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Abstract: It is shown that the hallmark quantum phenomenon of contextuality is present in classical
statistical mechanics (CSM). It is first shown that the occurrence of contextuality is equivalent to there
being observables that can differentiate between pure and mixed states. CSM is formulated in the
formalism of quantum mechanics (FQM), a formulation commonly known as the Koopman–von
Neumann formulation (KvN). In KvN, one can then show that such a differentiation between mixed
and pure states is possible. As contextuality is a probabilistic phenomenon and as it is exhibited in
both classical physics and ordinary quantum mechanics (OQM), it is concluded that the foundational
issues regarding quantum mechanics are really issues regarding the foundations of probability.

Keywords: Koopman–von Neumann formulation of classical mechanics; contextuality; double-slit
experiment; quantum interference; foundations of probability

1. Introduction

Feynman [1] pointed out that the interference phenomenon as observed in the double-
slit experiment (DSE) can be seen as a purely probabilistic phenomenon, as a violation of
the formula of total probability (FTP). As one is in the DSE still measuring probabilities
in the same way, i.e., as frequencies of occurrence, Feynman concluded that FQM consti-
tutes a probability theory on par with the classical one but only with different rules of
computation. By ’classical’ Feynman meant that the computational rules equivalent to
those in the measure theoretic formulation due to Kolmogorov (KPM) [2] where satisfied.
Hence Feynman referred to the result of DSE as FQM violating classical probability theory.
However, Ballentine [3] and Koopman [4], though not dismissing the probabilistic origin
of the interference phenomenon in the DSE, disagreed with Feynman regarding his claim
about it allegedly corresponding to a violation of FTP and classical probability theory. They
correctly pointed out that the violation was only seemingly as such, resulting only because
of a naive application of FTP. To briefly explain, we consider the DSE in a more generic
form referred to as double-slit-type experiments (DSTE). In a DSTE, two observables A
and B are considered. For simplicity, A is assumed dichotomous with possible outcomes
being ai, i = 1, 2. These observables are measured in three different contexts of measure-
ment C1,2, C1 and C2, where a context of measurement of an observable is a specification of
the physical conditions under which this observable is measured. By construction, each
context Ci, i = 1, 2 is such that the probability distribution over A, as measured under the
circumstances that defines Ci, satisfies

P(A = aj|Ci) = δi,j. (1)

Based on the measured probability distributions one then calculates the following func-
tion/distribution over b,

P(B = b|C1,2)− P(B = b|C1)P(A = a1|C1,2) + P(B = b|C2)P(A = a2|C1,2), (2)
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where the analogous notation as in (1) has been applied for the different probability
distributions. Now, DSE corresponds to the particular DSTE for which A is the observable
of the slit passage and B the observable of where on the screen the particle hits, with the
respective contexts being:

C1,2 Both slits are open.
C1 Slit 1 is open while slit 2 is closed.
C2 Slit 2 is open while slit 1 is closed.

In DSE the actual result is a non-zero (2), which is what constitutes the interference phe-
nomenon. If the context is ignored in the notation, this looks like a violation of FTP.
However, as Koopman and Ballentine correctly pointed out, there is in reality no violation
of FTP, Feynman had only failed to take the contexts into account. Indeed, as Feynman
had shown [1], classical mechanics cannot account for the DSE. So DSE is ’unclassical’ in
that sense. However, in the purely probabilistic sense there is nothing unclassical about
it. In this article it will be shown that this typical quantum phenomenon is present in
CSM as well. The above argument demonstrates that there is not inherent contradiction in
this result.

Note that Koopman and Ballentine only disagreed with Feynman regarding his use
of the term ’classical’. Their argument did not dismiss that FQM provided computational
rules for calculating the term (2). Hence their views can be combined, which will be done
in this article. FQM will be seen as a framework for computing probabilities in which the
context dependence of observables is explicitly taken into account. This view of FQM will
be made manifest by considering in the framework of contextual probability, as developed by
Khrennikov in [5]. In it, violations of the type (2) are viewed as measures of contextuality.
For a certain class of such violation FQM serves as a particular framework into which they
can be represented. More specifically, this is done by considering the generic DSTE together
with the generalized formula of total probability (generalized FTP), defined as

P(B = b|C1,2) = P(B = b|C1)P(A = a1|C1,2) + P(B = b|C2)P(A = a2|C1,2)

+2λb

√
P(B = b|C1)P(A = a1|C1,2)P(B = b|C2)P(A = a2|C1,2)

, (3)

where the interference coefficient λb serves as a measure of contextuality. A trivial interference
coefficient means no contextuality is present in the particular DSTE. On the other hand, if

|λb| ≤ 1, (4)

then we have contextuality. In [5], it shown that if a DSTE demonstrates such interference
coefficients (4), then it can be represented in FQM. Indeed, in this case, the observables’ A
and B are represented as mutually non-commuting self-adjoint operators. This will also be
demonstrated here in Section 2. The purpose of doing so is to show that the occurrence of
contextuality is, in FQM, equivalent to being able to physically tell the difference between
pure and mixed states. The main result of Section 2 is that the way in which probability
distributions transform under time evolution can be used to distinguish between mixed
and pure states. It is in this sense that contextuality will be shown to occur in CSM.

In Section 3, KvN [6–8] will be presented and be shown to correspond to CSM. This will
be in the sense of all solutions of the Schrödinger equation of KvN via Born’s rule also being
solutions to the classical Liouville equation. As such, we can apply the statistical mechanical
notion of an equilibrium state as states that are stationary in time and non-equilibrium
as states not being stationary. In particular, the states of equilibrium are identified as
corresponding to eigenvectors ψn of the Liovillian T̂, i.e., the KvN generator of time, as the
associated probability distributions to these transform trivially under time evolution. The
associated probability distributions of non-trivial superpositions of such eigenstates,

∑
n

cnψn, (5)
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are non-stationary. Hence, they can be identified as non-equilibrium states. By applying
the principle of maximum Gibbs entropy, we will in fact be able to the main equilibrium
states—the microcanonical and canonical ensembles—as corresponding to such eigenstates.
Hence, it will be shown that KvN, when applying the principles of statistical mechanics,
corresponds to CSM. As non-equilibirum states (4) transform non-trivially under time
evolution while a corresponding mixed state

∑
n
|cn|2|ψn〉〈ψn| (6)

does not, we are able to tell the difference between pure and mixed states. Hence, contextu-
ality will be shown to be present in CSM, and is hence not only a phenomenon confined to
OQM, where ’OQM’ refers to what is obtained through some variant of canonical quantiza-
tion. In Section 4, it is shown what impacts on the foundation of quantum mechanics this
has. In short, as contextuality is not restricted solely to OQM and as it is quantifiable as a
purely probabilistic phenomenon, it is concluded that the issues regarding the foundations
of quantum mechanics are really about the foundations of probability.

2. Time Evolution as an Indicator of Contextuality

Let A and B be two quantum observables on some Hilbert spaceH. For the sake of the
argument, it suffices to assume that A is non-degenerate with an orthonormal eigenbasis
{φa}a∈A, where the eigenvectors are labeled by their respective eigenvalue a. We impose
no such restriction on B. We let ψb denote an arbitrary (generalized) eigenvector of B with
associated eigenvalue b. By Born’s rule, the probability distribution over B, given initial
state ψ, is

P(B = b|ψ) := |〈ψb, ψ〉|2. (7)

Analogously, for A,
P(A = a|ψ) := |〈φa, ψ〉|2. (8)

By utilizing the completeness relation in terms of {φa}a∈A, we obtain

P(B = b|ψ) =
∣∣∣∣∣∑a∈A〈ψb, φa〉〈φa, ψ〉

∣∣∣∣∣
2

(9)

= ∑
a,a′∈A

〈ψ, φa′〉〈φa′ , ψb〉〈ψb, φa〉〈φa, ψ〉 (10)

= ∑
a∈A

P(B = b|φa)P(A = a|ψ) (11)

+ ∑
a 6=a′∈A

〈ψ, φa′〉〈φa′ , ψb〉〈ψb, φa〉〈φa, ψ〉 (12)

= ∑
a∈A

P(B = b|φa)P(B = b|ψ) (13)

+ 2 ∑
a<a′∈A

Re{〈ψ, φa′〉〈φa′ , ψb〉〈ψb, φa〉〈φa, ψ〉}. (14)

Now, there exists a unique number θ ∈ [0, 2π) such that

〈ψ, φa′〉〈φa′ , ψb〉〈ψb, φa〉〈φa, ψ〉

=
√
P(A = a′|ψ)P(B = b|φa′)P(B = a′|φaP(A = a|ψ)eiθ .

(15)

From which it follows that

Re{〈ψ, φb′〉〈φb′ , ψa〉〈ψa, φb〉〈φb, ψ〉}

=
√
P(A = a′|ψ)P(B = b|φa′)P(B = a′|φaP(A = a|ψ) cos(θb,a,a′),

(16)
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with θ being unique if we restrict it to values in [0, π]. Hence, we end up with

P(B = b|ψ) = ∑
a∈A

P(B = b|φa)P(A = a|ψ)

+ ∑
a<a′

√
P(A = a′|ψ)P(B = b|φa′)P(B = a′|φaP(A = a|ψ) cos(θb,a,a′)

. (17)

Hence, it has been shown that FQM indeed satisfies the generalized FTP (3).
Before moving on to the main point of this section, it is worth pointing out that we

have implicitly interpreted quantum states as corresponding to contexts of measurement
here. This is already evident from the choice of notation in (7) and (8). Note also that
the meaning of a conditional probability—as the probability of outcome A = a given the
conditions C —does by itself not necessitate that it must satisfy

P(A = a|C) = P(A = a and C)
P(C) , (18)

as it is defined in KPM, i.e., that C can be attributed to some random variable on the same
measure space as A. Indeed, Kolmogorov himself [2] pointed out that probability measures

P(·|C) (19)

are based on the complex of all experimental conditions and that not all observables are
representable as random variables on the same measure space. Hence, neither the notation
in (7) and (8) nor the interpretation of quantum states as contexts cause any contradictions.

Now, assume that we have performed some DSTE from which we obtained the
probability distributions

P(B = b|C1,2), P(B = b|C1), P(B = b|C2) and P(A = a|C1,2) (20)

We wish to represent this DSTE in FQM. This means that A and B are to correspond to
self-adjoint operators, which we, for simplicity, assume to be non-degenerate. As (1) holds
by construction of the experiment it also means that C1 and C2 are to be represented as
eigenvectors φa1 and φa2 of A, respectively. In addition, we must have

P(B = b|Ci) = |〈ψb, φai 〉|
2. (21)

Furthermore, on the basis of P(B = b|C1,2) alone, C1,2 may be represented as

ψ = ∑
a∈A

eiθa
√
P(A = a|C1,2)φa, (22)

up to some choices of the θa in [0, 2π), or as the mixed state

ρ = ∑
a∈A

P(A = a|C1,2)|φa〉〈φa|. (23)

However, as {
P(B = b|ψ) = |〈ψb, ψ〉|2

P(B = b|ρ) = 〈ψb, ρψb〉
, (24)

we obtain via a straightforward calculation that

P(B = b|ψ)− P(B = b|ρ)

= cos
(
θa1 − θa2 + θb,a1,a2

)√
P(B = b|C1)P(A = a1|C1,2)P(B = b|C2)P(A = a|C1,2),

(25)
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where θb,a1,a2 is the number such that

〈ψb, φa1〉〈φa1 , ψ〉〈ψb, φa2〉〈φa2 , ψ〉

= eiθb,a1,a2

√
P(B = b|C1)P(A = a1|C1,2)P(B = b|C2)P(A = a2|C1,2).

(26)

As
Pρ(B = b|ρ) = ∑

i=1,2
P(B = b|Ci)P(A = a2|C1,2), (27)

by comparing (25) with (3), we see that contextuality means that we are able to differentiate
between pure and mixed states.

Recall that in an identification of C1,2 as ψ in (22), there is the ambiguity of the complex
phases θb. This ambiguity can be thought of as the identification being only up to a unitary
transformation W of the form

Wψ = ∑
a∈A

ei(θa+ωa)
√
P(A = a|C1,2)φa. (28)

As ρ transforms trivially under all such transformations, we obtain from (25) that

P(B = b|Wψ)− P(B = b|ρ)

= cos
(
θ′a1
− θ′a2

+ θb,a1,a2

)√
P(B = b|C1)P(A = a1|C1,2)P(B = b|C2)P(A = a|C1,2),

(29)

where we have defined
θ′ai

:= θai + ωai . (30)

That is, this difference between how pure and mixed transform under such unitary trans-
formations is equivalent to contextuality. The relevance of this here is that in the case where
A corresponds to the generator of time evolution, then the time evolution eiAt is such a
transformation W. The equilibrium states of CSM will be shown to in KVN correspond
to eigenvectors of the generator of time evolution T̂, and as there certainly exist states
in CSM that transform non-trivially under time evolution, it will have been shown that
contextuality is not just an OQM phenomenon but occurs in classical physics as well.

Note, it was not discussed above whether there exists mixed states diagonal with
respect to some other basis than {|a〉} such that their respective probability distributions
with respect to B transform identically under time evolution. In Appendix A it is shown
that there are no such states.

As a side note, the ambiguity of the complex phases in representing contexts as
quantum states. Has crucial foundational importance when it comes to FQM and should be
seen as a feature rather as something redundant. For instance, in a previous article [9], the
author demonstrated that Born’s rule can be proved rather than postulated by enforcing the
probability to be such that it is invariant under certain such unitary transformations W. Its
foundational importance as it relates to Born’s rule has also for instance been demonstrated
elsewhere, e.g., [10].

3. The Koopman-von Neumann Representation of Classical Mechanics

Let N ∈ N be the number of considered particles. We are considering a phase space
P ' R6N together with a set of fixed global canonical coordinates (p, q). Typically, these
canonical coordinates are chosen such that q corresponds to the observable of the position in
Cartesian coordinates and p, corresponding to its the conjugate momentum [11] associated
with q, defined as

p :=
∂L
∂q̇

, (31)
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where L is the given Lagrangian function. We note that p defined in this way does not
always correspond to linear momentum, e.g., the charged particle moving in a magnetic
field [12]. However, for all Hamiltonian functions of the typical form

H(p, q) =
p2

2m
+ V(q) (32)

p does correspond to linear momentum. Furthermore, solely in terms of the formalism of
Hamiltonian mechanics, there is nothing special about this particular choice of canonical
coordinates. This choice of a coordinate q and its conjugate momentum does, however,
play a distinguished role in going from the Lagrangian picture of classical mechanics to the
Hamiltonian one via a Legendre transformation [11]. Note that it is not even a necessity
to interpret q as a coordinate of position. We will, however, stick to this conventional
interpretation of p and q here and consider a Hamiltonian function H which in terms of
them has the typical form (31).

To be explicit with the notation, we have defined

(p, q) := (p1
1, p1

2, p1
3, . . . , pN

1 , qN
2 , pN

3 , q1
1, q1

2, q1
3, . . . , qN

1 , qN
2 , qN

3 ). (33)

As we are assuming these to be global coordinates, we can without loss of generality
assume that each pn

i corresponds to the canonical projection π3(n−1)+1, where

πi(x1, . . . , xK) := xk. (34)

Similarly, each qn
i is defined as the projection π3(N+n−1)+1. The time evolution of this

Hamiltonian dynamical structure is given by a Hamiltonian flow

U : t ∈ R 7→ Ut ∈ Symp(P), (35)

satisfying (
−∂qH, ∂q H,

)
=

d
dτ

∣∣∣∣
τ=0

Uτ . (36)

Now, KvN corresponds to the unitary representation on L2(P) corresponding to
the action

Ûtψ = ψ ◦U−t. (37)

for every ψ. This representation is constructed by first defining it according to (37) on the
space of Schwartz functions ψ on P . This action (37) acts bijectively on the Schwartz space
as all U−t are smooth diffeomorphisms. As the Schwartz space is dense in L2(P) we may
uniquely linearly extend this action (37) to all of L2(P). Now, by Liouville’s theorem [13],
we have

dxtdyt = dxdy, (38)

where
(xt, yt) := U−t(x, y). (39)

Hence, ∫ (
Ûtψ

)
(x, y)

(
Ûtφ

)
(x, y)dxdy =

∫
ψ(U−t(x, y))φ(U−t(x, y))dxdy (40)

=
∫

ψ(xt, yt)φ(xt, yt)dxtdyt (41)

=
∫

ψ(x, y)φ(x, y)dxdy. (42)

Thus, each Ût preserves the inner product. Û hence defines a unitary representation of the
Hamiltonian flow U. Given this representation, we can make some natural identifications.



Entropy 2021, 23, 968 7 of 13

Consider the multiplication operators{(
p̂n

i ψ
)
(x, y) = xn

i ψ(x, y)(
q̂n

i ψ
)
(x, y) = yn

i ψ(x, y)
, (43)

where we, similarly as in (33), have applied the notation

(x, y) :=
(

x1
1, x1

2, x1
3, . . . , xN

1 , xN
2 , xN

3 , y1
1, y1

2, y1
3, . . . , yN

1 , yN
2 , yN

3

)
. (44)

Since we have assumed that U acts on points (p, q) having the interpretation of kinetic
momentum p and Cartesian position q, we naturally interpret the operator p̂n

i as corre-
sponding to the observable of the ith component of the kinetic momentum of the nth
particle and q̂n

i as corresponding to the observable of the ith component of the position of
the nth particle. Based on this, the operator

Ê := H( p̂, q̂) (45)

is interpreted as the observable of energy. We have here, for the sake of simplicity, dropped
the sub-/supscripts, as will be done generally from now on unless their inclusion is
a necessity.

As Û defines a unitary representation of the Lie group R through U, we may apply
Stone’s theorem to obtain a generator of time evolution T̂. From (37), we see that T̂ acts as(

T̂ψ
)
(x, y) := i

d
dτ

∣∣∣∣
τ=0

(
Ûτψ

)
(x, y) (46)

= i ∂pH
∣∣
(x,y)∂yψ(x, y)− i ∂q H

∣∣
(x,y)∂xψ(x, y), (47)

on all ψ ∈ L2(P) in its domain D(T). Notice that we may also write T̂ more concisely as

T̂ψ = i{H, ψ}, (48)

with {·, ·} denoting the Poisson bracket on P , which in the coordinates (p, q), read

{ f , g} = ∂p f · ∂qg− ∂q f · ∂pg. (49)

The corresponding Schrödinger equation is, hence,

i∂tψt = T̂ψt. (50)

In (48), T̂ acts as a derivative. Hence, as p̂ and q̂ are multiplication operators, it follows that

[T̂, p̂]ψ = i{H, pψ} − i p̂{H, ψ} (51)

= i{H, p}( p̂, q̂)ψ + i p̂{H, ψ} − i p̂{H, ψ} (52)

= i{H, p}( p̂, q̂)ψ (53)

= −i∂qV( p̂, q̂)ψ. (54)

That is,
[T̂, p̂] = −i∂qV( p̂, q̂), (55)

and similarly that

[T̂, q̂] = −i
p̂
m

. (56)

Indeed, these are merely the equations of motion in operator form. Hence, p̂ and q̂ satisfy
the expected dynamical relations in line with their interpretation.
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Next, we move on to the relation between the KvN Schrödinger equation and the
Liouville equation. By Born’s rule,

ρt := |ψt|2 (57)

is a probability distribution over phase space. Assuming that ψt is a solution to (50), it
follows that

∂tρt = ψt∂tψt + ψt∂tψt (58)

= iψti∂tψt − iψti∂tψt (59)

= iψtT̂ψt − iψtT̂ψt (60)

= iψti{H, ψt} − iψti{H, ψt} (61)

= ψt{H, ψt}+ ψt{H, ψt} (62)

= {H, ρt}. (63)

This means that ρt solves the Liouville equation. We, furthermore, note that if ψλ is an
eigenvector of T̂, i.e.,

T̂ψλ = λψλ, (64)

then the probability distribution
ρλ := |ψλ|2 (65)

satisfies

{H, ρλ} = ψλ{H, ψλ}+ ψλ{H, ψλ} (66)

= iψλT̂ψλ − iψtT̂ψλ (67)

= iψλλψλ − iψtλψλ (68)

= 0. (69)

We hence see that eigenvectors of T̂ correspond to statistical equilibria, while non-trivial
superpositions of them correspond to statistical non-equilibria as their induced probability
distribution, via Born’s rule, transforms non-trivially under T̂.

To recap, abstractly speaking, we have unitarily represented the Hamiltonian flow
U as Û such that there exist (non-trivial) operators p̂ and q̂ satisfying (55) and (56), with
T̂ being the associated generator of time evolution of Û. Note that OQM is also such a
representation of U. As such, KvN and OQM are, at this level, equivalent. This equivalence
is, however, broken when considering a specific representation of U. This representation
theoretic view of the difference/similarity between KvN and OQM will, however, not
be formalized further here. However, as KvN itself contains subrepresentations of Û in
which p̂ and q̂ still act invariantly and non-trivially, we will apply the essence of this
representation theoretic view to identify these subrepresentations as ’proper’ quantum
theories.

For instance, for every E > 0, we can construct such a subrepresentation on the Hilbert
space L2(P , νE), where

dνE(x, y) = δ(E− H(x, y))dxdy, (70)

which corresponds to a subspace of L2(P) in the sense of the direct integral [14], i.e.,

L2(P) '
∫ ⊕
[0,∞)

L2(P , νE)dE. (71)

As the measure νE is invariant under U, Û is unitarily represented on each L2(P , νE) in
the same fashion as on L2(P). Of course, these representations L2(P , νE) have the natural
interpretation of corresponding to subrepresentations of KvN with fixed total energy E.
The measure νE corresponds to the microcanonical measure as known from CSM.
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Note that νE has not yet been identified as a quantum state and so cannot at this point
be interpreted as a microcanonical ensemble for CSM. This identification will, however,
come next. To do this, we first need to find eigenvectors to T̂ in a ’generic enough’ fashion.
We take this to mean that U can be assumed to be periodic with a period τ and that there
exists a smooth function Ω on phase space such that

Ω ◦U−t = Ω + t. (72)

Then
i{H, Ω} = it. (73)

Assuming, furthermore, that all conserved quantities are of the form g ◦ H, it then follows
that a generic eigenvector of T̂ is of the form

ψn, f = ei 2π
τ nΩ f ◦ H, (74)

where n ∈ Z. Now, in L2(P), the only restriction of f is that it must be such that ψn is in
L2(P). Note, however, that f in the subrepresentations L2(P , νE) simply corresponds to
a constant, a normalization factor, and hence this degeneracy is removed. However, the
degeneracy it represents regains physical meaning in the formalism of direct integrals. The
degeneracy induced by the ambiguity of the choice of f can be considered as a section in
the sense of direct integrals. That is, ψn, f is identified as the element in

∫ ⊕
[0,∞)

L2(P , νE)dE (75)

defined as
ψn, f : E 7→ ψn, f (E) := ei 2π

τ nΩ f (E) ∈ L2(P , νE). (76)

Now, the amplitude of ψn, f as a section is given as

〈ψn, f (E), ψn, f (E)〉E. (77)

Therefore, Born’s rule tells us that given the equilibrium state ψn, f , the probability distribu-
tion over the energy E is

P(E|ψn, f ) = 〈ψn, f (E), ψn, f (E)〉E = | f (E)|2νE(P). (78)

We can simply apply the principles of statistical mechanics to find the desired statistical
equilibrium state here. For example, by maximizing the Gibbs entropy given a fixed mean
energy, thus concluding that (78) must correspond to the canonical measure, i.e.,

| f (E)|2νE(P) = βe−βE. (79)

We can also maximize the Gibbs entropy given a fixed energy E. As

P(p, q|ψn, f (E)) =
δ(E− H(x, y))

νE(P)
(80)

is the only statistical equilibrium given a fixed energy, it is trivially the distribution that
maximizes the Gibbs entropy. As such, we have applied the tools of statistical mechanics
to provide the eigenstates of T̂ physical interpretation as statistical equilibria. Now, as has
already been pointed out, the statistical non-equilibria correspond to non-trivial superposi-
tions of these equilibria. Hence, in accordance with Section 2, we have demonstrated that
contextuality exists in CSM as well.

Note, if T̂ commuted with both p̂ and q̂, then indeed no contextuality would be
demonstrable by measuring their associated probability distributions or average as these
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would then be invariant under time evolution for all states. However, because of (55)
and (56), this is not so for the relevant cases.

4. Conclusions

In Section 2, it was demonstrated that in FQM, the occurrence of contextuality is
equivalent to being able to differentiate between pure and mixed states. In turn, it was
shown that mixed states that are diagonal in the eigenbasis of the considered generator
of time evolution transform trivially under time evolution while the corresponding pure
states do not. Hence, one can, through time evolution, demonstrate contextuality.

In Section 3, KvN was developed as a unitary representation of the Hamiltonian flow
U on L2(P) through the action (37). Similarly to OQM, it was noted that in KvN U is rep-
resented such that there exist self-adjoint operators p̂ and q̂ satisfying the operator version
of Hamilton’s equations of motion (55) and (56), which can be seen as a necessity for inter-
preting p̂ and q̂ as, respectively, corresponding to quantum observables of momentum and
position. As such, KvN and OQM can be seen as equivalent at this pre-representation level.
This representation theoretic view was not formalized further. However, the heuristics of it
were used to motivate us to consider subrepresentations of KvN for which this still held. In
particular, the subrepresentations considered were those corresponding to constant energy,
these were subrepresentations in the sense of the direct integral (71). It was also shown that
solutions of the KvN Schrödinger equation via Born’s rule are also solutions of the Liouville
equation. In particular, the eigenstates of the generator of time evolution of KvN were
shown to, in the sense of statistical mechanics, correspond to statistical equilibria, while
statistical non-equilibria correspond to non-trivial superpositions of them. The principle
maximum entropy was applied to show that the equilibrium states in the subrepresenta-
tions of constant energy correspond to the microcanonical ensemble. It was also shown
that maximizing the entropy given a fixed average energy gives the equilibrium states
in the direct integral (71) that correspond to the canonical ensemble. It was shown that
the eigenstates of the KvN generator of time evolution permit a physical interpretation as
equilibria in the sense of CSM, and hence the generator of time evolution itself corresponds
to an observable. As the difference between equilibrium and non-equilibrium is physically
observable, it followed that when the principles of statistical mechanics are applied to KvN,
KvN exhibits contextuality.

Now, a possible counterargument for this claim about CSM in the form of KvN
exhibiting contextuality is that CSM does not need to be done in FQM, i.e., in the form of
KvN. That is, however, besides the point. As explained in the introduction and in Section 2,
FQM is merely a computational framework for calculating probabilities of outcomes. In
FQM, contextuality takes the form of being able to distinguish between pure and mixed
states. Contextuality is, however, still a more general probabilistic phenomena which is
quantifiable via generalized FTP. Therefore, it does not matter which formalism is used as
long as one is dealing with probability.

It is worth pointing out that it has not been claimed that KvN can replace OQM.
KvN cannot, for instance, account for the DSE [7]. Hence, no such replacement can be
done. However, no such replacement is needed either. What has been shown is that
contextuality, which is often considered as a hallmark of the OQM phenomenon, exists
in classical physics as well. As contextuality really is a probabilistic phenomenon, it is, in
this article, concluded that the issues regarding the foundations of quantum mechanics are
really about the foundations of probability. It is here worth pointing out that Kolmogorov
himself pointed out that probabilities are inherently contextual [2].

One might argue against this conclusion of this article by claiming that all classical
physics really is reducible to OQM, and that OQM is the ’more fundamental theory’. Based
on this, one would then conclude that any contextuality demonstrated in CSM would in
reality only be a result of, say, the contextuality induced by p̂ and q̂ satisfying the canonical
commutation relations. However, classical physics does not so simply reduce to OQM
through, say, some h̄→ 0 limit [15]. Therefore, if one still insists on this reductionism, one
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would have to consider another form of reduction of a different mathematical form but still
carrying the essence of the physical interpretation of h̄→ 0, the existence of which it is far
from obvious and quite possibly impossible. Therefore one cannot so simply disregard the
contextuality in CSM demonstrated here as not a ’real’ quantum phenomenon. Moreover,
this reductionistic view of classical mechanics as being reducible to OQM is common. It is
often even applied on the larger landscape of physics, and the natural sciences in general. It
is for instance claimed that thermodynamics is just statistical mechanics and that chemistry
is just physics. However, as shown in [15,16] , and also pointed out by Dyson [17], this type
of reductionistic relation does not hold in general. In [15,16] concrete demonstrations of
the failure of reductionism are presented. In these refererences and in [18] it is furthermore
discussed what this non-reductionism implies for the hierarchical ordering of theories in
terms of a contextified view of emergence versus reduction and ontic versus epistemic.

Lastly we note that Bell-violations may be seen as being induced by contextuality.
For in the proof of Bell’s theorem [19] the validity of FTP is crucial, something which is
even more obvious when considering it in its Wigner form [20]. As such, Bell violations
are also ways of demonstrating contextuality [21]. Contextuality is really the hallmark
phenomenon of quantum mechanics and, contrary to popular belief, it is present in classical
physics as well.
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Appendix A

It is here shown that in a pure state

ψ := ∑
a

√
ρa,aeiθa |a〉 (A1)

there exists no associated mixed state

ρ := ∑
a,a′

ρa,a′ |a〉〈a′| (A2)

whose respective probability distribution with respect to B transforms identically under
time evolution.
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As ρ is a state, its trace is equal to one and it is self-adjoint, i.e.,

∑
a

ρa,a = 1, (A3)

and for all a, a′,
ρ∗a,a′ = ρa′ ,a. (A4)

As it, in addition, is mixed,
Tr{ρ2} 6= 1. (A5)

As

Tr{ρ2} = ∑
a,a′
|ρa,a′ |2 (A6)

=

(
∑
a

ρa,a

)2

︸ ︷︷ ︸
=1

−2 ∑
a<a′

(
ρa,aρa′a′ − |ρa,a′ |2

)
(A7)

= 1− 2 ∑
a<a′

(
ρa,aρa′a′ − |ρa,a′ |2

)
, (A8)

ρ is mixed if and only if

∑
a<a′

(
ρa,aρa′a′ − |ρa,a′ |2

)
6= 0. (A9)

Under a time evolution of duration t, ρ transforms to

ρt = ∑
a,a′

ρa,a′ e
i(a−a′)t|a〉〈a′| (A10)

and a corresponding pure state ψ to

ψt = ∑
a

√
ρa,aei(θa+at)|a〉. (A11)

A straightforward calculation shows that

P(b|ρt)− P(b|ψt)

= 2 ∑
a<a′

Re
{(

ρa,a′ −
√

ρa,aρa′ ,a′ e
i(θa−θa′ )

)
ei(a−a′)t〈b|a〉〈a′|b〉

} (A12)

As
P(b|ρt)− P(b|ψt) = 0 (A13)

if and only if
∑
b

f (b)(P(b|ρt)− P(b|ψt)) = 0 (A14)

for all functions f , it follows that this can only hold if

Re
{(

ρa,a′ −
√

ρa,aρa′ ,a′ e
i(θa−θa′ )

)
ei(a−a′)t〈b|a〉〈a′|b〉

}
= 0. (A15)

As this must be true for all t, we can pick a t such that

ei(a−a′)t〈b|a〉〈a′|b〉 (A16)
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is real valued. Hence, (A15) implies that

Re
{

ρa,a′ −
√

ρa,aρa′ ,a′ e
i(θa−θa′ )

}
= 0. (A17)

In turn, this implies that
|ρa,a′ |2 = ρa,aρa′ ,a′ , (A18)

which contradicts (A9). Hence, ρ and ψ cannot transform similarly under time evolution.
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