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Abstract: Structural cracks are a vital feature in evaluating the health of aging structures. Inspectors
regularly monitor structures’ health using visual information because early detection of cracks on
highly trafficked structures is critical for maintaining the public’s safety. In this work, a framework
for detecting cracks along with their locations is proposed. Image data provided by an unmanned
aerial vehicle (UAV) is stitched using image processing techniques to overcome limitations in the
resolution of cameras. This stitched image is analyzed to identify cracks using a deep learning
model that makes judgements regarding the presence of cracks in the image. Moreover, cracks’
locations are determined using data from UAV sensors. To validate the system, cracks forming
on an actual building are captured by a UAV, and these images are analyzed to detect and locate
cracks. The proposed framework is proven as an effective way to detect cracks and to represent the
cracks’ locations.

Keywords: crack detection; deep learning; convolutional neural network; image processing;
unmanned aerial vehicle

1. Introduction

Preserving structures’ integrity is critical to maintaining their safety. The growing size
and complexity of infrastructure have made maintenance a challenge. According to the
American Society of Civil Engineers’ (ASCE) Infrastructure Report Card for 2017 [1], 9.1%
of 600,000 bridges are structurally deficient in the United States and one in five bridges are
at least 50 years old. The ASCE estimates that the backlog for necessary refurbishment has
grown to $123 billion. Currently, the Federal Highway Administration requires a bridge to
be inspected every two years. These inspections are time-consuming and require trained
individuals with specialized equipment to inspect the entire structure. Another difficult
challenge for inspectors is inspecting buildings that have been damaged with potential
danger to enter. While the exterior of the building may be inspected, the possibility of
partial or total collapse may prevent further inspection when they are uncertain of the
extent of the damage to the structure’s interior. New technologies can augment inspectors’
abilities to monitor a number of deteriorating bridges, and a system for remotely observing
the damage helps inspectors ensure safety. With more automated monitoring systems,
the frequency at which structures are monitored would be increased dramatically.

Cracks in structures are typically examined by nondestructive evaluation technolo-
gies. A visual inspection using high-resolution photography is the dominant method to
inspect structures among several nondestructive technologies, such as impact-echo, ground-
penetrating radar, ultrasonic surface waves testing, high-resolution photography, etc. [2,3].
Currently, inspectors must visit sites with a device to acquire visual information. However,
unmanned aerial vehicles (UAVs) have been used to acquire images recently because it is
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easy to capture images in dangerous and/or unreachable places. Previous investigations
using machine vision for crack detection have used image processing algorithms, such as
Hough transform, wavelet transforms, region-based segmentation, Hessian matrix-based
vesselness measurement technique, and principal component analysis to identify patterns
in images that indicate cracks [4–6]. More recently, machine learning and deep learning
algorithms to identify cracks have also become a popular method of crack detection [7–10].
Convolutional neural networks (CNNs), which are deep learning techniques, excel in object
recognition applications because they are excellent at extracting features from large data
sets that make adept machine learning models for object recognition [11–13]. Further-
more, the increasing affordability of graphics processing units (GPUs) has popularized
lowering CNNs’ barrier-to-entry arising from the intense computational cost of training
them [14]. For these reasons, there are many previous cases of their use in damage detection
applications. In Reference [15], the authors trained CNNs on photometric stereo images
of rail surfaces and utilized regularization methods to alleviate overfitting with a small
training data set. For crack detection in concrete structures considering varying real-world
conditions (e.g., lighting and shadow changes), CNNs were trained using various images
and combined with a sliding window technique to scan any image larger than the input
resolution [16]. For road crack detection, a CNN model with ConvNet architecture was
adopted in Reference [17]. Wang et al. [18] proposed a two-state data augmentation method
to improve the quality of crack detection. By applying the rotation method among several
data augmentation methods in state one and the greedy algorithm in state two, the model
was effectively trained and showed high performance for crack detection in concrete struc-
tures. Among various CNN models, the VGG16 model has been widely utilized until now.
Wei et al. [19] proposed a fastener defect detection approach on a railway track using CNN,
especially the VGG16 model because it can simplify the classification procedure compared
to the conventional image processing technique. In addition, Yang et al. [20] utilized the
VGG16 model as a base model for their study. They proposed a transfer learning method
based on a deep CNN for civil infrastructure crack detection. Qu et al. [21] used the
LeNet-5 to classify crack images among disordered input images and optimized the VGG16
model to detect concrete pavement cracks on the images. Moreover, studies using the
VGG16 model were performed in a variety of fields, such as combustion (classification
individual combustion variants [22]), agriculture (disease classification in eggplant [23]),
environmental protection (classification of recyclable garbage [24]), and medical science
(classification of brain tumors [25]).

Previous studies [15–21] focused primarily on increasing the performance of crack
detection algorithms. In addition, a number of studies have used cameras installed in
UAVs to capture visual data only [26–30]. In this work, a UAV’s position information as
well as images taken by the UAV’s camera are utilized. With this information, a proposed
framework not only identifies cracks but also provides their location information. Image
processing techniques are initially utilized to merge the obtained image into a large image,
and a CNN based on the VGG16 model is applied to identify cracks. Then, with the
UAV’s position information and outcomes of the deep learning algorithm, cracks’ location
information in the world coordinate system is obtained. Lastly, it provides a full crack
region map that contains the cracks boxed with red and their location information. To
the best of the authors’ knowledge, this work is the first framework that can provide
the presence of cracks and their locations in the world coordinate system at the same
time. By combining the crack detection capability with the provision of cracks’ locations,
the efficiency of large structures’ health monitoring can be improved. This proposed
framework provides inspectors with the information they need before setting foot in the
building, and this helps to reduce their time-consuming work. Implementation of such a
framework would serve to augment inspectors’ abilities to fully inspect large structures for
evidence of damage through the detection of cracks on the structures’ surface.
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2. System Architecture

The framework proposed in this work is largely composed of three parts: (i) feature-
based image processing, (ii) crack detection, and (iii) location determination. The flow of
the suggested framework is described in Figure 1. First, image processing techniques are
used to extract features in images and to merge them into one large image. Additionally,
to apply this process, a camera calibration process for extracting parameters used in this
process is performed. Next, cracks in the stitched large image are identified by using
the deep learning model, and cracks’ pixel coordinates about locations on the image are
obtained. Finally, the location in the real world is calculated, and the crack region map,
which includes the marked crack part and its location, is provided.

Figure 1. Flowchart of the system proposed.
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2.1. Feature-Based Image Processing

Taking multiple images in different views is the general method of capturing a large
structure because of limitations for the field of view and/or the resolution of a camera. It is
possible to check the structure’s crack conditions by looking at each image, but it would
be difficult to distinguish the location of cracks, especially with similar images. For this
reason, the entire image map for the structure would be useful for the health monitoring of
the structure; thus, the image stitching process is considered. Before the image stitching
process, distortion of the structural images is compensated by using the distortion model
obtained by the camera calibration process.

The image stitching algorithm consists of two parts: detecting features and estimating
the geometric relationship between images. Scale-Invariant Feature Transform (SIFT) [31]
and Speeded Up Robust Features (SURF) [32] are the most popular methods to extract
features. SURF is used in this work because of its time efficiency comparing to SIFT [33].
Plenty of features are returned by this algorithm including unreliable features, which are
called outliers.

Inliers, which are correct matching features, and geometric relationships between im-
ages are obtained by using feature matching methods, such as Random Sample Consensus
(RANSAC) [34] and M-estimator Sample Consensus (MSAC) [35]. In this work, MSAC is
utilized to handle the outliers and to estimate parameters for homography because MSAC
is more robust than RANSAC in terms of the change in the threshold of the cost function
expressed as

C = ∑
i

ρ(e2
i ), where ρ(e2

i ) =

{
e2

i , e2
i < T2 ,

T2, e2
i ≥ T2.

(1)

where ρ(e2
i ) is the error function for the geometric distance and T is the threshold. Using

MSAC, inliers and geometric information are estimated. This geometric information
contains scale, rotation, translation, reflection, and shearing between images, but the
scale, rotation, and translation are only considered the similarity transformation in this
work because reflecting and shearing images are not taken by a UAV. That is, geometric
information is used to determine how the images are merged by finding the correct feature
matching set for images. For the similarity transformation, it is required to get more than
two pairs of feature points.

The applicability of stitching algorithms would be determined by the available images
providing sufficient features for matching. If sufficient features are not provided for
stitching, an overlapping image using position, distance, and attitude data obtained from
a sensor of the UAV is an alternative option. Obviously, the overlapped image may not
provide clear information compared to the stitched image because of measurement errors.

2.2. Crack Detection Using CNNs
2.2.1. VGG16 Model

For crack detection, the VGG16 model is utilized because of its high performance in
ImageNet and transfer learning applications. Additionally, it has been used extensively for
object recognition in disparate arenas. The architecture of the VGG16 model introduced by
Simonyan et al. [36] is visualized in Figure 2. This model supports images with size 224 by
224 and 3 channels and uses 16 convolutional layers with 3 by 3 filters and increasing depth
to optimally extract features in the input image. At the end of a stack of filters, a 2 by 2
max-pooling layer is used to reduce the volume of the information. In the ImageNet model,
the final max-pooling layer is connected to a single fully connected layer 4096 neurons
long, which is then connected to a softmax layer for 1000 classifications. For this work,
the fully connected and softmax layers were removed and replaced with a fully connected layer
1024 neurons long and a softmax layer for 2 classifications as shown in Figure 2. In this way,
the output is essentially a real value between 0 and 1. On inspection, 1 and 0 represent
maximum confidence in the presence of a crack and no crack, respectively.
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Figure 2. Architecture of the modified VGG16 model.

2.2.2. Data Set

The crack detector was trained on a collection of images from a data set retrieved
from Mendeley compiled by Maguire et al. [37] called SDNet to support machine learning
applications for structural health monitoring. This data set contains 56,000 images of bridge
decks, walls, and pavements. To ensure the data set had good quality, the images were
manually inspected. From SDNet, good quality images for each category, crack and no
crack, were selected: 1800 crack and 1800 no-crack images, respectively. From the pool of
3600 images, 80% of images were stored in the training directory and 20% were stored in
the validation directory.

2.2.3. Training

Training of the model consisted of fine-tuning the weights learned in the ImageNet
competition. When retraining deep learning models, there are choices in the depth of
the retraining. The model can be retrained deeper by increasing the number of convolu-
tional layers to be fine-tuned. Many previous works employing transfer learning [38–40]
have demonstrated varying performance with varying depths of retraining. Typically,
researchers observed increasing performance with increasing depths of training at the cost
of computation time. In this work, the model was fine-tuned in its entirety by using a
computer that has a GTX 1080 Ti GPU with 11 GB VRAM and 3584 CUDA cores, 32 GBof
memory, and an Intel i7 processor CPU with 3.9 GHz.

The Adam optimization algorithm, a special implementation of stochastic gradient
descent, is described in detail in Reference [41]. In line with other fine-tuning applications,
the learning rate was set as 10−5, and the loss function used during training is given by

L = − 1
m

m

∑
i=1

n

∑
j=1

b(i, j)log10(pi,j), (2)

where

b(i, j) =

{
1, y(i) = j ,
0, otherwise.

(3)

This calculates the loss for each observation i for each label j for a number of categories
n ≥ 2, and pi,j is the model’s predicted probability for the label j of the ith input.

2.2.4. Inspection

The CNN provides an output that is representative of its confidence that there is
a crack in an image. As previously mentioned, this output is valued between 0 and 1.
The lower extreme value (0) indicates that there is no crack in an input image, and the
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upper extreme value (1) means that an input image contains a crack. The output value
between the two values represents the percentage of confidence. It is further interpreted
via the crack detection algorithm by an introduction of the user-defined thresholds γc and
γnc that determine the algorithm’s classification of the image. If the output is below γnc,
it is determined that there are no cracks in the image. The judgement for the image is
that there is a crack if the output value is larger than γc. If the output lies between γnc
and γc, the image is classified as uncertain. For instance, if one sets γc and γnc as a high
value (i.e., 0.95 or more) and a low value (i.e., 0.05 or less), respectively, it can be said that
the user wants to determine the presence of a crack only for an image that has definite
confidence (95%) by applying strict conditions. In addition, pixel information for the center
of the input image is determined for images with positive identification for cracks, and this
information is included in the output of the algorithm.

The image to be inspected typically has a higher resolution than what may be placed
into the VGG16 model, which is designed for a 224 by 224 pixel Red-Green-Blue image.
Inputting the higher resolution image to the CNN can require significant downsampling,
which incurs the loss of information. Because of this, the image is divided into sections that
are individually inputted into the CNN. In this work, two methods of dividing the image
were studied. The first method (Method 1) divided the image once into equal-sized sections equal
to the VGG16’s input size to avoid loss of information incurred by downsampling the larger image
to the model’s input size. If there are sections of the image (called sub-images) where the
algorithm’s judgement is uncertain, these subimages are saved to be used in the retraining
algorithm. This approach mainly focuses on the accuracy of crack detection. In the second
method (Method 2), the image is initially divided into a number of sections desired by the user,
and it iteratively reinspects sections of the image where the algorithm’s judgement is uncertain.
Method 2 primarily focuses on the aspect of a computational burden.

2.2.5. Retraining and Reinspection for Each Method

To minimize uncertainty in the system, Method 1 and Method 2 consider retraining
and reinspection processes, respectively. In Method 1, images that were labeled during
inspection in the past may be used to retrain the CNN so that the algorithm has increasing
performance with continued application of the system. After the inspection, newly labeled
data for crack and no-crack images are available for training. Adding these images to the
training set will increase its size. The model that was fine-tuned from the ImageNet weights
may then be fine-tuned again using the training set augmented with new images, and the
retrained model is used to inspect the uncertain images from the initial inspection. After
the initial inspection, there are generally more no-crack images than crack images. This is
typical because damaged parts of a structure are usually much smaller than the overall size
of the structure, so the labeled data added to the training data set can become unbalanced
if left alone. For this reason, images from the overrepresented classification are randomly
selected to become training data so that the number of crack images and no-crack images
remain the same. This helps to avoid biasing the model during retraining. Using a balanced
new training data set, retraining is performed in iterations. The remaining uncertain images
are inspected and potentially classified as crack or no crack. If a judgement is made, then the
newly classified image can be added to the training data set for the next retraining iteration.
If it is not possible to balance the data being added to the training data set, however,
the retraining stops at that iteration. Although it is a small detail on this work’s application,
this would have a great impact on the results when inspecting much larger images.

In Method 2, the size of divided sections will be greater than the input size of the
model but closer to the actual size than the original image size. If the algorithm determines
a section as uncertain, the image is reinspected by dividing it again, and each subsection
can be put into the CNN. Subsections can be reinspected as well, so the algorithm iteratively
breaks up the image and reinspects it until the uncertainty is minimized. The algorithm,
however, will not continue to divide an image if the sizes of the resulting sections are equal
to or less than the VGG16’s input size.
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2.3. Location Determination

Through the crack detection system proposed, the confidence in the presence of a
crack is returned and pixel information for the center of the divided image including cracks
is obtained in order to find the location of cracks in the real world. For this process, three
coordinate systems and two image planes are considered in this work, as shown in Figure 3.
When taking a photo using a camera, an object of interest in the world coordinate system
is projected onto the image plane, and there is a mathematical model to describe how
points in the world coordinate system become projected onto the image plane. Using the
inverse relation of this mathematical model, the real locations of points in the image plane
are determined.

Figure 3. Coordinate systems and image planes.

First, the relationship between the camera coordinate system and the image plane
is described using camera parameters, which are called the intrinsic parameters, such as
the focal length, fx and fy; the principal point, cx and cy; the skew coefficient, αc; and
ith coefficients of the radial and tangential distortion coefficients, kr,l and kt,m, where
l = 1, 2, 3 and m = 1, 2. These intrinsic parameters are estimated by using the Camera
Calibration Toolbox [42]. The projection from the camera coordinate system onto the
image plane is described in a general mathematical model using the intrinsic parameters
as follows: [42,43]xd

yd
1

 =

(1 + r2kr,1 + r4kr,2 + r6kr,3)xn + 2xnynkt,1 + kt,2(r2 + 2x2
c )

(1 + r2kr,1 + r4kr,2 + r6kr,3)yn + kt,1(r2 + 2y2
c ) + 2xnynkt,2

1

, (4)

where (xn, yn, 1)T = (xc/zc, yc/zc, 1)T , zc is the distance between the camera and the
subject and r2 = x2

n + y2
n. Once distortions are applied, the point in the image plane (xi yi)

T

is derived as [42,43] xi
yi
1

 = K

xd
yd
1

, (5)
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where

K =

 fx αc fx cx
0 fy cy
0 0 1

. (6)

Equations (4) and (5) express the projection from the camera coordinate to the im-
age plane. The points in the camera coordinate system are calculated using the inverse
process mentioned if the points in the image plane are given. However, there is a
nonlinear calculation to calculate inversely in Equation (4). If images that are compen-
sated using distortion coefficients, then (xn, yn, 1)T = (xd, yd, 1)T . Thus, this leads to
pc = (xc, yc, zc)T = zcK−1 (xi, yi, 1)T .

To find the location of the point in the world coordinate system, the rotation matrix,
RCW , which maps the world coordinate system into the camera coordinate system, is used.
Then, the location of the point in the world coordinate system, pw = (xw, yw, zw)T , is
provided as [42]

pc + pw = RT
CWrT

t , (7)

where rt = (rx, ry, rz)T is the translation vector from the origin of the world coordinate
system to the camera coordinate system. If the images are taken by a UAV, the position
and attitude information of the UAV can be obtained. Note that the relationship between
the UAV and the camera is easily calculated because the camera is fixed in the UAV. RCW
is provided from the attitude of the UAV, and rt is obtained from the position data of the
UAV. It is assumed that the camera coordinate system does not rotate with respect to the
world coordinate system because images were taken using a quadcopter in hovering mode
in this work.

3. Experiment Results
3.1. Experiment Conditions and Preparations

To validate the proposed system, experiments were carried out. Images directly taken
by humans have very good conditions for detecting cracks and image processing, but it
is possible for structural cracks to be located in unreachable places by inspectors without
the proper equipment. For this reason, images taken by a UAV are considered in this work
because it is possible to acquire visual information for large structures such as bridges
or tall buildings. In this work, two images taken by the UAV in hovering mode were
utilized by the system proposed. Note that the UAV is controlled such that the optical
axis (ẑc) of the camera is perpendicular to the wall. Then, it reduces the effect of camera
lenses’ distortion. Photos of cracks on the side of a wall were taken at the Art Gallery at
Mississippi State University with the camera installed in the drone: 12 mega-pixel sensor
and f /2.2 aperture.

3.2. Feature-Based Image Processing

Before performing the process, estimating the camera parameters is needed because
the intrinsic parameters of the camera are utilized to determine the location of points on the
images. Additionally, the distortion coefficients in the intrinsic parameters are applied to
the images taken by the UAV in order to compensate for distortion made by lenses, and the
un-distorted images shown in Figure 4 are utilized for the image stitching process to make
a large image map. In between two images, Image 1 is the reference image in the image
processing step and Image 2 is stitched on Image 1 based on the common features obtained
from the two images.
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(a) Image 1 (Reference image) (b) Image 2 (Target image)

Figure 4. Undistorted images for which the distortions will be corrected.

The black background at each corner of the undistorted images represents the distor-
tion, so only the valid rectangular part of these images is used to apply the image stitching
algorithm. First, the common feature points in these two images are extracted using SURF,
as shown in Figure 5a. A number of features including outliers are shown in the result
figures. Based on these features, the correct matching sets, the inliers, are estimated from
MSAC, as shown in Figure 5b, and the geometric relationship is calculated using these
inliers. The angle and scale of Image 2, which should be transformed, with respect to Image
1 are obtained as the angle of 3.6836◦ and scale of 1.1622, respectively. Although the UAV
was in hovering mode in the experiment, the angle and scale between the two images are
different because of disturbances, such as wind.

(a) Feature points extracted from SURF (b) Inliers estimated by MSAC

Figure 5. Results for applying Speeded Up Robust Features (SURF) and M-estimator Sample Con-
sensus (MSAC).

After the geometric relationship is applied to the images, the stitched image is obtained
as shown in Figure 6a. Some differences between the two images are found because the
attitude of the UAV is somewhat affected by control errors and/or disturbances. If sufficient
inliers are not found by MSAC, stitching images are not available since the geometric
information cannot be estimated due to a lack of information. In this case, overlapping
images based on the UAV information should be considered as shown in Figure 6b. Two
images are not well-overlapped because of the measurement error. This mismatched part
may cause false identification. For this reason, it is better to use the stitched image for crack
detection if possible.
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(a) Stitched image (b) Overlapping image

Figure 6. Results for the stitched and overlapping images.

3.3. Crack Detection and Location Determination

To inspect the images for cracks, the model must first be trained. With the trained
crack detector, the stitched image is processed by two methods. Method 1 breaks the image
into equal-sized sections with 224 by 224 pixel resolution that is the same as the required
input size of the CNN in order to prevent loss of information and retrains on some of the
newly labeled images to minimize uncertainty in the judgement. Method 2 breaks the
stitched image into a number of sections chosen by the user and reinspects these images to
minimize uncertainty in the judgement.

It should be noted that, in the image, there is damage to the structure that a human
may not clearly identify as a crack. This damage can be seen on the bottom-left corner of
the protruding structure in Figure 6a. Certainly, the structure there is not intact, but its
classification as a crack is incorrect. In this work, the features of cracks are considered long
and slender damages in concrete texture with a dark interior relative to the surrounding surface
representing its depth into the structure. These features are well-represented in the data set
and visualized in the following subsections.

3.3.1. Initial Model Training

Before inspection of the stitched image, a model was trained using the 3600 hand-
picked images from the SDNet data set. The model was trained in batches of 36 images,
so in every step, 36 images were inspected by the model and used to calculate loss and
gradient for the optimization algorithm. Examples of the images used in the crack and
no-crack categories are shown in Figure 7. Since image acquisition is generally performed
during the daytime, the images taken in a normal daylight condition are selected as a
training data set. There were 80 steps per epoch of training and 20 steps per epoch of
validation. Training continued until either the validation accuracy stopped improving or
the training reached 100 epochs. Each epoch required only 26 s to be completed, averaging
326 milliseconds per step. The history for the training is shown in Figure 8. Figure 8a is the
result for the loss calculated using Equation (2), and Figure 8b shows the accuracy of the
model during training and validation, which is the percentage of images classified correctly
during training and validation. During both validation and training, the accuracy is well
above 99%.
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Figure 7. Representation of the images used to train labelling of crack images (the first three rows)
and no-crack images (the last three rows).

(a) Time history of the loss (b) Time history of the accuracy

Figure 8. Time history of the loss and accuracy for the initial training.

3.3.2. Method 1

The stitched image was broken up into 513 sections, divided 27 times along the x-
axis and 19 times along the y-axis, with 224 by 224 pixel resolution. The thresholds for
identifying cracks have a large uncertain interval as γc = 0.9 and γnc = 0.1 in order to
reduce misdetections arising from uncertain information. Initially, 18 red-boxed sections
were identified as containing cracks and 17 green-boxed sections were determined as
uncertain, as shown in Figure 9. However, through retraining, the total number of uncertain
images was reduced to just 7, as shown in the left picture of Figure 10. Additionally,
the number of uncertain regions is reduced from 9 to 6. Retraining took only two iterations
in this scenario because it could not balance the data set for training in the next iteration.
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Figure 9. Initial result of crack detection using Method 1.

In order to reduce the burden on inspectors to view many images output by the system,
some sections can be amalgamated into local regions, grouped by their proximity to one
another. Figures 9 and 10 contain the results of grouping the labeled sections into disparate
regions. This result provides inspectors with a clearer picture of the damage found by the
crack detector compared to the cluttered result depicting the result for every section.

Figure 10. Final result of Method 1 for human inspectors.

Figure 11a shows the number of uncertain images dropping with the increasing
number of iterations. As shown in Figure 11b, between the first and second iterations,
the judgement for section K18, which can be found in Figures 9 and 10, changed from
uncertain to no crack. However, there were no newly classified crack images available to
make the new training data set balanced for the next iteration, so retraining stopped at the
second iteration.
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(a) Number of uncertain images (b) Prediction trend of uncertain images

Figure 11. Number of uncertain images and its prediction trend.

The value of the loss function during each retraining step is shown in Figure 12.
The plots of these values demonstrate that retraining increases the model’s performance
when given augmented data, which are 18 crack and 18 no-crack images. The reduction of
loss in the first step was small, only on an order of magnitude of 10−3, but it was enough
to change the judgement of 10 sections. The change in the second step was even smaller,
but again, it changed the judgement of a section.

Figure 12. Time history of the loss for retraining the model in Method 1.

Pixel information for the center points of the divided images as well as the confidence
in the presence of a crack are obtained from the crack detection procedure. This pixel
information is mapped from the image plane into the world coordinate system using
intrinsic parameters, and the distance between the structure and the camera is easily
obtained since the distortions are already compensated in the stitched image. The distance
measured by the range sensor is about 1.5 m for Image 1 in this experiment. The rotation
matrix is assumed as the identity matrix because the coordinate systems are not rotating.
Additionally, the translation vector given by the position information of the UAV is assumed
as a zero vector, which means that the origin of the camera coordinate system is placed
in the origin of the world coordinate system. The outputs of the crack detection and the
determined location information are listed on the right side of Figure 10. In these results,
the direction of y, which is downward, should be noted because the direction is opposite to
the general direction. The location for each region is calculated using an average value,
but if the calculated location is not placed on that region, the nearest location among
images from the calculated location is set as the region’s location. The whole results for
each subsection about the crack and uncertain images are listed in Table 1. The region
map and its location information are provided for human inspectors as a report shown in
Figure 10. The classified region map and its locations were gathered in one scene for ease
of understandability. In the case of the images of uncertain regions, inspection by human
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inspectors is needed to classify whether there is a crack because the proposed system was
not able to detect cracks. After this process, the judged image are labeled as crack or no
crack for the retraining process for future inspections.

Table 1. Results of the crack detection and its location for Method 1.

ID Classification Prediction (%) Pixel Location (m)

A21 crack 92.75 4592 112 0.321 −1.128
B18 crack 98.13 3920 336 0.026 −1.030
C22 crack 93.48 4816 560 0.419 −0.933
D17 crack 99.99 3696 784 −0.072 −0.835
D18 crack 99.96 3920 784 0.026 −0.835
D19 crack 99.99 4144 784 0.125 −0.835
D20 crack 99.99 4368 784 0.223 −0.835
E17 crack 99.62 3696 1008 −0.072 −0.737
E18 crack 99.99 3920 1008 0.026 −0.737
F17 crack 99.94 3696 1232 −0.072 −0.639
F18 crack 99.99 3920 1232 0.026 −0.639
F18 crack 99.99 3920 1456 0.026 −0.542
H23 crack 97.28 5040 1680 0.517 −0.444
H24 crack 99.91 5264 1680 0.616 −0.444
N11 crack 96.34 2352 3024 −0.661 0.143
N18 crack 96.86 3920 3024 0.026 0.143
O14 crack 94.29 3024 3248 −0.367 0.240
P14 crack 90.21 3024 3472 −0.367 0.338
Q13 crack 99.90 2800 3696 −0.465 0.436
R13 crack 99.99 2800 3920 −0.465 0.534
S13 crack 90.96 2800 4144 −0.465 0.631
A18 uncertain 77.65 3920 112 0.026 −1.128
A19 uncertain 37.61 4144 112 0.125 −1.128
F23 uncertain 17.71 5040 1232 0.517 −0.639
K22 uncertain 20.31 4816 2352 0.419 −0.151
N12 uncertain 25.37 2576 3024 −0.563 0.143
N17 uncertain 13.37 3696 3024 −0.072 0.143
N21 uncertain 65.04 4592 3024 0.321 0.143

3.3.3. Method 2

The user defines the number of times that the image is divided. The image was
divided into 120 sections, 12 divisions along the x-axis and 10 divisions along the y-axis.
Furthermore, if the judgement of a section is uncertain, it is divided into 4 sections of equal
size to be reinspected. In this way, uncertainty in the model’s judgement of the image’s
sections is reduced through reinspection. There were very few uncertain sections as a result
of this method, so retraining was not utilized in Method 2. The outputs after reinspection
and amalgamated location information are shown in Figure 13, and all location information
is listed in Table 2.

Many sections of the protruding structure that do not have cracks are identified as
having cracks. Much of the damage to the bottom-left section of the protruding structure
was judged as no crack in Method 1. This may have to do with the relative size of the
damage in the different sizes of divisions. The greater the size of the section, the more
slender and, thus, more crack-like the damage can look. The CNN can only use the features
present in the image to make its judgement, and the relative size and slenderness of the
damage can have a significant effect. This is likely to be the case for the dark edges of the
protruding structure as well. At the resolution of these sections, their relative size and
slenderness appear more crack-like to the model.
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Table 2. Results of the crack detection and its location for Method 2.

ID Classification Prediction (%) Pixel Location (m)

A8 crack 99.98 3656.87 209.85 −0.089 −1.085
B8 crack 99.99 3656.87 629.55 −0.089 −0.902
B9 crack 99.99 4144.46 629.55 0.125 −0.902

B10 crack 99.68 4632.04 629.55 0.339 −0.902
C8 crack 99.99 3656.87 1049.25 −0.089 −0.719
C9 crack 98.92 4144.46 1049.25 0.125 −0.719
D8 crack 99.99 3656.87 1468.95 −0.089 −0.536

D11 crack 99.99 5119.63 1468.95 0.552 −0.536
E8 crack 99.82 3656.87 1888.65 −0.089 −0.353
F10 crack 91.61 4632.04 2308.35 0.339 −0.170
G0 crack 92.85 5607.21 2308.35 0.766 −0.170
H5 crack 99.83 2194.13 3147.75 −0.731 0.197
H6 crack 99.22 2681.71 3147.75 −0.517 0.197
H7 crack 99.99 3169.29 3147.75 −0.303 0.197
H8 crack 99.99 3656.87 3147.75 −0.089 0.197
H9 crack 99.60 4144.46 3147.75 0.125 0.197
H10 crack 94.07 4632.04 3147.75 0.339 0.197
I6 crack 96.44 2681.71 3567.45 −0.517 0.380
J6 crack 99.99 2681.71 3987.15 −0.517 0.563

A9-1 uncertain 14.81 4022.46 105.10 0.071 −1.131
A10-1 uncertain 62.64 4510.29 105.10 0.285 −1.131
F7-4 uncertain 13.96 3291.29 2413.35 −0.249 −0.124

Figure 13. Final result of Method 2 for human inspectors.

3.4. Discussion

Two methods were used to detect cracks with minimal uncertainty. Method 1 has a
computationally intensive process because it contains the retraining process, but it improves
the accuracy. On the other hand, the number of misidentifications of Method 2 is relatively
larger than that of Method 1, but the computational time is negligibly small because Method
2 only reinspects uncertain images without the retraining process. Although both methods
were proposed to provide situation-dependent flexibility to users, the authors believe that
Method 1 will be more practical in the real world, which takes into account accuracy as
a more critical factor than the computational burden. For interested readers, another test
result using Method 1 for a larger structure is included in Appendix A.
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4. Conclusions

In this work, a framework was proposed to detect cracks that are defined as long and
slender damages with dark interiors with concrete texture in a large image using a deep
learning model and to determine the cracks’ locations on the structure. To validate the
proposed system, experiments were carried out using images taken of a real structure by a
UAV. The obtained images were stitched into one large image to overcome the limitation
of the resolution of the camera. Next, a CNN was used to detect any cracks in the image
that was divided into several sections to label cracks in several regions of the image. To
minimize uncertainties in crack detection, this work proposed two methods considering
retraining and reinspection processes. With the output of the crack detection process and
UAV sensors’ information, cracks’ locations in the world coordinate system were provided.
Finally, the proposed system created a cohesive map of the inspected area and outlined
regions of cracks and uncertainty. In other words, for large structures, the proposed
framework can provide an entire map with highlighted regions of cracks and uncertain
parts and their location information in the world coordinate system. This crack region map
helps inspectors improve their ability to inspect large structures. Additionally, in between
the two approaches proposed, Method 1 providing accurate outcomes will be a good
option for crack detection because postprocessing is generally utilized to detect cracks. As
a follow-up project, further research will be conducted in order to improve the current
framework by including the length and width quantifications and by considering various
types of cracks in the training data set and to provide the time history of the crack spread.
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Appendix A

A total of 6 images are obtained to cover a 5 m × 1.5 m region, and the stitched image
is depicted in Figure A1. The stitched image was broken up into 440 sections, divided
40 times along the x-axis and 11 times along the y-axis, with 224 by 224 pixel resolution.
The thresholds for identifying cracks and no cracks are set as γc = 0.94 and γnc = 0.18
for this experiment. Again, these thresholds can be defined by users to determine the
algorithm’s classification of the image. Figure A2 shows the initial results of crack detection
using Method 1, and Figure A3 contains the results of grouping the labeled sections into
crack and uncertain regions as well as the amalgamated location information from H9,
which is the origin of the reference coordinate.
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Figure A1. Stitched image.

Figure A2. Initial result of crack detection using Method 1.
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Figure A3. Final result of Method 1 for human inspectors.
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