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Microbial resistance and other emerging health risk problems related to the side effects of synthetic
drugs are the major factors that result in the research regarding natural products. Fruits, leaves, seeds,
and oils-based phyto-constituents are the most important source of pharmaceutical products. Plant
extract chemistry depends largely on species, plant components, solvent utilized, and extraction tech-
nique. This study was aimed to compare the ethanolic extracts of a mangrove plant, i.e., Avicennia marina
(1E: Lower half of A. marina‘s pneumatophores, 2E: A. marina‘s leaves, 3E: Upper half of A. marina‘s pneu-
matophores, and 4E: A. marina‘s shoots), with non-mangrove plants, i.e., Phragmites australis (5E: P. aus-
tralis‘s shoot), and Moringa oleifera (6E: M. oleifera‘s leaves) for their antimicrobial activities, total
phenolic contents, antioxidant activity, and cytotoxicity potential. The antimicrobial activity assays were
performed on gram-positive bacteria (i.e., Bacillus subtilis and Staphylococcus aureus), gram-negative bac-
teria (i.e., Escherichia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus niger, Candida albicans,
and Rhizopus spp.). We estimated antioxidant activity by TAC, DPPH, and FRAP assays, and the cytotox-
icity was evaluated by MTT assay. The results of antimicrobial activities revealed that B. subtilis was
the most sensitive to the tested plant extracts compared to S. aureus, while it only showed sensitivity
to 6E and Imipenem. 5E and 6E showed statistically similar results against P. aeruginosa as compared
to Ceftazidime. E. coli was the most resistant bacteria against tested plant extracts. Among the tested
plant extracts, maximum inhibition activity was observed by 6E against A. niger (22 ± 0.57 mm), which
was statistically similar to the response of 6E against C. albicans and 3E against Rhizopus spp. 2E did not
show any activity against tested fungi. We found that 6E (208.54 ± 1.92 mg g�1) contains maximum phe-
nolic contents followed by 1E (159.42 ± 3.22 mg g�1), 5E (131.08 ± 3.10 mg g�1), 4E (i.e., 72.41 ± 2.96
mg g�1), 3E (67.41 ± 1.68 mg g�1), and 2E (48.72 ± 1.71 mg g�1). The results depict a significant positive
correlation between the phenolic contents and the antioxidant activities. As a result, phenolic content
may be a natural antioxidant source.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Avicennia marina (Acanthaceae) is a tropical plant and woody
shrub that grows in the inter-tidal zones and coastal areas of trop-
ical and subtropical latitudes (Asaf et al., 2021). Mangrove and
mangrove associates are very crucial for the global environment
for so many reasons, such as; they provide a shield to coastlines
against the diverse impact of natural disasters (McIvor et al.,
2012); protect the marine ecosystem by nutrients cycling and trap-
ping, accumulating or degrading the pollutants of terrestrial and
aquatic origin (Ando et al., 2001; Kim et al., 2016; Usman et al.,
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2013); support marine life (i.e., fish, shrimps, and crabs, etc.) and
wildlife (i.e., mammals, birds, and reptiles, etc.) by providing them
food, habitat and breeding space (Shobrak and Aloufi, 2014); serve
as the residence of many threatened and endangered species
(Norhayati et al., 2009); mangrove plants are the source of medi-
cine, fuel, tannins and construction material for native communi-
ties (Bhimba et al., 2012; Kovacs, 1999); they are tolerant or
raising of atmospheric carbon dioxide and temperature
(Macintosh et al., 2012). Mangroves are necessary to have unique
mechanisms or morphological specializations for their survival
under harsh conditions. Different types of active metabolites of
various biological activities are produced even during stress.
Researchers have isolated a variety of compounds from mangroves
of commercial and medical importance. Extracts of mangroves
have demonstrated human, animal, and plant pathogenic behavior.
Polyphenols and tannins are abundant in mangroves. The concen-
trations of these chemicals are varied seasonally. About 346 active
metabolites have been isolated from mangroves (Wu et al., 2008).

Phragmites australis, which belongs to the family Poaceae, is a
common reed present in semi-aquatic areas. In Saudi Arabia, it
was reported only in Eastern regions, where it is found just before
the Avicennia marina plantation. However, recently Remesh et al.
(2019) also reported this reed in the Southwestern region of Saudi
Arabia. It is a perennial and salt-tolerant plant with a widespread
root infrastructure (Mal and Narine, 2004). P. australis is the source
of many chemicals like; Aurantiamide acetate, alpha-D-glucose,
benzoic acid, beta-D-glucose, beta-sitosterol, ferulic acid, heptade-
canoic acid, methyl gallate, palmitic acid, p-hydroxy, p-coumaric
acid, p-hydroxybenzaldehyde, stigmasterol, syringic acid, vanillic
acid, 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propa
none, (+)-lyoniresinol, and (+)-lyoniresinol-3a-O-b-D-glucopyrano
side (Choi et al., 2009; Petropoulos et al., 2018). In traditional med-
ication (Palombo and Semple, 2001), it is used to treat many
human and livestock illnesses (González-Tejero et al., 2008;
Kiviat and Hamilton, 2001; Viegi et al., 2003). Antioxidant and hep-
atoprotective properties were demonstrated in aquatic extracts
made from P. australis‘s rhizomes. Further leave extract also pos-
sesses anti-melanogenesis and antioxidant activities (Chen et al.,
2013; Sim et al., 2017); moreover, Zhu et al. (2017) reported antivi-
ral activity of its water-soluble extracts.

Moringa oleifera is one of the angiospermous plants, which is
widely cultivated. It has well renowned nutritional values as it is
rich in minerals, proteins, and vitamins. Moringa oleifera is the
most commonly grown species of the Moringaceae family, mainly
native to Himalayan and sub- Himalayan areas. It is grown in
Afghanistan, Bangladesh, Pakistan, India, and other tropical and
subtropical countries. It is also cultivated in Saudi Arabia
(Alaklabi, 2015). Indians and Africans traditionally use Moringa
oleifera to treat more than 300 diseases, including cancer
(Abdel-Daim et al., 2020a; Matic et al., 2018). Moringa‘s phyto-
constituents are recognized for their anti-diabetic, antioxidant,
anti-inflammatory (Abd Rani et al., 2018; Abou-Zeid et al., 2021),
anti-apoptotic (Abdel-Daim et al., 2020b) and neuroprotectant
effects (Kandeil et al., 2019). It contains a variety of beneficial com-
ponents, including flavonoids, phenols, and vitamin C (ascorbic
acid), a-tocopherol, and b-carotenoids, etc. (Alhakmani et al.,
2013; Barhoi et al., 2021; Mumtaz et al., 2021; Singhal et al.,
2012; Weon et al., 2015).

The essential source of potent antioxidants, medicine, and other
pharmaceutical products are natural commodities, especially
fruits, leaves, seeds, and oils (Table 1). Secondary metabolites,
including phenolic contents, are of particular importance among
plant constituents, as they have been reported for the activities
of medicinal importance such as antioxidant potency, antibacterial,
anticancer, and anti-diabetic activities as well as anti-
inflammatory effects (Jeong et al., 2004; Petlevski et al., 2013;
112
Wijngaard et al., 2012). Phenols are the most abundant group in
plant extracts. One area where phenols are considered important
is to protect the organism against oxidative stress conditions.
Oxidative stress is oxidizing/antioxidant disequilibrium in the liv-
ing organism, in which unstable (free radicals) molecules become
stable by electron combinations with other molecules. It is often
linked to tissue destruction and other cancer-like chronic diseases
(Aslan et al., 2011). Oxidative stresses result from the accumula-
tion of free radicals from ambient sources or generation in the
body (Abou-Zeid et al., 2021). Moreover, the antioxidant activities
of the extract also rely on the polarity of the solvent, the extraction
process, the purity of extraction, and the way the antioxidant is
evaluated (Wanasundara and Shahidi, 1998). As a result, any
medicinal plant that manages stress-related diseases must have
the ability to avoid oxidative stress (Muniyandi et al., 2017).

In this study, we aimed to compare the ethanolic extracts of Avi-
cennia marina, Phragmites australis, and Moringa oleifera with
respect to their antimicrobial, antioxidant, and cytotoxic activities.
2. Material and methods

2.1. Sample collection

Plant samples of Avicennia marina and Phragmites australis were
collected randomly from the Eastern Region of KSA along the Ara-
bian Gulf. In contrast, the sample of Moringa oleifera was collected
from the College of Food and Agriculture Sciences, King Saud
University, Riyadh, KSA. The purpose of the moringa plant sample
was to compare it with mangrove and non-mangrove semiaquatic
(i.e., Phragmites australis) concerning the following attributes; 1)
Antioxidant activity, 2) Antimicrobial activities, 3) Anticancer
activity, and 4) Total Phenolic contents. By following standard pro-
cedures, we obtained six extracts (i.e. 1E, 2E, 3E, 4E, 5E, and 6E).
Sampling details and coordinate of respective sample locations
are mentioned in Table 2.

Plant parts were collected and put into sterilized plastic bags
using a sterilized scissor/plant cutter. Leaves were taken from the
middle part of the branches. Pneumatophores (Aerial roots) were
collected in two parts separately, i.e., Upper half and Lower Half.
Samples were collected about 1 kg for each plant part. Samples
were kept in an ice-box for transportation.

2.2. Extraction process

In the lab, plant parts were washed with sterilized distilled H2O
and 70% ethanol for cleaning and disinfection. Then, without using
an oven, air-dried in the shade. Dry samples were then pulverized
using a plant grinder (MF 10 basic, IKA� WERKE). The mashed sam-
ples were packaged and wrapped in paper before being placed in
clean plastic bags. The maceration procedure followed, in which
five parts of the solvent were used for one part of the sample.
The maceration period lasted five days with regular shaking. The
solvent used in this research was absolute ethanol (Haq et al.,
2011; Takarina et al., 2018). The extract solutions were evaporated
using a rotary evaporator (RV 10C S99, IKA�) to obtain the crude
plant extract. The finished plant extracts were kept refrigerated
in sterile Eppendorf tubes for future use (Ahmad et al., 2018).

2.3. Estimation of antimicrobial activity

Antimicrobial activity was estimated by the agar plate well dif-
fusion assay (Perez et al., 1990), which was later reported by
Mathabe et al. (2006). On Muller-Hinton agar plates, 0.1 ml of
diluted culture (105 CFU ml�1) of tested organisms were dis-
tributed, respectively. In the agar plates ells, wells with a diameter



Table 1
Examples of some reported sources for plant extracts, their active group and their activity.

Plant Source Active group Use and effects Reference

Plectranthus sp.
(Lamiaceae)

Antioxidants
Abietane diterpenoids
Flavonoids
Glycosides
Phenols
Steroids
Tannins

Antimicrobial anti-inflammatory
Antidiabetic Anxiolytic
Antineoplastic
Analgesic
Antimalarial
Diuretic
Wound healing
Skincare
Respiratory disorders
Antiplatelet aggregation activity

(Cook, 1995; Abdel-Mogib et al., 2002; Permana et al., 1994)

Xanthoria
parietina
Lobaria
pulmonaria and
Parmelia sulcata
(Lichens)

Ddepsides
Depsidones
Dibenzofurans
Xanthones
Terpene derivatives
Alcohol

Human nutrition
Animal nutrition
Pigments/Colours
Perfumes
Antiviral
Antibiotic
Antitumor
Allergenic
Enzyme inhibitory
Antioxidant
Treatment of jaundice, pulmonary
and cranial diseases

(Huneck, 1999; Karagouml et al., 2009; KIRMIZIGÜL et al., 2003;
Malhotra et al., 2008; Ranković et al., 2011; Seymour et al., 2005)

Tragopogon
porrifolius
(Asteraceae)

Mono-unsaturated and
essential fatty acids
Antioxidants
Vitamins
Polyphenols
Flavonoids

Traditional medicine
Anticancer

(ACIKARA et al., 2013; Al-Rimawi et al., 2016; Formisano et al., 2010;
Pham-Huy et al., 2008; Servili et al., 2002; Silva et al., 2006; Tenkerian
et al., 2015)

Hibiscus asper
(Malvaceae)

Antioxidants Antiapoptotic
Neuroprotective

(Foyet et al., 2011)

Tectona grandis
(Lamiaceae)

Quinones
Naphthotectone
Anthratectone
5-hydroxylapachol

Antibacterial (Khan and Mlungwana, 1999; Lacret et al., 2011; Neamatallah et al.,
2005)

Ficus sp.
(Moraceae)

Monoterpenes
Diterpenes and triterpenes
Steroids
Furocoumarins
Pigments
Amino acids
Alkaloids

Antimicrobial
Antidiabetic
Anti-inflammatory
Analgesic
Antiseizure
Anti-Parkinson’s diseases
Cytotoxic
Antioxidant

(Annan and Houghton, 2008; Ayim et al., 2007; Salehi et al., 2020;
Watcho et al., 2011)

Pentadesma
butyracea
(Clusiaceae)

Cratoxylone, a-mangostin,
1,3,5-trihydroxy-2-
methoxyxanthone,
Garcinone E
Epicathechin
Lupeol

Cytotoxic
Antimalarial

(Lenta et al., 2011; Zelefack et al., 2009)

Vismia laurentii
(Hypericaceae)

Xanthones
Anthraquinones
Naphtoquinones

Anticancer
Antimicrobial
Antimalarial

(Kuete et al., 2011; Nguemeving et al., 2006; Noungoue et al., 2008;
Noungoue et al., 2009; Wabo et al., 2007)

Paullinia pinnata
(Sapindaceae)

Triterpenoids
Flavonoid
Polyphenol
Proanthocyanidin

Normal cell proliferation
Fibroblast
Antioxidant
Induce arterial relaxation

(Annan et al., 2010; Zamble et al., 2006)

Dichrostachys
glomerata
(Fabaceae)

Alkaloids
Phenols
Tannins

Antibacterial (Fankam et al., 2011)

Psorospermum
febrifugum
(Hypericaceae)

Xanthones
Emodin

Antiviral
Anticancer Antimicrobial

(de Dieu Tamokou et al., 2013; Kisangau et al., 2007; Liu et al., 2012;
Permana et al., 1994; Su et al., 2010; Tsaffack et al., 2009)
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of 0.8 cm were punched and filled with 0.1 ml of 1000 lg ml�1

plant extract and DMSO as a blank treatment. At 37 �C, the plates
were incubated overnight. The antimicrobial response was esti-
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mated by observing the inhibition zone (mm) against tested organ-
isms. As a positive control, standard drugs (i.e., Imipenem against
gram-positive, Ceftazidime against gram-negative, and Nystatin



Table 2
Treatment‘s description.

Plant Extract Plant Source Plant Part Sampling Location

Latitude Longitude

1E Avicennia marina (Forssk.) Vierh. Lower half of Pneumatophores 26�3403.2300N 50� 5020.8000E
2E Avicennia marina (Forssk.) Vierh. Leaves 26�3403.2300N 50� 5020.8000E
3E Avicennia marina (Forssk.) Vierh. Upper half of Pneumatophores 26�3403.2300N 50� 5020.8000E
4E Avicennia marina (Forssk.) Vierh. Shoots 26�3403.2300N 50� 5020.8000E
5E Phragmites australis (Cav.) Trin. ex Steud. Leaves and Stem 26�35039.6600N 50� 3037.4400E
6E Moringa oleifera (L.) Leaves 24�43028.7900N 46�3704.0000E
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against fungi) against respective strains at the concentration of
30 mg ml�1 were also tested. Each treatment was repeated three
times.

2.4. Estimation of MIC

MIC (Minimum inhibitory concentration) is elaborated as the
minimum concentration of plant extracts that inhibited the
observable growth of tested microbial strains. The broth dilution
technique was used to estimate the MIC of plant extracts against
bacteria and fungi. In this method, p-iodonitro tetrazolium violet
(0.02 mg ml�1 concentration) is used as a growth indicator (Eloff,
1998). For the serial dilutions of plant extracts, 2 ml plant extract
was combined with 2 ml Muller-Hinton to get desired dilutions.
Before incubation overnight at 37 �C, 2 ml of a fresh culture of
tested microbe was added. After visually inspecting turbidity, each
tube was applied with 0.8 ml of indicator dye and put in the incu-
bator at 37 �C for 30 min. After incubation, the tubes were
observed for color development, and the growth inhibition was
also crosschecked by re-culturing 100 ml of culture from the tested
tube on nutrient agar.

2.5. Estimation of total phenolic contents

The Folin-Ciocalteau reagent technique was used to calculate
the total phenolic contents (TPC) of the plant extracts examined,
as reported by Zahin et al. (2013). In short, 2.5 ml of Folin-
Ciocalteau reagent (1/10th strength) along with 2 ml of sodium
carbonate solution (7.5%, w/v) were mixed into 0.5 ml of each
extracted sample and put in the incubator at 45 �C for the duration
of 15 min at. Three replications were maintained for each study.
After incubation, the absorbance of each sample was observed at
the wavelength of 765 nm by GenesysTM 5 spectrophotometer
(Thermo Spectronic, USA). The TPC were presented as milligrams
of gallic acid equivalent per gram of dry plant extract.

2.6. Estimation of antioxidant potential

The antioxidant capacity of plant extracts was estimated using
three different methods; the DPPH test, FRAP assay, and phospho-
molybdenum technique, as detailed below;

2.7. DPPH free radical scavenging assay

A slightly modified technique, as stated by Gyamfi et al. (1999),
was used to evaluate the free radical activity of various plant
extracts against stable DPPH (1,1-diphenyl-2-picrylhydrazyl) free
radical. It is decreased if DPPH interacts with an antioxidant pre-
sent in the tested sample that might provide hydrogen. The color
shift from deep-violet to light-yellow was detected by a GenesysTM

5 Spectrophotometer (Thermo Spectronic, USA) at 517 nm. The dif-
ferent concentrations of tested plant extracts were prepared in
ethanol, and 50 ll of respective concentration was blended with
1 ml of DPPH solution in methanol (0.1 mM) along with 450 ll
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Tris-HCl buffer (50 mM, pH 7.4) and incubated at room tempera-
ture for 30 min. After incubation, the reduction of the free radical
was observed by spectrophotometer. Ethanol was used as a nega-
tive control, while butylated hydroxyl toluene (BHT) and ascorbic
acid were tested as a positive control in this trial. Inhibition per-
centage was estimated by following the equation given below:

% Inhibition ¼ Absorbance of Control� Absorbance of test sample
Absorbance of Control

� 100
2.8. Ferric ions (Fe3+) reducing antioxidant power assay

Antioxidant power was determined by observing absorbance
resulting from Perl’s Prussian blue complex formation following
the addition of excess ferric ions (Fe3+) with samples in the form
of Fe3+ (CN�)6, which was subsequently reduced to Fe2+(CN�)6.
Hence, it is named as the ferric reducing antioxidant power assay
or simply FRAP assay as reported by Oyaizu (1986); and later
adopted by Gülçin (2009). Plant extracts of various concentrations
were prepared in 0.75 ml of distilled water and then mixed with
1.25 ml of sodium phosphate buffer (0.2 M) and 1.25 ml of Potas-
sium hexacyanoferrate (III) (1%). The solution was then put in the
incubator at 50 �C for a duration of 20 min, and this mixture was
acidified by adding 1.25 ml of Trichloroacetic acid (10%). Subse-
quently, 0.5 ml of Iron (III) chloride (0.1%) was added to this solu-
tion, and the absorbance was observed by using a GenesysTM 5
spectrophotometer at a wavelength of 700 nm (Thermo Spectronic,
USA). The absorbance measurement of the sample is directly
related to the sample’s reduction capacity.

2.9. Phosphomolybdenum assay

The total antioxidant capacity (TAO) of studied plant extracts
was determined using the Phosphomolybdenum test as described
by Prieto et al. (1999). Known quantity (0.1 ml) from the desired
concentration of plant extracts was mixed with 1 ml of reaction
reagent, which consists of Ammonium molybdate (4 mM), Sodium
phosphate (28 mM) and Sulphuric acid (0.6 M). As a control
(Blank), 0.1 ml of ethanol was utilized. The tubes were enclosed
and put in the water bath at 95 �C for the duration of 90 min
and then cooled down to room temperature. The absorbance read-
ings for each solution were taken at the wavelength of 695 nm
against the blank by using GenesysTM 5 spectrophotometer (Thermo
Spectronic, USA). Further, the TAO of the tested plant extracts were
presented as equivalents to ascorbic acid (lmol g�1).

2.10. Cell viability assay/MTT assay

The influence of plant extracts on the viability of HepG2 cell
lines was estimated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyl tetrazolium bromide (MTT) technique, which was
reported by Hasan et al. (2016). In 24-well microtiter plates, 104

cells were seeded per well with 1 ml of culture media containing
extracts of various concentrations (i.e., 0–400 mg ml�1). These
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seeded plates were put in the humidified incubator at 37 �C for a
duration of 48 h, followed by the addition of 0.2 ml of MTT
(5 mg ml�1 PBS) per well and plates were incubated again for
two hours. Following incubation, 0.2 ml of DMSO was poured into
each well and centrifuged (1800g, 5 min, and 4 �C). The OD read-
ings, at the wavelength of 540 nm (Shi et al., 2021), were observed
by a microplate reader (ELx800, BioTek, US). Cytotoxic activity of
extracts was estimated as percent cell viability against the cells
treated only with DMSO as control by the equation given below;

% Cell viability ¼ Absorbance of sample� Absorbance of blank
Absorbance of DMSO� Absorbance of blank

� 100
Fig. 2. Antibacterial activity in terms of inhibition zone (mm) resulted by tested
plant extracts against gram negative bacteria (i.e. Escherichia coli, and Pseudomonas
aeruginosa). Ceftazidime was used as the control. 2E and 3E did not show any
inhibitory effects against both bacteria while 2E, 5E and 6E did not show any
inhibitory effects against Escherichia coli. Vertical bars represent standard error
(n = 3). Bars sharing similar letter(s) are statistically non-significant at p � 0.05
according to Tukey’s HSD test (HSD value = 4.463518).
2.11. Statistical analysis

All measurements were taken three times for each treatment.
Data were subjected to the analysis of variance (ANOVA) using a
split-plot. Means were compared by Tukey’s honestly significant
difference (HSD) test (p � 0.05) in R programming using the agri-
colae package. The Pearson‘s correlation among total phenolic con-
tent, cell viability assay, and antioxidant activities was evaluated
by R programming using the corrplot package.

3. Results

3.1. Antimicrobial activity

The ethanolic based different plant extracts (i.e., 1E: Lower half
of Avicennia marina‘s pneumatophores, 2E: Avicennia marina‘s
leaves, 3E: Upper half of Avicennia marina‘s pneumatophores, 4E:
Avicennia marina‘s shoots, 5E: Phragmites australis‘s shoot, and
6E: Moringa oleifera ‘s leaves) were evaluated for their antimicro-
bial potential against gram-positive bacteria (i.e., Bacillus subtilis
and Staphylococcus aureus), gram-negative bacteria ((i.e., Escheri-
chia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus
niger, Candida albicans, and Rhizopus spp.) (Figs. 1–3).

In the case of gram-positive bacteria, the commercial control
(Imipenem, tested earlier by Buckley et al. (1992)) showed a max-
Fig. 1. Antibacterial activity in terms of inhibition zone (mm) resulted by tested
plant extracts against gram positive bacteria (i.e. Staphylococcus aureus, and Bacillus
subtilis). Imipenem was used as the control. 1E, 2E, 3E, 4E and 5E did not show any
inhibitory effects on the Staphylococcus aureus. Vertical bars represent standard
error (n = 3). Bars sharing similar letter(s) are statistically non-significant at p� 0.05
according to Tukey’s HSD test (HSD value = 6.547692).

Fig. 3. Antifungal activity in terms of inhibition zone (mm) resulted by tested plant
extracts against Candida albicans, Aspergillus niger, and Rhizopus spp. Nystatin was
used as the control. 2E did not show any inhibitory effects against all tested fungal
strains while 4E showed activity only against Rhizopus spp. Vertical bars represent
standard error (n = 3). Bars sharing similar letter(s) are statistically non-significant
at p � 0.05 according to Tukey’s HSD test (HSD value = 2.230805).
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imum inhibition zone compared to tested plant extracts. Bacillus
subtilis was the most sensitive to tested plant extracts compared
to Staphylococcus aureus, while Staphylococcus aureus only showed
sensitivity to 6E and Imipenem (as a commercial control). The
maximum inhibition zone 16 ± 1.53 mm and 16 ± 1.15 mm was
observed by 6E against Staphylococcus aureus, and Bacillus subtilis,
respectively, which was statistically similar to the response of all
other tested plant extracts against Bacillus subtilis (Fig. 1).

In the case of gram-negative bacteria, the commercial control
(Ceftazidime) showed maximum inhibition zone as compared to
tested plant extracts, while the response of Ceftazidime (i.e.,
20 ± 0.58 mm) was statistically similar to 5E (i.e., 16 ± 1.0 mm)



M. Sohaib, Fahad N.I. Al-Barakah, H.M. Migdadi et al. Saudi Journal of Biological Sciences 29 (2022) 111–122
and 6E (i.e., 18 ± 0.58 mm), against Pseudomonas aeruginosa. 1E and
3E did not depict any inhibition activity against any tested bacteria
(Fig. 2).

In the case of fungi, the commercial control (Nystatin) showed a
maximum inhibition zone compared to tested plant extracts.
Among the tested plant extracts, a maximum inhibition zone
(i.e., 22 ± 0.57 mm) was observed by 6E against Aspergillus niger,
which was statistically similar to the response of 6E against Can-
dida albicans (i.e., 22 ± 0.58 mm) and 3E against Rhizopus spp.
(i.e., 20.33 ± 0.67 mm). 2E did not show any inhibition activity
against any of the tested fungi (Fig. 3).
Fig. 5. Minimum inhibitory concentration (mg/ml) values for tested plant extracts
against gram negative bacteria (i.e. Escherichia coli, and Pseudomonas aeruginosa). 1E
did not show any inhibitory effects on any of tested bacteria while 5E showed
inhibitory effect only against Pseudomonas aeruginosa. Vertical bars show standard
error (n = 5).
3.2. Minimum inhibitory concentrations (MIC)

MIC was tested to estimate the susceptibilities of tested
microbes for ethanolic extracts of different plant samples (i.e.,
1E: Lower half of Avicennia marina‘s pneumatophores, 2E: Avicen-
nia marina‘s leaves, 3E: Upper half of Avicennia marina‘s pneu-
matophores, 4E: Avicennia marina‘s shoots, 5E: Phragmites
australis‘s shoot, and 6E:Moringa oleifera ‘s leaves) and also to com-
pare the potential of used extracts (Figs. 4–6).

1E showed the lowest MIC for Rhizopus spp. (i.e., 0.48 ± 0.10 m
g ml�1); 3E showed the lowest MIC for B. subtilis, C. albicans, A.
niger, and Rhizopus spp. (i.e., 0.56 ± 0.13 mg ml�1, 0.56 ± 0.12 mg
ml�1, 0.56 ± 0.13 mg ml�1, and 0.48 ± 0.10 mg ml�1 respectively);
5E showed the lowest MIC for C. albicans (i.e, 0.56 ± 0.13 mg ml�1),
while 6E showed lowest MIC for all of tested microorganisms i.e., S.
aureus, B. subtilis, E. coli, P. aeruginosa, C. albicans, A. niger, and
Rhizopus spp. (i.e., 0.56 ± 0.13 mg ml�1, 0.56 ± 0.12 mg ml�1,
1.6 ± 0.16 mg ml�1, 0.56 ± 0.13 mg ml�1, 0.48 ± 0.10 mg ml�1,
0.56 ± 0.13 mg ml�1, and 0.48 ± 0.10 mg ml�1 respectively).
3.3. Antioxidant activities

In this study, antioxidant activities of different plant samples
(i.e., 1E: Lower half of Avicennia marina‘s pneumatophores, 2E: Avi-
cennia marina‘s leaves, 3E: Upper half of Avicennia marina‘s pneu-
matophores, 4E: Avicennia marina‘s shoots, 5E: Phragmites
australis‘s shoot, and 6E: Moringa oleifera‘s leaves) were evaluated
by phenolic contents (mg g�1 of plant extract), total antioxidant
capacity (mmoles g�1 of extract), free radical scavenging activity
Fig. 4. Minimum inhibitory concentration (mg/ml) values for tested plant extracts
against gram positive bacteria (i.e. Staphylococcus aureus, and Bacillus subtilis). 2E,
4E, and 5E did not show any inhibitory effects on the Staphylococcus aureus. Vertical
bars show standard error (n = 5).

Fig. 6. Minimum inhibitory concenteration (mg/ml) values for tested plant extracts
against Candida albicans, Aspergillus niger, and Rhizopus spp. 2E did not show any
inhibitory effects on any of tested fungi while 4E showed inhibitory effect only
against Rhizopus spp. Vertical bars show standard error (n = 5).
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(percent decolorization) and the reducing power (absorbance at
700 nm).

The results (Fig. 7) revealed that the total phenolic contents var-
ied significantly in tested extracts. 6E carried the highest phenolic
contents (i.e., 208.54 ± 1.92 mg g�1 plant extract), while 2E carried
the lowest phenolic contents (i.e., 48.72 ± 1.71 mg g�1 of plant
extract). 1E contains significantly more phenolic contents (i.e.,
159.42±3.22mgg�1 plant extract) than5E (i.e., 131.08±3.10mgg�1

plant extract),while 4E, 3E, and 2E contains significantly less pheno-
lic contents as compared to5E (i.e., 72.41 ±2.96mgg�1 plant extract,
67.41 ± 1.68 mg g�1 plant extract, and 48.72 ± 1.71 mg g�1 plant
extract, respectively).

The results of total oxidant capacity (mmoles g�1 plant
extract) by phosphomolybdenum method (as shown in Fig. 8)
depict that 1E showed maximum total antioxidant capacity (i.e.,
740.71 ± 159.09 mmoles g�1 plant extract), while 2E showed the



Fig. 7. Phenolic contents (mg/g of extract) of tested plant extracts. Boxplots show
the third quartile and first quartile (box edges), median (middle line) and range of
the data (whiskers). Each boxplot represents the average of three samples. Boxplots
sharing the same letters are statistically non-significant at p � 0.05 according to
Tukey’s HSD test (HSD value = 11.978).

Fig. 8. Total antioxidant capacity of tested plant extracts (mmoles/g of extract) by
phosphomolybdenum method at different concentrations (mg/ml). Vertical bars
represent standard error (n = 3). Bars sharing similar letter(s) are statistically non-
significant at p � 0.05 according to Tukey’s HSD test (HSD value = 48.47146).

Fig. 9. Free radical scavenging activity of tested plant extracts in terms of percent
decolorization (%) by DPPH method. Vertical bars represent standard error (n = 3).
Bars sharing similar letter(s) are statistically non-significant at p� 0.05 according to
Tukey’s HSD test (HSD value = 6.689342).

Fig. 10. The reducing power activity of tested plant extracts by FRAP method
(700 nm absorbance) at different concentrations (mg/ml). Vertical bars represent
standard error (n = 3). Bars sharing similar letter(s) are statistically non-significant
at p � 0.05 according to Tukey’s HSD test (HSD value = 0.01039239).
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lowest total antioxidant capacity (i.e., 216.96 ± 36.57 mmoles g�1

plant extract). As like phenolic contents, 4E, 3E, and 2E showed sig-
nificantly low total antioxidant capacity as compared to 5E (i.e.,
251.29 ± 43.93 mmoles g�1 plant extract, 442.28 ± 99.70 mmoles g�1

plant extract, and 216.96 ± 36.57 mmoles g�1 plant extract,
respectively).

The results of the DPPH bioassay (Fig. 9) depict the same trend
as phenolic contents except here in the DPPH bioassay results 2E,
3E, and 4E are statistically similar to each other with minimum
activity, while 1E and 6E are statistically similar to each other with
maximum activity. The reducing power activity of tested ethanolic
plant extract samples was carried out by the FRAP method. The
results regarding reducing power activity (Fig. 10) also depict the
same trend as phenolic contents except here in FRAP bioassay
results 2E, 3E, and 4E are statistically different from each other,
while 1E and 5E are statistically similar to each other.
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3.4. Cell viability assay/MTT assay

HepG2 cancer cells were seeded along with different serial con-
centrations (0 mg ml�1 as a control, 25 mg ml�1, 50 mg ml�1,
100 mg ml�1, 200 mg ml�1, and 400 mg ml�1) of ethanolic plant
extracts (i.e., 1E: Lower half of Avicennia marina‘s pneumatophores,
2E: Avicennia marina‘s leaves, 3E: Upper half of Avicennia marina‘s
pneumatophores, 4E: Avicennia marina‘s shoots, 5E: Phragmites
australis‘s shoot, and 6E: Moringa oleifera‘s leaves) for 48 h. Doses
of tested plant extracts, inducing 50% cell growth inhibition
(IC50) against HepG2 cancer cells growth are presented in Fig. 11.
4. Discussion

4.1. Antimicrobial activity

A number of plants have been studied for their antimicrobial
activities, and extracts of many medicinal plants have been shown



Fig. 11. Cytotoxicity (MTT) assay for tested plant extracts at different concentrations (mg/ml) against HepG2 cancer cell lines after 48 h of incubation. Vertical bars represent
standard error (n = 3). Bars sharing similar letter(s) are statistically non-significant at p � 0.05 according to Tukey’s HSD test. IC50 indicating the doses of tested plant extracts,
inducing 50% HepG2 cancer cell growth inhibition (HSD value = 25.90606).
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to be highly efficient against different microbial strains (Mahady
et al., 2008). Antibacterial activity may be attributed to active com-
ponents found in plant extracts. Many studies have shown the
potential of mangrove extracts against pathogenic microbes, and
they proposed that the mangrove plants are an important source
for the bioactive phyto-constituents with enormous medicinal
potential (Gurudeeban et al., 2015; Mouafi et al., 2014; Thatoi
et al., 2014).

The most common mechanisms for the treatment of microbial
infections are; interaction between drug and enzymatic system,
inhibition in genome replication, interference with mechanisms
associated with normal functions of the cell membrane and cell
wall (Mukhopadhyay and Peterson, 2006; Tenover, 2006). Okla
et al. (2021) reported the Benzoic acid and Phthalate in A. marina
based the ethanolic-extracts, which have been shown a permeabil-
ity barrier provided by the cells membrane and participate in many
cellular functions (Baek et al., 2015). Phytol is present in the leaves,
and it is the part of chlorophyll that may be transformed to its
derivative, i.e., phytanic acid. The antibacterial behavior of leaf
extract could be due to phytol (phytanic acid). Stigma-sterol is
another compound present in A. marina, and it has been stated to
participate in lactamase inhibition, which results in sensitivity of
the resistant strains to antibiotics (Yenn et al., 2017). The differen-
tial antibacterial activity is caused by active components contained
in plant extracts. For example, for survival in serious environmen-
tal circumstances, A. marina accumulated several phytochemicals
(Jia et al., 2004; Khattaba and Temraz, 2017; Li et al., 2010;
Mahera et al., 2011; Mahera et al., 2013; Okla et al., 2019). 4,5,7-
trihydroxyflavone (flavonoids) is the main antioxidant ingredient
in methanolic plant extract of A. marina along with other secondary
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metabolites, i.e., alkaloids, flavonoids, and steroids (Thatoi et al.,
2014), which may exert antibacterial activity against tested micro-
bial strains (Abeysinghe et al., 2003). Wu et al. (2008) studied the
mangrove plants in detail and reported 349 types of metabolites
associate with mangroves in terms of species, chemical composi-
tion, and their activities. Phyto-constituents work more effectively
when used synergistically than individually, as literature also
showed that the antimicrobial activity of essential oils as a whole
was found to be higher than its single constituents tested sepa-
rately (EL Moussaoui et al., 2021; Yu et al., 2020).

Our results also depict that all the ethanolic extracts used in this
study did not showed antimicrobial potential against all tested
microbial strains but they showed antimicrobial activity against
at least one tested microbial strains, indicating that ethanol is a
good solvent for the extraction of active ingredients of plant sam-
ples. The active constituent in extracts results in the creation of
microbial growth inhibition that appears as clear areas around
the wells. These effects are mainly depending upon the plant spe-
cies, plant parts, the extraction method, and the solvent utilized for
extraction. The Okla et al. (2021) found antibacterial activity in
alcohol and chloroform-based extracts of mangrove‘s root while
using ethyl acetate as a solvent only leaves extract showed antimi-
crobial activities. It clearly depicts that the effectiveness of plant
extracts also depends upon parts of the plant used and the solvent
utilized for extraction.

However, none of the tested extracts exhibit antibacterial activ-
ity against all microbial strains. The resistance response of tested
microbes was variable against extracts. These resistant microbes
may have certain types of tolerance mechanisms against plant
extracts, e.g., decrease the intracellular accumulation of active



Fig. 12. Pearson’s correlation among the total phenolic contents, antioxidant
activities, and cell viability. Where, MTT: Cell viability (%) by MTT assay against
HepG2 cancer cell lines; TPC: Total phenolic contents; FRAP: Antioxidant activity by
ferric reducing antioxidant power assay; TAO: Total antioxidant activity by
phosphomolybdenum method; DPPH: Antioxidant activity by 2,2-diphenyl picryl
hydrazyl (p � 0.05).
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ingredients, enzymatic inactivation, the mutation in target sites,
and or the dosage of active ingredient may not be appropriate
(Okla et al., 2021).

4.2. Antioxidant activity

The current investigation has proven that ethanol as a solvent
for the extraction of phyto-constituents can play an important role
in their antimicrobial and antioxidant properties. The findings of
Haq et al. (2011) clearly showed that the solvent used for extrac-
tion significantly influences the total phenolic contents of plant
extracts as phenolic contents in chloroform-based plant extract
of B. gymnorrhiza were ten times the phenolic contents present
in methanol and ethanol extract of the same plant sample. While
studying Lentinus edodes and Volvariella volvacea, Cheung et al.
(2003) found that for the extraction of phenolic contents, methanol
is a more efficient solvent as compared to water ethyl acetate and
petroleum ether.

The difference in phenolic contents of different plant extract
used in this study might be related to the plants type and plant
part difference. As previously reported that the total phenolic con-
tents of plant extracts are influenced greatly by plant type. Kubota
et al. (2000) reported that total phenolic components in peach are
influenced by its cultivars. Ahmed and Beigh (2009) also stated
variation in phenolic contents within subspecies of Brassica oler-
acea var. acephala. Comparison among extracts of different parts
of mangrove plants with respect to phenolic contents was also
studied earlier by Banerjee et al. (2008), and they concluded that
stem and roots of Ceriops decandra (Perr.) possess a higher amount
of phenolic contents compared to the leaves. In this study, we also
found a similar trend that phenolic contents in ethanolic extracts
of shoots and aerial roots were higher as compared to leaves of
A. marina. The study of Haq et al. (2011) also found the higher phe-
nolic compound in barks compared with leaves while studying
Bruguiera gymnorrhiza.

Phenolic contents show different types of physiological charac-
teristics, such as anti-allergenic, anti-artherogenic, anti-
inflammatory (Middleton et al., 2000), antimicrobial (Puupponen-
Pimiä et al., 2001), antioxidant (Banerjee et al., 2008), antithrom-
botic, cardioprotective, and vasodilatory effects (Manach et al.,
2005). To control the level of ROS for cell protection from stresses,
mangrove tissues are enriched with non-enzymatic antioxidants of
low molecular weight like; ascorbate, phenolic compounds, and
tocopherols (Thatoi et al., 2014). Estimation of antioxidant activity
by one antioxidant assay alone is not recommended (Rafat et al.,
2010). Therefore, to get more reliable data, we estimated antioxi-
dant activity by three different assays, i.e., total antioxidant capac-
ity, DPPH method, and FRAP assay. The importance of evaluating
antioxidant activity by a combination of different methods is also
confirmed by the findings of Haq et al. (2011) and Hakiman and
Maziah (2009). The tested extracts in this study showed antioxi-
dant activity correlated to their total phenolic contents (TPC).
There was a significant positive correlation among the TPC, cell via-
bility, and their antioxidant activities (Fig. 12). Phenolic com-
pounds could be a key factor for the antioxidant activity of
natural products (Kumar et al., 2021; Parr and Bolwell, 2000),
and as a result, they may be a natural antioxidant source. Similar
correlation trends were also reported by Sethi et al. (2020) while
studying apple fruit extracts.

4.3. Cytotoxic activity

Cancer is an emerging health issue around the world. Natural
products have long been used to cure and prevent many diseases,
including cancer, and thus phyto-chemicals are a good choice for
the development of anticancer drugs (Smith-Warner et al., 2000;
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Tavakkol-Afshari et al., 2008). In the current study, the cytotoxic
effects of ethanolic plant extracts in HepG2 cell lines were investi-
gated. Our data confirmed that all the tested extract has cytotoxic
activity against HepG2 cell lines up to some extent. Previous stud-
ies also reported that Avicenina marina (Eldohaji et al., 2021; Yang
et al., 2018), Phragmites australis (El-Borady et al., 2021; Hosny
et al., 2021; Oladipo et al., 2020; Petropoulos et al., 2018), Moringa
oleifera (Barhoi et al., 2021; Mumtaz et al., 2021) and their refined
constituents possess cytotoxic behavior against cancer cells. Possi-
ble modes of action for cytotoxic behavior could be; cell shrinkage,
compacting cytoplasm, chromatin condensation, pyknosis, and
DNA fragmentation (Obeng, 2020). In this study, Moringa oleifera
showed maximum cytotoxic potential as compared to the rest of
the treatments. We found that Moringa oleifera contains maximum
phenolic contents as compared to extracts of Avicenina marina and
Phragmites australis, which might be the major contributor to its
anticancer activities. The findings of Mumtaz et al. (2021) also sup-
port our point that Moringa oleifera based phenolic contents (i.e.,
gallic acid, p-coumaric acid, quercetin, and 4-hydroxy 3- methoxy
cinnamic acid) depict cytotoxic behavior and potential against can-
cer cell cells.
5. Conclusion

In this study, we compare antimicrobial, antioxidant, and cyto-
toxic activities of A. marina, P. australis, and M. oleifera based
ethanolic plant extracts. The activities of plant extracts vary from
species to species, plant habitat, and plant parts. As phenols are
the major constituents of plant extracts, the antioxidant activities
were significantly positively correlated with phenolic contents of
respective ethanolic plant extracts. Moringa oleifera based extract
(i.e., 6E) was found more active against HepG2 cell lines compara-
tively, which was the indicating that phenolic ingredients playing a
major role in cytotoxic activities because 6E contains maximum
phenolic contents comparatively. As a future thrust, the studies
should be conducted for quantification and purification to figure
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out complete chemical characterization and active ingredients pre-
sent in plant extracts that were used in this study.
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