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Abstract: A model of gene regulatory networks with generalized proportional Caputo fractional
derivatives is set up, and stability properties are studied. Initially, some properties of absolute value
Lyapunov functions and quadratic Lyapunov functions are discussed, and also, their application to
fractional order systems and the advantage of quadratic functions are pointed out. The equilibrium
of the generalized proportional Caputo fractional model and its generalized exponential stability are
defined, and sufficient conditions for the generalized exponential stability and asymptotic stability
of the equilibrium are obtained. As a special case, the stability of the equilibrium of the Caputo
fractional model is discussed. Several examples are provided to illustrate our theoretical results and
the influence of the type of fractional derivative on the stability behavior of the equilibrium.

Keywords: model of gene regulatory networks; generalized proportional Caputo fractional derivatives;
equilibrium; generalized exponential stability; Lyapunov functions

1. Introduction

Gene expression is the process where the hereditary code of a gene is used for syn-
thesizing proteins and producing the structures of the cell. Genes that code for amino
acid sequences are named ‘structural genes’. Gene expression processes include two main
stages known as ‘Transcription and translations’. Transcription is the creating of messenger
RNA (mRNA) by the enzyme RNA polymerase and the processing of the resulting mRNA
molecule. A gene regulatory network consists of a number of genes interacting by proteins.
Mathematical models of gene regulatory networks are described and studied in several
papers (see, for example, [1,2], for fractional order [3–6], and with delays [7,8]).

Recently, fractional calculus, fractional derivatives, and fractional integrals of various
types have been extensively studied and applied in mathematical modeling. The memory
property of fractional derivatives makes them well suited in modeling and describing
the complex nature of real-world problems, in comparison to local derivatives (see, for
example [9–11]).

In this paper, a gene regulated model with the generalized proportional Caputo
fractional derivative is set up, and the equilibrium is defined. The generalized exponential
stability is introduced and studied via the application of Lyapunov functions and their
generalized Caputo proportional fractional derivatives. Generalized proportional Caputo
fractional derivatives were recently introduced (see [12,13]); this type of derivative is a
generalization of the Caputo fractional derivative, and their application provides wider
possibilities for modeling adequately the complexity of real-world problems. The stability
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of fractional order systems with a proportional Caputo fractional derivatives is quite recent
(see, for example, [14,15]). In this paper, some properties of absolute values of Lyapunov
functions and their fractional derivatives are discussed, and several examples are provided
to illustrate the properties. The advantages of the application of the quadratic Lyapunov
functions are considered, and sufficient conditions for generalized exponential stability and
asymptotic stability are obtained. Several examples are provided to illustrate the theoretical
results and the dependence of the fractional derivative on the behavior of the solutions.

2. Notes on Fractional Calculus

We recall the definitions needed in this paper, namely fractional integrals and deriva-
tives (cf. [13]):

The generalized proportional fractional integral of a function u : [a, ∞)→ R is defined
by (as long as all integrals are well defined)

(aIq,ρu)(t) =
1

ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)q−1u(s) ds, t ∈ (a, b], q ≥ 0, ρ ∈ (0, 1].

The generalized Caputo proportional fractional derivative of a function u : [a, ∞)→ R
is defined by (as long as all integrals are well defined)

(C
aDq,ρu)(t) = (aI1−q,ρ(D1,ρu))(t)

=
1

ρ1−qΓ(1− q)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−q(Dρu)(s) ds, t ∈ (a, b], q ∈ (0, 1), ρ ∈ (0, 1],

where (Dρu)(t) = (1− ρ)u(t) + ρu′(t).

Remark 1. Note that the generalized proportional Caputo fractional derivative is defined for
u ∈ C([a, b],Rn

) via component-wise.

Remark 2. If ρ = 1, then the generalized Caputo proportional fractional derivative reduces to the
classical Caputo fractional derivative of order q ∈ (0, 1) :

(C
aDq,ρu)(t) = C

a Dqu(t) =
1

Γ(1− q)

∫ t

a
(t− s)−qu′(s) ds.

Definition 1. We say u ∈ Cq,ρ([t0, T],Rn) if u(·) is differentiable and the generalized proportional
Caputo fractional derivative (C

aDq,ρu)(t) exists for all t ∈ (t0, T].

Lemma 1. Let q, ρ ∈ (0, 1). Then, the generalized proportional fractional derivative of a constant
K ∈ R is

(C
aDq,ρK)(t) =

(1− ρ)K
ρ1−qΓ(1− q)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−q ds

=
K

ρ1−qΓ(1− q)
1

(ρ− 1)q

[
Γ
(

1 + q,
ρ− 1

ρ
(t− a)

)
− Γ(1 + q)

]
, for t > a.

(1)

Proposition 1. ([13], Remark 3.2) The relation

(C
aDq,ρe

ρ−1
ρ (.)

)(t) = 0, for t > a (2)

holds.

We will use the following property of the Mittag–Leffler function with one parameter,
defined by Eq(z) = ∑∞

k=0
zk

Γ(1+kq) with Γ(ξ) the gamma function.
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Proposition 2. ([16], Theorem 1.2) For every q ∈ (0, 1), the function et/q− Eq(tq) is completely
monotonic.

Corollary 1. [16] If q ∈ (0, 1), then Eq(tq) < et/q, t ≥ 0.

3. Some Comments on Properties of the Fractional Derivatives of Lyapunov Functions

One of the most applicable Lyapunov functions is the absolute values Lyapunov
function. In connection with this, we will give and discuss some results about their
fractional derivatives.

In [17], the following result is proved:

Proposition 3. ([17], Lemma 12) If u ∈ C1([0,+∞),R) is a continuously differentiable function,
and the following relation holds almost everywhere:

C
t0

Dq|u(t)| = (sign u(t)) C
t0

Dqu(t), 0 < q < 1.

This result is applied by many authors to study the stability of various types of Caputo
fractional differential equations and models. For example, this equality is applied in the
proof of global Mittag–Leffler stability for fractional-order gene regulatory networks in [3],
and to study global uniform asymptotical stability for fractional-order gene regulatory net-
works with delays in [4,18]. Unfortunately, this equality is not satisfied for all continuously
differentiable functions, and we will demonstrate this with an example.

Example 1. Let u(t) = 0.5− t, t ≥ 0.
For any t ∈ (0, 0.5) we have u(t) > 0, u′(t) = −1, sign(0.5− t) = 1, |u(t)| = 0.5− t,

|u(t)|′ = −1, and

C
0 Dq|u(t)| = − 1

Γ(1− 0.5)

∫ t

0
(t− s)−0.5 ds = − 2t0.5

Γ(0.5)

=
1

Γ(0.5)

∫ t

0
(t− s)−0.5(0.5− s)′ ds = C

0 Dqu(t) = (sign u(t)) C
0Dqu(t).

(3)

Let t > 0.5. Then u(t) < 0, sign(0.5 − t) = −1, u′(t) = −1, |u(t)| = −0.5 + t,
|u(t)|′ = 1, and

C
0 Dq|u(t)| = 1

Γ(0.5)

∫ t

0
(t− s)−0.5(|u(s)|)′ ds

=
1

Γ(0.5)

∫ 0.5

0
(t− s)−0.5(|u(s)|)′ ds +

1
Γ(0.5)

∫ t

0.5
(t− s)−0.5(|u(s)|)′ ds

= − 1
Γ(0.5)

∫ 0.5

0
(t− s)−0.5ds +

1
Γ(0.5)

∫ t

0.5
(t− s)−0.5ds

=
1

Γ(0.5)
(4(t− 0.5)0.5 − 2t0.5)

6= 2t0.5

Γ(0.5)
=

1
Γ(0.5)

∫ t

0
(t− s)−0.5 ds

= − 1
Γ(0.5)

∫ t

0
(t− s)−0.5(0.5− s)′ ds = − 1

Γ(0.5)

∫ t

0
(t− s)−0.5(u(s))′ ds

= (sign u(t)) C
0 Dqu(t).

(4)

Therefore, for the Caputo fractional derivative, the equality

C
0 Dq|u(t)| = (sign u(t)) C

0 Dqu(t)

is not true for all t ∈ [t0, T] and any function u ∈ C1([0, ∞),R).
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Note that in the proof of ([5], Theorem 1), the inequality of the type u(0)u(t) ≥ 0
is applied to prove the equality C

0 Dq|u(t)| = (sign u(t)) C
0 Dqu(t). Unfortunately, this

inequality is not true for all functions. We will illustrate this with an example:

Example 2. Consider the Caputo fractional differential equation

C
0 D0.5u(t) = −2u(t)− f (u(t)), t > 0

with u(0) = c, c ∈ R and f (u) = sin(u) + 1.5, which is Lipschitz with a constant L = 1 and
−0.5 ≤ − f (u) = − sin(u)− 1.5 ≤ −2.5. This initial value problem is equivalent to the integral
equation

u(t) = c +
1

Γ(0.5)

∫ f (u(s))
(t− s)0.5 ds.

Use
1

Γ(0.5)

∫ t

0
(t− s)−0.5 ds = 2t0.5

and obtain the bounds for the solution:

c− t0.5 ≤ x(t) ≤ c− 5t0.5.

For c = 1, we have u(t) < 0 for t ≥ 2 (see Figure 1), i.e., u(0)u(t) is not non-negative for all
t ≥ 0.

Figure 1. Graph of the bounds of the solution.

Note a similar situation occurs when the generalized proportional Caputo fractional
derivative is applied. We will illustrate this with an example.

Example 3. Let u(t) = 0.5− t, t ≥ 0, q ∈ (0, 1), and ρ ∈ (0, 1).
Case 1.1. Let t ∈ (0, 0.5). Then, we get

(Dρ|u(·)|)(t) = 0.5− 1.5ρ− (1− ρ)t = (sign u(t)) (Dρu(·))(t) = (Dρu(·))(t)

and

(C
0Dq,ρ|u(·)|)(t) = 1

ρ1−qΓ(1− q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−q(Dρu(·))(s) ds

= (C
0Dq,ρu(·))(t) = (sign u(t)) (C

0Dq,ρu(·))(t), t ∈ (0, 0.5).
(5)

Case 1.2. Let t > 0.5. Then, we get

(Dρ|u(·)|)(t) = (1− ρ)(t− 0.5) + ρ = −(Dρu(·))(t) = (sign u(t)) (Dρu(·))(t)
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and

(C
0Dq,ρ|u(·)|)(t) = 1

ρ1−qΓ(1− q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−q(sign u(s)) (Dρu(·))(s) ds

=
1

ρ1−qΓ(1− q)

∫ 0.5

0
e

ρ−1
ρ (t−s)

(t− s)−q (Dρu(·))(s) ds

− 1
ρ1−qΓ(1− q)

∫ t

0.5
e

ρ−1
ρ (t−s)

(t− s)−q(Dρu(·))(s) ds

6= − 1
ρ1−qΓ(1− q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−q(Dρu(·))(s) ds

= (sign u(t)) (C
0Dq,ρu(·))(t).

(6)

Therefore, for the generalized proportional Caputo fractional derivative, the equality

C
0Dq,ρ|u(t)| = (sign u(t)) C

0Dq,ρu(t)

is not true for all t ∈ [t0, T] and any function u ∈ Cq,ρ([t0, T],R).

We will now prove the correct result. To be general, we will consider the generalized
proportional Caputo fractional derivative:

Lemma 2. Let q ∈ (0, 1), ρ ∈ (0, 1], u ∈ Cq,ρ([t0, T],R), and suppose that the sign of u(·) is not
changeable in [t0, T]. Then, for any t ∈ [t0, T], the equality

(C
t0
Dq,ρ|u(·)|)(t) = (sign u(t)) (C

t0
Dq,ρu)(t) (7)

holds.

Proof. For any t ∈ [t0, T] we get

(Dρ|u(·)|)(t) = (1− ρ)(sign u(t)) u(t) + ρ (sign u(t)) u′(t) = (sign u(t)) (Dρu(·))(t)

and

(C
t0
Dq,ρ|u(·)|)(t) = 1

ρ1−qΓ(1− q)

∫ t

t0

e
ρ−1

ρ (t−s)
(t− s)−q(sign u(s)) (Dρu(·))(s) ds

= (sign u(t))
1

ρ1−qΓ(1− q)

∫ t

t0

e
ρ−1

ρ (t−s)
(t− s)−q(Dρu(·))(s) ds

= (sign u(t)) (C
0Dq,ρu(·))(t).

In the case of the Caputo fractional derivative, we obtain the following result:

Corollary 2. Let u ∈ Cq([t0, T],R) and suppose that the sign of u(·) is not changeable in [t0, T].
Then, for any t ∈ [t0, T], the equality

C
t0

Dq|u(t)| = (sign u(t)) (C
t0

Dqu(t)) (8)

holds.

The proof of Corollary 2 follows from Lemma 2 with ρ = 1.

Remark 3. If the function u(·) changes its sign in the interval [t0, T], then because of the memory
property of the fractional derivatives (different to integer order derivatives), the equalities (7) and (8)
are not true for all points t ∈ [t0, T] (see Example 1).
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When Lyapunov functions are applied to differential equations, including the absolute
values Lyapunov function, the type of derivatives of Lyapunov functions is very important
and it depends on the type of derivatives in the differential equations.

Let u(·) be a solution of the scalar fractional differential equation C
0 Dqu(t) = f (t, u(t)).

In the literature, several types of fractional derivatives of Lyapunov function V(t, u) are
applied. Consider the following derivative, which is called by some authors the upper
right-hand derivative in Caputo’s sense or Caputo-type fractional derivative:

CDqV(u(t)) = lim
h→0+

sup
V(u(t))−V(u(t)− hq f (t, u(t)))

hq .

We will illustrate some of properties of the absolute values Lyapunov function and its
derivative given by the above definition with an example.

Example 4. Let V(x) = |x|. Then, its Caputo-type fractional derivative is

CDq|u(t)| = lim
h→0+

sup
|u(t)| − |u(t)− hq f (t, u(t))|

hq = lim
ε→0+

sup
|u(t)| − |u(t)− ε f (t, u(t))|

ε

= (sign(u(t)) f (t, u(t)) = (sign(u(t)) C
0 Dqu(t),

where ε = hq.
However, the derivative CDqV(u(t)) has no memory and CDqV(u(t)) 6= C

0 DqV(u(t)), so
we could not conclude that CDq|u(t)| = (sign(u(t)) CDqu(t).

Remark 4. From Example 1, Example 2, and Example 4, it could be seen that in the case of Caputo
fractional differential equations, for the Lyapunov function

V(t, x) =
n

∑
k=1
|xi|, x = (x1, x2, . . . , xn),

we have:

- If its Caputo fractional derivative is applied, then the inequality

C
0 DqV(t, x(t)) 6=

n

∑
i=1

(sign xi(t)) C
0 Dqxi(t)

holds in the general case (see Example 1–Case 2). According to Lemma 2, the equality is true
only in a particular case;

- If its Caputo-type fractional derivative CDq|u(t)| is applied, then in the general case

CDqV(u(t)) 6=
n

∑
i=1

(sign xi(t)) CDqxi(t).

Before the application of the equality (8), one needs to prove that the solution has a constant
sign (see Corollary 2) .

Remark 5. The situation mentioned in Remark 4 is true also for generalized proportional Caputo
fractional differential equations and the absolute values Lyapunov function.

According to the above discussions, in this section, the Lyapunov function of the type

V(t, x) =
n

∑
k=1

x2
i , x = (x1, x2, . . . , xn)

is appropriate to apply to fractional differential equations using the following result:
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Lemma 3. [14] Let q ∈ (0, 1), ρ ∈ (0, 1], and u ∈ Cq,ρ([t0, ∞),Rn). Then, for any t ≥ t0, the
inequality

(C
t0
Dq,ρ

(
uT(·)u(·)

)
(t) ≤ 2 xT(t) (C

t0
Dq,ρu)(t)

holds.

Remark 6. Note that in the special case ρ = 1 of Lemma 3, i.e., the application of Caputo fractional
derivative, the result is proved in [19,20].

Remark 7. Note that quadratic Lyapunov functions for Caputo fractional order time-delayed gene
regulatory networks are applied in [7].

4. Statement of the Problem

In this paper, we will consider a class of fractional order gene regulatory networks mod-
eled by a generalized proportional Caputo fractional derivative for 0 < q < 1, ρ ∈ (0, 1]:

(C
0Dq,ρxi)(t) = −dixi(t) +

N

∑
k=1

aikhk(yk(t)) + Ii, t > 0, i = 1, 2, . . . , N,

(C
0Dq,ρyi)(t) = −biyi(t) + cixi(t), t > 0, i = 1, 2, . . . , N,

xi(0) = x0
i , yi(0) = y0

i , i = 1, 2, . . . , N,

(9)

where x0
j , y0

j ∈ R, xj(t), yj(t), j = 1, 2, . . . , N, denote the concentrations of messenger
ribonucleic acid (mRNA) and protein of the j-th node at time t, respectively, dj and bj are
degradation velocities of mRNA and protein, respectively, cj > 0 is the translation rate,
the functions hk ∈ C(R,R), k = 1, 2, . . . , N, represent the activator initiates of protein of
mRNA, and the coupling matrix of the network A = (ajk) ∈ RN×Nis described by

ajk =


−γjk k is a repressor of gene j
0 k does not regulate gene j
γjk k is a initiator of gene j,

and Ij = ∑k∈J ajk, where J is the set of all repressors of gene j.

Remark 8. Commonly, the activator functions hk(·), k = 1, 2, . . . , N, are indicated in the Hill
form hk(s) = sβk

α
βk
k +sβk

, s ∈ R, where βk are the Hill coefficients and αk ≥ 0 are constants.

Remark 9. Note that the model (9) is studied in the case of the Caputo fractional derivative and the
absolute value Lyapunov function is applied (see Remark 4).

Introduce the following assumptions:
(A1) The activator functions hk(·), k = 1, 2, . . . , N are increasing and there exist

constants γk > 0 such that for any u, v ∈ R with u 6= v, the inequalities

0 ≤ hk(u)− hk(v)
u− v

≤ γk, k = 1, 2, . . . , N

hold.
(A2) There exist positive constants µk, µN+k, k = 1, 2, . . . ,N such that the coefficients

in (9) satisfy the inequalities
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N

∑
j=1

γj|akj|+
µN+k

µk
ck < 2dk, k = 1, 2, . . . , N,

− 2bkck + γk

N

∑
j=1

µj

µN+k
|ajk| < 2bk, k = 1, 2, . . . , N.

Remark 10. From Assumption (A1), it follows that Lemma 2 is applicable to the solutions of (9)
and equality (7) holds; i.e., the absolute value Lyapunov function is applicable to (9).

From Lemma 1, it follows that the generalized proportional Caputo fractional deriva-
tive of a nonzero constant is not zero, and applying Corollary 1, we introduce the following
definition.

Definition 2. The couple of functions

(x∗(t), y∗(t)) =
(

Ce
ρ−1

ρ t, Qe
ρ−1

ρ t
)

,

with C = (C1, C2, . . . , CN) ∈ RN , Q = (Q1, Q2, . . . , QN) ∈ RN , Ci, Qi = const, is called an
equilibrium of (9) if

djCje
ρ−1

ρ t
=

N

∑
k=1

ajkhk

(
Qke

ρ−1
ρ (t)

)
+ Ij, t > t0, i = 1, 2, . . . , N,

bjQj = cjCj, t > t0, i = 1, 2, . . . , N.

(10)

Remark 11. Note that in the case of Caputo fractional derivative (ρ = 1), the defined equilibrium
in Definition 2 coincides with the one known in the literature (see, for example, [3]).

Definition 3. The equilibrium X∗(t) = (x∗(t), y∗(t)) of the model (9) is generalized exponentially
stable if there exist constants M, λ > 0 such that

‖X(t)− X∗(t)‖ ≤ M‖X0 − X∗(0)‖e
ρ−1
2ρ t

√
Eq

(
−λ

(
t
ρ

)q)
, t ≥ 0,

where X0 = (x0, y0) is the solution of (9) with initial values X(t) = (x(t), y(t)).

Use the transformations

uj(t) = xj(t)− Cje
ρ−1

ρ t, vj(t) = yj(t)−Qje
ρ−1

ρ t.

Then, (9) can be written in the form

(C
0Dq,ρui)(t) = −diui(t) +

N

∑
k=1

aik Hk(t, vk(t)), t > t0, i = 1, 2, . . . , N,

(C
0Dq,ρvj)(t) = −bjvj(t) + cjuj(t), t > t0, j = 1, 2, . . . , N,

uj(0) = x0
j − Cj, vj(0) = y0

j −Qj, j = 1, 2, . . . , N,

(11)

where

Hj(t, vk) = hk

(
vk + Qke

ρ−1
ρ t
)
− hk

(
Qke

ρ−1
ρ t
)

.

The system (11) has a zero equilibrium.
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The goal of our paper is to study the exponential and asymptotic stability of the
equilibrium of (9); equivalently, we also study the stability properties of the zero solution
of the IVP for FrDE (11).

We will apply quadratic Lyapunov functions, and in connection with this, we will use
the following result:

Lemma 4. ([14], Lemma 2) Let the function U(t) = (u(t), v(t)) ∈ Cq,ρ([0, ∞),R2N
), with

u(·) ∈ Cq,ρ([0, ∞),RN
), v(·) ∈ Cq,ρ([0, ∞),RN

) be a solution of (11), and suppose that, for any
t ≥ 0, the inequality

C
0Dq,ρ‖U(t)‖2 ≤ 0 (12)

holds. Then,

‖U(t)‖ ≤ ‖U0‖e
ρ−1
2ρ t, for all t ≥ 0, (13)

where
U0 = (x0

1 − C1, x0
2 − C2, . . . , x0

N − CN , y0
1 −Q1, . . . , y0

N −QN).

Lemma 5. ([14], Lemma 3) Let the function U(t) = (u(t), v(t)) ∈ Cq,ρ([0, ∞),R2N
), with

u(·) ∈ Cq,ρ([0, ∞),RN
), v(·) ∈ Cq,ρ([0, ∞),RN

), be a solution of (11) and suppose that, for any
t ≥ 0, the inequality

C
0Dq,ρ‖U(t)‖2 ≤ −K‖U(t)‖2 (14)

holds, where K > 0 is a constant. Then,

‖U(t)‖ ≤ ‖U0‖e
ρ−1
2ρ t

√
Eq

(
−K
(

t
ρ

)q)
, for all t ≥ 0, (15)

where
U0 = (x0

1 − C1, x0
2 − C2, . . . , x0

N − CN , y0
1 −Q1, . . . , y0

N −QN).

Theorem 1. Let the assumptions (A1) and (A2) be satisfied, and assume that there exists an
equilibrium X∗(t) = (x∗(t), y∗(t)) of the model (9). Then, the equilibrium of the model (9) is
generalized exponentially stable.

Proof. The generalized exponentially stability of equilibrium of the model (9) is equivalent
to the generalized exponential stability of the zero solution of (11).

Consider the Lyapunov function

V(U) = ‖MU‖2 =
N

∑
k=1

µku2
k +

N

∑
k=1

µN+kv2
k ,

where
M = (

√
µ1,
√

µ2, . . . ,
√

µN ,
√

µN+1, . . . ,
√

µ2N).

Let U(·) be a solution of (11). According to Lemma 3, we obtain

C
0Dq,ρV(U(t)) =

N

∑
k=1

µk
C
0Dq,ρu2

k(t) +
N

∑
k=1

µN+k
C
0Dq,ρv2

k(t)

≤ 2
N

∑
k=1

uk(t) C
0Dq,ρuk(t) + 2

N

∑
k=1

vk(t) C
0Dq,ρvk(t)

= −2
N

∑
k=1

µkdku2
k(t) + 2

N

∑
k=1

N

∑
j=1

µkakjuk(t)Hj(t, vj(t))

− 2
N

∑
k=1

µN+kbkv2
k(t) + 2

N

∑
k=1

µN+kckvk(t)uk(t).

(16)
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From assumption (A2), it follows that

Hk(t, vk(t))
vk(t)

=

hk

(
vk(t) + Qke

ρ−1
ρ t
)
− hk

(
Qke

ρ−1
ρ t
)

vk(t)
≤ γk, k = 1, 2, . . . , N,

and thus

C
0Dq,ρV(U(t)) ≤ −2

N

∑
k=1

µkdku2
k(t) + 2

N

∑
k=1

N

∑
j=1

µk|akj| |uk(t)|γj|vj(t)|

− 2
N

∑
k=1

µN+kbkv2
k(t) + 2

N

∑
k=1

µN+kck|vk(t)| |uk(t)|

≤ −2
N

∑
k=1

µkdku2
k(t) +

N

∑
k=1

µk

N

∑
j=1
|akj|γju2

k(t) +
N

∑
k=1

N

∑
j=1

µk|akj|γjv2
j (t)

− 2
N

∑
k=1

µN+kbkv2
k(t) +

N

∑
k=1

µN+kcku2
k(t) +

N

∑
k=1

µN+kckv2
k(t)

≤
N

∑
k=1

[
− 2dk +

N

∑
j=1

γj|akj|+
µN+k

µk
ck

]
µku2

k(t)

N

∑
k=1

[
− 2bk + ck + γk

N

∑
j=1

µj

µN+k
|ajk|

]
µN+kv2

k(t)

≤ −λV(U(t)),

(17)

where

λ = max
k=1,2,...,N

{
2dk −

N

∑
j=1

γj|akj| −
µN+k

µk
ck, 2bk − ck − γk

N

∑
j=1

µj

µN+k
|ajk|

}
.

According to Lemma 5, the inequality

µmin‖U(t)‖ = µmin

√√√√ N

∑
k=1

u2
k(t) +

N

∑
k=1

v2
k(t) ≤

√√√√ N

∑
k=1

µku2
k(t) +

N

∑
k=1

µN+ku2
k(t)

= ‖MU(t)‖ ≤ ‖MU0‖e
ρ−1
2ρ t

√
Eq

(
−λ

(
t
ρ

)q)
≤ µmax‖U0‖e

ρ−1
2ρ t

√
Eq

(
−λ

(
t
ρ

)q) (18)

holds, where

µmin = min
{

min
k=1,2,...,N

√
µk, min

k=1,2,...,N

√
µN+k

}
and

µmax = max
{

max
k=1,2,...,N

√
µk, max

k=1,2,...,N

√
µN+k

}
,

or

‖U(t)‖ ≤ µmax

µmin
‖U0‖e

ρ−1
2ρ t

√
Eq

(
−λ

(
t
ρ

)q)
.
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Corollary 3. Let the conditions of Theorem 1 be satisfied. Then, the equilibrium of the model (9) is
asymptotically stable, i.e.,

lim
t→∞
‖x(t)− x∗(t)‖ = 0 and lim

t→∞
‖y(t)− y∗(t)‖ = 0.

5. Applications

Application 1
We will consider the model of three repressor-protein concentrations, pi, and their

corresponding mRNA concentrations, mi, i = 1, 2, 3, which are defined and studied in [21]
when the kinetics of the system are determined by ordinary differential equations. To have
a more appropriate model, we will adopt this model and use generalized proportional
Caputo fractional derivatives; i.e., we will consider the model

(C
0Dq,ρmi)(t) = −mi +

α

(1 + pn
i )

+ α0

(C
0Dq,ρ pi)(t) = −β(pi −mi), t > 0, i = 1, 2, 3,

(19)

where (see [21]):

- The number of protein copies per cell produced from a given promoter type during
continuous growth is α0 in the presence of saturating amounts of repressor and α + α0
in its absence;

- β is the ratio of the protein decay rate to the mRNA decay rate;
- n is a Hill coefficient.

System (19) is similar to (9) with di = 1, bi = ci = β, hk(u) = 1
1+un , aii = α and aik = 0 for

k 6= i , Ii = α0.
Take n = 2, α = 1.3, and β = 1. Thus, γk = 0.649519, mi = m3+i = 1, and

−2bk + ck + γk

N

∑
j=1

µj

µN+k
|ajk| = −β + (0.649519) · (1.3)

µi
µ3+i

= −1 + 0.844375 = −0.155625 < 0

and

−2dk +
N

∑
j=1

γj|akj|+
µN+k

µk
ck = −2 + (0.649519) · (1.3) + 1 = −0.155625 < 0,

i.e., assumptions (A1) and (A2) are satisfied. According to Theorem 1, if there exists an
equilibrium E∗ = (m̃1, m̃2, m̃3, p̃1, p̃2, p̃3)) of (19), then it is generalized exponential stable.

Case 1. Caputo fractional derivative, i.e., ρ = 1. The equilibrium m̃i, p̃i, i = 1, 2, 3 is a
solution of the system

m̃i = p̃i, m̃i =
α

(1 + p̃i
n)

+ α0. (20)

The system (20) has a solution for every value of α and α0.
Consider a particular case of α = 1.3 and α0 = 0. Then, the equilibrium is m̃i = p̃i =

0.795876, i = 1, 2, 3.
The solutions mi(·), i = 1, 2, 3 are given in Figure 2 (left), and the solutions pi(·),

i = 1, 2, 3, are given in Figure 2 (right). It could be seen that all components of the solution
approach the equilibrium 0.795876.
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Figure 2. Convergence of the solutions of (19) with q = 0.3, ρ = 1 to the equilibrium 0.795876.

Note that problem (19) is considered in [3] with α = 2.5, α0 = 0. However, in this case,
the equilibrium is m̃i = p̃i = 1.11475, which does not correspond to the provided graphs.

Let α = 1.3, α0 = 2. Then, the equilibrium is m̃i = p̃i = 2.21938, i = 1, 2, 3.
The solutions mi(·), i = 1, 2, 3 are given in Figure 3 (left) and the solutions pi(·),

i = 1, 2, 3, are given in Figure 3 (right). It could be seen that all components of the solution
approach 2.21938.

Figure 3. Convergence of the solution of (19) with q = 0.3, ρ = 1 to the equilibrium 2.21938.

Case 2. Generalized proportional Caputo fractional derivative, i.e., ρ ∈ (0, 1).

Since C
0Dq,ρ0 6= 0 and C

0Dq,ρe
ρ−1

ρ t
= 0, t ≥ 0, the equilibrium m̃i = p̃i = Cje

ρ−1
ρ t,

i = 1, 2, 3, is a solution of the system

Cje
ρ−1

ρ t
=

α

1 + C2
j e2 ρ−1

ρ t
+ α0, t > 0. (21)

Case 2.1. Let α0 = −1.3. Then, the system (21) has zero solution w.r.t. Cj and the
system (19) have a zero equilibrium. The solutions mi(·), i = 1, 2, 3 are given in Figure 4
(left) and the solutions pi(·), i = 1, 2, 3 are given in Figure 4 (right). It could be seen that all
components approach the equilibrium 0.
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Figure 4. Solution of system (19) with q = 0.3, ρ = 0.8.

Case 2.2. Let α0 6= −1.3. Then, the system (21) has no solution w.r.t. Cj, j = 1, 2, 3, and
the system (19) has no equilibrium, and we could not apply Theorem 1.

Application 2
Consider the model of three repressor-protein concentrations, pi, and their corre-

sponding mRNA concentrations, mi, i = 1, 2, 3, (19) with the activator functions hk(s) =
sβk

α
βk
k +sβk

, s ∈ R; i.e., consider

(C
0Dq,ρmi)(t) = −mi +

αpn
i

(1 + pn
i )

+ α0,

(C
0Dq,ρ pi)(t) = −β(pi −mi), i = 1, 2, 3, t > 0,

(22)

with a0 = 0. The system (8) has a zero equilibrium. Take n = 2, α = 1.3, and β = 1. Thus,
γk = 0.649519, mk = m3+k = 1, k = 1, 2, 3, and assumptions (A1) and (A2) are satisfied.
According to Theorem 1, the zero equilibrium is generalized exponential stable. The graphs
of the solutions mi(·) and pi(·), i = 1, 2, 3, of system (22) are given in Figure 5 (left) and
Figure 5 (right), respectively, with n = 2, ρ = 0.8, q = 0.3, α = 1.3, α0 = 0, β = 1, with
initial values m1(0) = 1, m2(0) = 3, m3(0) = 5, p1(0) = 2, p2(0) = 4, p3(0) = 6.

Application 3
Consider the general model describing the dynamics of the interacting defects in the

genome and in the proteome with the generalized proportional fractional derivative:

(C
0Dq,ρu)(t) = pv(t)− αu(t) + f (t),

(C
0Dq,ρv)(t) = βGKu(t)− δv(t) + Gg(t), t > 0,

(23)

where β is the coupling rate constant characterizing the regulation of gene expression
by the proteins, K is the average number of genes regulated by any single protein and
represents a simple measure of the overall connectivity of the genetic network, c reflects
the combined efficiency of proteolysis and heat shock response systems, mediating the
degradation and refolding of misfolded proteins, respectively, whereas δ characterizes the
DNA repair rate, the “force” terms, f (·) and g(·) characterize the proteome and genome
damage rates, respectively, and G is the total genome size.
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Figure 5. Solution of system (22) with q = 0.3, ρ = 0.8.

Let f (t) = Ae
ρ−1

ρ t and g(t) = Be
ρ−1

ρ t. Then, the model (23) has equilibrium

(ũ, ṽ) =
(GBα + AβGK

αδ− βGKp
e

ρ−1
ρ t,

Aδ + GBp
αδ− βGKp

e
ρ−1

ρ t
)

, t > 0.

Model (23) is in the form of (9) with N = 2, h1(s) = h2(s) = s, d1 = α, d2 = δ,
b = c = 0. Thus, γ1 = γ2 = 1, µ1 = µ2 = 1 and

−2dk +
N

∑
j=1

γj|akj|+
µN+k

µk
ck = −2α + p < 0, k = 1,

and

−2dk +
N

∑
j=1

γj|akj|+
µN+k

µk
ck = −2δ + βGK < 0, k = 2,

i.e., assumptions (A1) and (A2) are satisfied if 0.5p < α and 0.5βGK < δ. In other words,
the DNA repair rate δ and the expressome (proteome, metabolome) turnover rate, c,
have to be large enough. In Figure 6, the graphs of the solution (u, v) are given with
q = 0.3, ρ = 0.5, p = 1, α = 0.9, A = 1, β = 2, K = 1, δ = 0.8, G = 0.5, B = 2, and the

initial values u(0) = 0.5, v(0) = 1.1. Then, the equilibrium is (ũ, ṽ) =
(

1.9
0.32 e−t, 1.8

0.32 e−t
)
) =

(5.9375e−t, 5.625e−t).

Figure 6. Convergence of the solution of (23) to the equilibrium (5.9375e−t, 5.625e−t).
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Note that the model (23) in the case of ordinary derivatives is studied in [2] with the
more restrictive assumption KpβG < cδ.

6. Conclusions

A new gene-regulated model is set up. The dynamics is decribed by the generalized
proportional Caputo fractional derivative. The equilibrium is defined in an appropriate
way. In the general case, the classical definition of the equilibrium differs. The generalized
exponential stability is introduced and studied via the application of Lyapunov functions
and their generalized Caputo proportional fractional derivatives. In connection with the
application of Lyapunov functions to fractional type models, some properties of absolute
values Lyapunov functions and their fractional derivatives are discussed. Several examples
are provided to illustrate the properties. The advantages of the application of the quadratic
Lyapunov functions are considered, and sufficient conditions for generalized exponential
stability are obtained. Some examples illustrate the theoretical results and the dependence
of the fractional derivative on the behavior of the solutions.
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