pearson’s corre-
lation coefficients were calculated between the powers; the correlation coefficients
were then Fisher z-transformed to be averaged across the pairs.

Analysis for the video-watching task: extraction of high-γ features. For further
encoding and decoding analyses, high-γ features were extracted from pre-processed
ECoGs recorded during the video-watching task. For each annotated image in the
videos, ECoGs within a time window of ±500 ms combined with baseline ECoGs
recorded prior to each video presentation were used to calculate the features. For
the four subjects who participated in the real-time feedback task (E01–E04), the
baseline ECoGs from the resting with 60 images condition were used for com-
pensation to evaluate the decoding performance during the video-watching task in
a condition closer to the real-time decoding task; for the other 13 subjects
(E05–E17), baseline ECoGs from the resting without images condition were used
for compensation.

Analysis for the video-watching task: division of scenes for nested cross-
validation. In further encoding and decoding analyses, tenfold nested cross-
validation was applied to enable accurate evaluation; hence, scenes in the training
videos were divided into ten groups without any overlapping scenes between them.
To prevent overestimation of the accuracy that might be caused when similar
scenes from the same video source were divided into different groups, the division
of the scenes was determined using a generic algorithm such that (1) scenes from
the same video source were kept in the same group and (2) the imbalance of the
number of scenes in each group was minimal.

Analysis for the video-watching task: inference of the high-γ features from
the semantic vectors and the low-level visual and auditory features (encoding
analysis). To reveal how the high-γ features responded to the videos, the high-γ
features while subjects watched the training videos were inferred from the semantic
vectors and the low-level visual and auditory features of the videos using ridge
regression for each electrode. Low-level visual and auditory features were obtained
by applying motion energy filters8,22 to the training video and modulation-transfer
function models23 to the sound of the videos (see “Video-watching task: extraction
of low-level visual and auditory features”). The semantic features (semantic vec-
tors) and low-level visual and auditory features were all concatenated to infer high-
γ features at each electrode using tenfold nested cross-validation in the following
procedure. Based on the division of the scenes (see “Analysis for the video-
watching task: division of scenes for nested cross-validation”), the dataset, con-
sisting of the concatenated features and the high-γ features, was divided into ten
smaller datasets. As described in Construction of the decoder, for each dataset (test
dataset), a regression model was trained using samples from all other datasets
(training dataset) to infer the test dataset. In this way, the regularization parameter
was selected without any over-fitting55. To evaluate the contributions of each
feature set (semantic features, low-level visual features, or low-level auditory fea-
tures), each test dataset was inferred with the regression model whose weights for
the other two feature sets were set to zero.
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Analysis for the video-watching task: inference of the semantic vectors from
the high-γ features in the video-watching task (decoding analysis). Semantic
vectors corresponding to all 3600 scenes of the training videos were inferred from
the high-γ features using tenfold nested cross-validation. The dataset, consisting of
the decoding features (high-γ features) and true semantic vectors, was divided into
ten smaller datasets without any overlapping samples between them (see “Analysis
for the video-watching task: division of scenes for nested cross-validation”). For
each dataset (test dataset), a decoder was trained using samples from all other
datasets (training dataset; see “Construction of the decoder”) to decode the test
dataset so that the regularization parameter was selected without any over-fitting55.
To assess the decoding accuracy in higher and early visual areas, the decoding
features from subdural electrodes in each area were decoded with the same
procedure.

Analysis for the video-watching task: evaluation of binary accuracy and
accuracy among three categories. Decoding performance in the video-watching
task was evaluated based on the Pearson’s correlation coefficients (scene-wise
correlation coefficients) of the inferred semantic vector (vinferred) with the semantic
vectors of the categories (R(vcategory, vinferred), where vcategory was vword, vlandscape, or
vface) (1) for the three categories and (2) for each pair of categories among the three
categories (binary accuracy). The classification was considered correct when the
R(vcategory, vinferred) was the highest for the category of the presented scene.

Analysis for the real-time feedback task: construction of a decoder for real-
time feedback. The decoder used in the real-time feedback task was trained using
the decoding features from all 3600 scenes of the six training videos presented in
the video-watching task with the regularization parameter optimized by the cross-
validation (for details, see “Signal pre-processing” and “Construction of the
decoder”). The baseline ECoGs recorded in the resting with 60 images condition
were used to compensate the decoding features. For the cross-validation used in the
decoder training, the decoding features were divided such that those from the same
recording day were treated as a group to maximize decoding performance on a
different day from the measurement of the training data. Consequently, twofold
cross-validation was applied for E03 and E04. Because E01 watched the training
videos in one day, threefold cross-validation was used to group the scenes as being
from the first and second videos, the third and fourth videos, and the fifth and sixth
videos. The same threefold cross-validation was applied for E02, who watched one
video on one day and the other five videos on a different day.

Analysis for the real-time feedback task: evaluation of real-time feedback
task. Performance in the real-time feedback task was evaluated using the online
vectors (vi; jonline where i ¼ 1; � � � ; 120 ðtrialÞ and j ¼ 1; � � � ; 32 ðframeÞ), based on
which the feedback images were selected, by the following three methods.

(1) By considering each trial of the real-time feedback task as a three-choice
trial among the three instructions, the prediction accuracy of the
target category was evaluated. For each frame in a trial, the Pearson’s
correlation coefficients of the online vector with the semantic vectors of
the three categories (vinstruction: vword, vlandscape, and vface) were calculated.
Then, the correlation coefficients were Fisher z-transformed and

averaged across the 32 frames in the trial (zðRðvionline; vinstructionÞÞ :¼
∑jzðRðvi; jonline; vinstructionÞÞ=32). If the (Fisher z-transformed and) frame-
averaged correlation coefficient with the semantic vector of the target

category (e.g., zðRðvionline; vwordÞÞ for target category of the word) was higher
than the other two (zðRðvionline; vwordÞÞ > zðRðvionline; vlandscapeÞÞ and

zðRðvionline; vwordÞÞ > zðRðvionline; vfaceÞÞ), the prediction on that trial was
considered to be correct.

(2) For all pairs of categories among the three categories, the same procedure as
(1) was performed using 80 trials whose target categories were the selected
categories.

(3) For the directions (acquired as the direction vectors by PCA) along which
the semantic vectors were significantly inferred with positive projected
correlation coefficients in the video-watching task, the projected correlation
coefficient ({PrjRk (Vonline, Vtarget) | k: significant direction}) was evaluated
between the online vectors of all frames of all trials concatenated
(Vonline :¼ fvi; jonlineg) and the semantic vector of their corresponding target
category (Vtarget :¼ fvi; jtargetg).

Analysis for the imagery task: time–frequency decomposition analysis. To
reveal how imagery affects ECoGs during perception in the time–frequency
domain, time–frequency decomposition was performed on the ECoGs from the
imagery task. For each subdural electrode, ECoGs were obtained for each image
presentation in the nonimagery period and the imagery period, and the newtimef
function in eeglab56 with an FFT window size of 8192 was applied. For cortical
mapping of the powers, the time–frequency map of the decomposed powers for
each presentation was converted into decibels and averaged within the high-γ
frequency band and 0 to 1 s.

Analysis for the imagery task: evaluation of modulation of inferred semantic
vectors by mental imagery. To reveal the modulation of the inferred vectors that
were attributable to mental imagery, the ECoGs in the imagery task were evaluated
by decoding. This analysis was performed for the subjects who participated in both
the video-watching task and the imagery task (E01–E09). For each of the first and
second images in the imagery task, pre-processed ECoGs from 0 to 1 s after the
presentation of images were extracted and converted to decoding features using the
pre-processed ECoGs of the 30-s resting baseline (resting without images) recorded
just prior to the imagery task as the compensation baseline. Decoding features from
the subdural electrodes were decoded using a decoder trained in the same manner
as the one used in the real-time decoding with the exception of the use of decoding
features from the video-watching task compensated with the 30-s resting ECoGs
recorded in the resting without images condition. With the inferred semantic
vector (vinferred), Pearson’s correlation coefficients of the semantic vector for word
(R(vinferred, vword)) and landscape (R(vinferred, vlandscape)) were calculated. Distin-
guishability of the category of the presented image was evaluated by AUC based on
these correlation coefficients with each semantic vector. The modulation of
R(vinferred, vword) by imagining word images (ΔZword) was evaluated as the difference
in the Fisher z-transformed and averaged correlation coefficients with the semantic
vector for word (zðRðvinferred ; vwordÞÞ) in the second and first presentations of
landscape images (i.e., in the imagery and nonimagery periods, respectively).
Similarly, the modulation of R(vinferred, vlandscape) by imagining landscape images
(ΔZlandscape) was evaluated as the difference in the Fisher z-transformed and
averaged correlation coefficients with the semantic vector for landscape
(zðRðvinferred ; vlandscapeÞÞ) in the second and first presentations of word images. The
same procedure above was repeated for ECoGs from 0.5 to 1.5 s and 1.0 to 2.0 s
after image presentation and for the subdural electrodes in higher and early
visual areas.

Analysis for the imagery task: evaluation of binary accuracy during the
nonimagery period. Binary accuracy to predict the category of the images pre-
sented during the nonimagery period was calculated based on the inferred vectors
used to evaluate the modulation. For each presentation of an image in a category,
the true scene-wise correlation coefficient between the inferred semantic vector
from 0 to 1 s after the image presentation and the true semantic vector of the
category was compared with the scene-wise correlation coefficient between the
inferred semantic vector and true semantic vectors of another category. The pro-
portion of the images that showed higher correlation coefficients with the semantic
vectors of corresponding categories was defined as the binary accuracy.

Localization of intracranial electrodes. Intracranial electrodes were located based
on pre-surgical T1-weighted magnetic resonance images (MRIs) and post-surgical
computed tomography (CT) images. The MRIs and CT images were acquired at
the site where the electrodes had been surgically implanted. The scanners used to
obtain the MRIs were the Discovery MR750 (GE Healthcare, Chicago, USA) for
five subjects, the SIGNA Architect (GE Healthcare) for one subject, the Ingenia
(Philips Healthcare, Amsterdam, Netherlands) for two subjects, the Achieva
(Philips Healthcare) for five subjects, the MAGNETOM Prisma (Siemens, Munich,
Germany) for three subjects, the MAGNETOM Skyra (Siemens) for four subjects,
and the MAGNETOM Verio (Siemens) for one subject. The CT images were
obtained using the Discovery CT750 HD (GE Healthcare) for five subjects, the
SOMATOM Emotion 16 (Siemens) for three subjects, the Aquilion ONE (Toshiba
Medical Systems, Tochigi, Japan) for four subjects, the Aquilion Precision (Toshiba
Medical Systems) for three subjects, and the Aquilion PRIME (Toshiba Medical
Systems) for six subjects. First, FreeSurfer57 was used to extract the cortical surface
for each subject from the MRIs. Then, BioImage Suite58 was used to manually
locate the positions of the intracranial electrodes from the CT images that were co-
registered to the MRIs. Afterward, the positions of the subdural electrodes were
mapped onto the cortical surface using the intracranial electrode visualization
toolbox59. The cortical surface was registered to the surface of a template brain
(fsaverage) to locate the positions of each electrode on the normalized brain
(Fig. 1a and Supplementary Fig. 1). For the area-based analysis, each subdural
electrode was assigned to one of 22 regions based on the parcellation of the human
connectome project (vid. supplementary neuroanatomical results)60. Moreover, to
locate the position of each electrode on the contralateral hemisphere of the tem-
plate brain, another registration was performed on the template brain that was
flipped left to right.

Illustrations. The graphics of the scenes in this paper were created by an illus-
tration company (Medical Education, Tokyo, Japan) specialized in scientific
illustration and were based on the annotated images from the videos and the
annotations, such that the semantic meanings in the annotations were not lost in
the resulting illustrations. Copyrights of the illustrations were transferred to the
authors.

Statistics and reproducibility. The difference in the high-γ features while
watching scenes corresponding to the three categories, each with 50 scenes, was
tested with one-way ANOVA (Fig. 2c).
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The correlation coefficients between the high-γ features and the inferred
features while watching the training videos were tested by one-sided Pearson’s
correlation test (Fig. 2d). The one-sided test was applied because successful
regression results in positive correlation coefficients.

The inferred semantic vectors using high-γ features while subjects were
watching the training videos in the video-watching task were tested for each
principal component of the PCA using a two-sided permutation test (Fig. 3a). The
Fisher z-transformed and subject-averaged projected correlation coefficient

(zðPrjRkðVinferred ; VtrueÞÞ) for each principal component were compared to a
corresponding chance-level distribution. The chance distributions were created by
(1) splitting the true semantic vectors based on the video clips, (2) shuffling their
order, (3) concatenating them, and (4) calculating the subject-averaged projected
correlation coefficient in exactly the same way. The permutation was performed 1
million times. The α-level was adjusted by Bonferroni correction for the number of
components, which was 1000.

Binary accuracies of all subjects using high-γ features were tested against chance
level (50%) using one-sided one-sample t-tests. Because the binary accuracy was
expected to be higher than the chance level, a one-sided test was used. The α-level
was adjusted by Bonferroni correction for the number of paired categories (three).
The binary accuracy averaged across the three pairs was also tested against the
chance level (50%) by one-sided one-sample t-tests with Bonferroni correction for
the number of tests (higher visual area, early visual area, and all electrodes; Fig. 3b).
Differences among the binary accuracies of the higher visual and early visual areas
were tested by two-sided Welch’s t-test (Fig. 3b).

Three-choice accuracy during the real-time feedback task was tested using a
permutation test. Because the accuracy was expected to be higher than the chance
level when the feedback image was under the control of the subjects, a one-sided
permutation test was performed. The chance-level distribution of the three-choice
accuracy was estimated by shuffling target categories of all trials 1 million times.

To find components that were significantly controlled during the real-time
feedback task, the Fisher z-transformed and subject-averaged projected correlation

coefficients (fzðPrjRkðVonline; VtargetÞÞg) were evaluated using two-sided
permutation tests (Fig. 5f). The permutations were performed 1 million times by
shuffling the target categories of all trials. The α-level was adjusted by Bonferroni
correction for the number of principal components that could be decoded
significantly better than chance in the video-watching task.

For each semantic vector of word (vword) and landscape (vlandscape), the
distribution of Pearson’s correlation coefficients between the inferred vectors
(vinferred) and the semantic vector was evaluated for its difference between the
nonimagery and imagery periods. Because it was hypothesized that these
correlation coefficients would increase during imagery, the Fisher z-transformed
correlation coefficients for the nonimagery and imagery periods were tested using
one-sided Welch’s t-test (Fig. 7a and Supplementary Fig. 6b).

Among all nine subjects who participated in both the video-watching task and
the imagery task, ΔZword and ΔZlandscape using high-γ features were tested against
no modulation (0). Because it was hypothesized that these modulations would
become positive, one-sided one-sample t-tests were adopted for the test. The α-
level was adjusted by Bonferroni correction for the number of tests (six) (Fig. 7c).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the main text, the supplementary materials, or figshare (https://
figshare.com/articles/dataset/Datasets_for_Fukuma_et_al_Communications_Biology/
12916037)61.

Code availability
All analyses were performed using Matlab R2015b (Natick, MA, USA). Custom codes are
also shared in figshare (https://figshare.com/articles/dataset/Datasets_for_Fukuma_et_al_
Communications_Biology/12916037)61.
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