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Brain-wide neuronal activation
and functional connectivity are
modulated by prior exposure to
repetitive learning episodes
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Memory storage and retrieval are shaped by past experiences. Prior learning

and memory episodes have numerous impacts on brain structure from micro

to macroscale. Previous experience with specific forms of learning increases

the efficiency of future learning. It is less clear whether such practice effects

on one type of memory might also have transferable effects to other forms of

memory. Different forms of learning and memory rely on different brain-wide

networks but there are many points of overlap in these networks. Enhanced

structural or functional connectivity caused by one type of learning may be

transferable to another type of learning due to overlap in underlying memory

networks. Here, we investigated the impact of prior chronic spatial training

on the task-specific functional connectivity related to subsequent contextual

fear memory recall in mice. Our results show that mice exposed to prior

spatial training exhibited decreased brain-wide activation compared to control

mice during the retrieval of a context fear memory. With respect to functional

connectivity, we observed changes in several network measures, notably an

increase in global efficiency. Interestingly, we also observed an increase in

network resilience based on simulated targeted node deletion. Overall, this

study suggests that chronic learning has transferable effects on the functional

connectivity networks of other types of learning and memory. The generalized

enhancements in network efficiency and resilience suggest that learning itself

may protect brain networks against deterioration.

KEYWORDS

cognitive stimulation, functional connectivity, context memory, immediate early
genes, mouse model

Introduction

It has been well established that prior learning experiences alter the canvas against
which new learning occurs. Learning results in numerous structural changes in the brain
ranging from cellular and synaptic changes (Lendvai et al., 2000; Nyberg et al., 2003;
Holtmaat et al., 2005; De Paola et al., 2006; Epp et al., 2013) to altered macroscale
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measurements of regional size and shape (Maguire et al., 2003;
Draganski et al., 2004; Bermudez et al., 2008; Hyde et al.,
2009; Scholz et al., 2009). A classic example of learning-induced
structural changes is the change in hippocampal volume that
occurs as a result of intense practice with spatial navigation in
London taxi drivers (Maguire et al., 2000). Similar increases in
hippocampal volume have also been observed in mice that were
trained on a spatial learning task (Lerch et al., 2011).

To the extent that there are relationships between brain
function and underlying structure, it should be predicted
that learning-induced structural changes should also induce
functional changes. Training-induced increases in hippocampal
volume for example are also associated with enhanced memory
performance (Bohbot et al., 2007).

In addition to structural changes, learning has been shown
in some studies to change the organization of memories in
the brain. In rats, previous studies have indicated that prior
training with a memory task can prevent lesion-induced deficits
in both similar and slightly distinct memory tasks (Clark and
Delay, 1991; Ocampo et al., 2018). This suggested that prior
learning experiences fundamentally change how and where
future memories are encoded (Owen et al., 2010; Nouchi et al.,
2012; West et al., 2017). Experiments such as these suggest some
form of reorganization but do not give a complete picture as to
how this reorganization has occurred.

Functional imaging experiments in humans have provided
evidence that cognitive stimulation, or memory training, alters
brain functional connectivity (Martínez et al., 2013; Dresler
et al., 2017; Bagarinao et al., 2019; Miró-Padilla et al., 2019;
Finc et al., 2020). These findings are of significant importance
because reorganization of functional networks could increase
the efficiency of learning and memory and could even increase
the resilience of cognitive processes to damage or deterioration.
However, investigating the influence of prior learning on
altered functional connectivity in humans is complicated by the
diverse cognitive, genetic and lifestyle differences in different
individuals.

In the present study, to further elucidate the impact of
prior learning on memory related functional connectivity, we
have developed a mouse model in which mice are trained
in a repeated acquisition spatial learning and memory task
for several months. Using mice, we are able to control for
environmental and genetic factors, and we can also control
for prior learning experiences. Our aim was to investigate
whether learning a spatial memory task would increase the
efficiency of the functional networks underlying a different form
of memory (contextual fear memory). Although spatial and
contextual memories are independent of each other, the circuits
involved in both of these forms of memory likely overlap in
numerous places including, most notably, the hippocampus
and connected structures. The repeated activation of regions
that are mutually involved in circuits across multiple forms of
learning and memory is likely a key factor in determining the

breadth of tasks that would be influenced by prior learning. To
examine the extent to which spatial memory training influences
contextual memory circuits, we adopted a brain-wide functional
connectivity approach using immediate early gene imaging that
has been recently described (Wheeler et al., 2013; Vetere et al.,
2017; Scott et al., 2020).

In this study, we show that chronic cognitive stimulation, in
the form of spatial learning is sufficient to induce generalized
changes in the organization of functional connectivity networks
underlying a test of contextual fear memory.

Materials and methods

Mice

8-week-old male C57BL/6J mice purchased from The
Jackson Laboratory (Bar Harbor, ME, United States) were used
for all experiments. Upon arrival, mice were group housed,
3-4 mice per cage, under a 12-h light/12-h dark cycle with
ad libitum access to food and water. Testing and handling was
performed during the light phase of the cycle. Behavioral tests
and network analyses were conducted using groups of n = 10.
Mice from the Morris Water Maze training group and the
cage control group were co-housed, and all mice received equal
handling throughout the study. All procedures were conducted
in accordance with protocols approved by the University of
Calgary, Health Sciences Animal Care Committee, following the
guidelines of the Canadian Council for Animal Care.

Morris water maze training

In order to provide mice with chronic cognitive stimulation,
we trained half of the mice on a repeated acquisition and
performance testing variant of the Morris Water Maze (MWM;
see Figure 1A for an outline of the testing schedule and
Figure 1B for the maze itself) (Spanswick et al., 2007). This task
was chosen because it provides considerable flexibility in design,
whereby a hidden platform can be moved to many different
locations within the maze to encourage continuous learning.
Furthermore, the spatial learning which occurs during MWM
training is supported by many of the same neuroanatomical
regions as contextual conditioning (Jo et al., 2007; Miller et al.,
2014; Giustino and Maren, 2015; Kwapis et al., 2015; Milczarek
et al., 2018). In this version of the task, the hidden escape
platform is moved every second day which requires mice to
repeatedly acquire new spatial memories throughout a 10-week
training period. We used 10 different platform locations, with
each platform location occurring on 2 separate occasions. Mice
were trained 4 days per week (2 platform locations). During
each daily session, mice were given four trials. Each trial lasted
a maximum of 60 s and was initiated by placing the mouse
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FIGURE 1

(A) Mice were trained on a repeated acquisition and performance testing variation of the MWM (n = 10) or kept in conventional housing
conditions (n = 10) for 10 weeks. Afterward all mice underwent contextual fear conditioning and a retention test 24 h later. (B) During water
maze training, the escape platform was moved every second day between 10 locations. After the 10th position, the platform was returned to the
1st position and the cycle was restarted. (C) Mean distance traveled in the water maze across each of the 20 locations. (D) During contextual
fear memory retrieval, (E) there was no overall difference in freezing rates between the control group and the group which had underwent
Morris Water Maze training (Paired two-tailed t test; P > 0.05). (F) Mice who had underwent Morris Water Maze training froze significantly more
during the first half (minutes 0-3) of the test than they did during the second half of the test (minutes 3-6; Two-Way Repeated Measures
ANOVA; Time × Treatment interaction: F1,18 = 7.763, p = 0.0122; MWM 0-3 – 3–6: p < 0.0066), while control mice showed no difference in
task performance across these two halves of the test. Data shown are mean ± SEM when applicable.

gently into the pool, facing the wall. The start location was
from a different cardinal compass position around the pool for
each trial and the order of start locations was randomized each
day. Trials were terminated once the mouse located the hidden
platform. If the platform was not found after 60 s, mice were
gently guided to the platform by the experimenter. Once on the
platform, mice were given 15 s to remain on the platform before
being returned to their cage. Trials were interleaved, whereby
each mouse performed their first trial before the first mouse
performed its second of four daily trials. This resulted in an
intertrial interval of approximately 10 min. The circular pool
had a diameter of 150 cm and a depth of 50 cm. The pool was
filled so that the water level was 2 cm above the surface of a
circular escape platform that had a diameter of 11 cm. The water
was made opaque using white non-toxic tempera paint. The
water was kept at a constant temperature of 22◦C and stirred and
cleaned of debris before each trial. Automated tracking software

(ANY-Maze, Stoelting, Wood Dale, IL, United States) was used
to record and analyze swim behaviors in the pool, primarily the
distance traveled prior to locating the hidden platform. When
analyzing these results, linear regression was applied to the mean
distance traveled by each mouse across each training session
to assess the influence of the memory of previous platform
locations on the ability to learn new platform locations. The
extent to which mice learned platform position within blocks of
consistent locations was assessed by examining the mean slope
of the regression lines between distance traveled at all first-day
trials and between all second day trials.

Contextual fear conditioning

After the conclusion of the Morris Water Maze training
protocol, all mice were trained in contextual fear conditioning.
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Training was conducted in sound-attenuated chambers with
grated floors through which shocks (0.5 mA; 2 s) were delivered
(Ugo Basile, Gemonio, Italy). Mice were first allowed to
acclimate to the chamber for 2 min prior to the presentation
of a series of 3 shocks, each separated by an interval of
90 s. 24 h after the training session, mice were returned to
the conditioning chambers for a 6-min retention test. During
this test, no shocks were administered, and behavior was
monitored via an overhead infrared camera in conjunction
with an automated tracking software (ANY-Maze, Stoelting,
Wood Dale, IL, United States). The chamber was cleaned using
70% ethanol and allowed to dry before and after each trial.
When analyzing these results, freezing criteria was defined as
bouts of a minimum of two seconds without ambulation. The
percentage of the trial spent exhibiting freezing behavior was
compared between groups.

Perfusions and histology

Mice were transcardially perfused with 0.1 M phosphate
buffered saline (PBS) followed by 4% formaldehyde 90 min after
retention testing. Brains were then extracted and post-fixed in
4% formaldehyde for 24 h. Fixed brains were cryoprotected in
30% W/V sucrose solution at 4◦C until no longer buoyant. From
cryoprotected brains, serial coronal sections with a thickness of
40 µm were cut on a cryostat (Leica Biosystems, Concord, ON,
Canada) and stored in 12 series at−20◦C in antifreeze solution.

Immunohistochemistry

When conducting labeling for c-Fos expression, all tissue
was processed concurrently. Tissue sections were washed 3 times
(10 min per wash) in 0.1M PBS before being incubated in a
primary antibody solution of 1:2000 rabbit anti-c-Fos primary
antibody (226 003, Synaptic Systems, Göttingen, Germany), 3%
normal donkey serum, and 0.03% Triton-X100 for 48 h at room
temperature on a tissue shaker. Tissue sections were washed
3 × 10 min in 0.1M PBS before secondary antibody incubation.
The secondary antibody solution was composed of 1:500 donkey
anti-rabbit Alexa Fluor 488 (111-545-003, Cedar Lane Labs,
Burlington, ON, Canada) in PBS for 24 h at room temperature.
Sections were then transferred to 1:2000 DAPI solution for
15 min before being washed 3 × 10 minutes in 0.1M PBS.
Labeled sections were mounted to glass slides and coverslipped
with PVA-DABCO mounting medium.

Brain-wide c-Fos quantification

Quantification of fluorescent c-Fos labeled cells was
conducted using a custom semi-automated segmentation and

registration pipeline (Figure 2A). All slides were imaged
as a single batch using an Olympus VS120-L100-W slide
scanning microscope (Richmond Hill, ON, Canada). Images
were collected using a 10x objective with a numerical aperture of
0.40 and a Hamamatsu ORCA-Flash4.0 camera. Labeled c-Fos
was imaged using a FITC filter cube and a 9.00 V lamp at
an intensity of 100% and an exposure time of 140 ms. DAPI
staining was imaged under the same conditions, but with a DAPI
filter cube and an exposure time of 65 ms. Cells expressing a
c-Fos label were segmented using the machine learning-based
pixel and object classification program, Ilastik (Berg et al., 2019).
To further prepare Ilastik output images and DAPI channel
photomicrographs for regional registration, a custom plug-in
was written for ImageJ. The pixel intensity threshold of the
Ilastik outputs was adjusted so as to only contain objects which
the program determined to be within the correct range of pixel
intensities and shapes. To compensate for inadequate regional
area measurements at an image-by-image level in the atlas
registration software, a mask of evenly spaced binary points was
generated from the DAPI channel image. The pixel intensity
thresholds of these images were adjusted to create a binary mask
in the shape of the tissue section. Grid lines were then overlaid
to create a mask of binary points arranged in a square grid in the
shape of the tissue section. Adjacent binary points were spaced
by 22 µm, therefore, each point in the mask accounted for an
area of 484 µm2.

Next, tissue sections were registered to plates of the
Allen Mouse Brain Atlas using the R-based Whole Brain
software (Fürth et al., 2018). Using this software, DAPI channel
images were used as references to which the atlas plates
were aligned. The number of segmented c-Fos labeled cells
per neuroanatomical region was quantified in Whole Brain.
Similarly, the binary point masks were processed to count the
number of points in each region. Regional areas were then
approximated using a Cavalieri-based point counting approach,
whereby the number of mask points in each region was
multiplied by the area accounted for by each point. This allowed
for the c-Fos labeled cells to be normalized by area and presented
as regional cell densities.

Validation of c-Fos quantification and
regional area approximation

A separate cohort of mice was used for the validation
of c-Fos labeled cell segmentation and regional area
approximation. c-Fos immunostaining and imaging was
identical to the methods described previously. To generate
ground truth cell counts as a gold standard for our automated
counting procedure, ten 500 µm x 500 µm regions of
interest (ROI) were randomly generated from each of
several regions including the basolateral amygdala, CA1,
dentate gyrus, paraventricular nucleus, and the retrosplenial
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FIGURE 2

(A) In the cell segmentation and tissue registration pipeline, tissue was sectioned, immuno-labeled, and mounted on slides prior to being
imaged on a fluorescent slide scanning microscope. Images of labeled c-Fos and DAPI staining were then processed using Ilastik and ImageJ to
generate binary c-Fos labels and a mask of evenly spaced grid points in the shape of the tissue sections. These binary images were then applied
to plates from the Allen Mouse Brain Atlas which had been morphed to align with the tissue sections using Whole Brain, yielding regional c-Fos
densities. (B) Examples of raw c-Fos+ cells in the BLA, CA1, DG, PVT, and RSC (top, L-R) and cells segmented using Ilastik (bottom). (C) A set of
ROIs was quantified for validation. Automated Ilastik segmentation yielded cell counts within the 95% confidence intervals of counts acquired
from trained independent experimenters in each of the aforementioned regions (Two-Way ANOVA; segmentation method factor:
F1,15 = 0.09515, p = 0.7620). Data presented as mean 95% ± confidence interval. (D) Cell counts collected using automated Ilastik processing
were found to correlate highly with mean counts gathered through manual counting (Pearson r = 0.9610, p < 0.01). Data presented as mean
95% ± confidence interval. (E) Area approximations generated using the pipeline were correlated with areas acquired by tracing regions
manually in ImageJ (Pearson r = 0.9941, p = < 0.0001). (F) c-Fos quantification across the 97 brain regions of interest. Relative to the control
group, c-Fos expression in the mice that had previously received Morris Water Maze training was decreased to a variable extent in all brain
regions.

cortex. These ROIs were processed through our Ilastik label
segmentation pipeline (representative raw and processed images
in Figure 2B). In addition, the same ROIs were hand counted
independently by 4 experimenters blind to the automated cell
count results. The total numbers of cells counted across all
counting boxes were then compared to assess whether or not

Ilastik could segment fluorescent c-Fos labels within natural
and acceptable inter-rater variability.

To assess the accuracy of regional area approximations,
areas generated using the Cavalieri-based point counting
approach were compared to the areas of these same regions
which were manually traced in ImageJ. During this analysis,
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five photomicrographs of each of the following regions
were examined: basolateral amygdala, CA1, dentate gyrus,
paraventricular nucleus, and the retrosplenial cortex.

Functional connectivity network
generation

We focused on a selection of 97 regions based on our ability
to discriminate these regions using a DAPI stained image as
reference (see Supplementary Table 1 for list of regions and
abbreviations). From this list of regions, c-Fos label densities
were cross correlated within each group to generate pairwise
correlation matrices. Correlations were filtered by statistical
significance and a false discovery rate of 5% (Benjamini and
Hochberg, 1995; Bassett et al., 2009). For network analyses,
correlation matrices were binarized to adjacency matrices based
on Pearson’s correlation coefficient and statistical significance
(r > 0.9; α = 0.005). This threshold allowed for sufficient
network density to study global brain dynamics, while still
limiting the analyses to only the strongest and most biologically
plausible connections (Schneidman et al., 2006). To ensure that
the thresholding parameters did not bias network analyses,
additional adjacency matrices were generated using either more
(r > 0.95; α = 0.0005) or less (r > 0.8; α = 0.05) conservative
thresholds. To analyze adjacency matrices as network graphs,
the 97 neuroanatomical regions were plotted as nodes.
Connections were drawn between nodes whereby correlations
surpassed correlation matrix thresholding parameters.

Functional connectivity network
analysis

Graph theoretical analyses were applied to network graphs
to examine global and local properties of the network. These
analyses were guided by the use of the Brain Connectivity
Toolkit (Rubinov and Sporns, 2010), the SBEToolbox (Konganti
et al., 2013), and other custom analyses. Network properties
examined include node degree, network density, global efficiency,
betweenness centrality, Katz centrality, and network resiliency.
In the following definitions, N is the array of nodes in the
network represented by adjacency matrix A. The number of
nodes in the network is represented by n and the number of
connections between nodes is l. The variable aij is the index into
the adjacency matrix which indicates the connection status of
nodes i and j. The presence of a connection is represented by
aij 6= 0 (Rubinov and Sporns, 2010). Node degree is the number of
connections that link a node to the rest of the network (Rubinov
and Sporns, 2010).

ki =
∑
j∈N

aij (1)

Network density is a metric of network dispersion. It is
expressed as a proportion of the number of connections in a
given network over the number of connections which would be
required to saturate a network of the same size (Rubinov and
Sporns, 2010).

kden =
2l

n2 − n
(2)

Global efficiency is defined as the inverse of the average
shortest path of connections between all possible pairs of
nodes (Latora and Marchiori, 2001; Achard and Bullmore, 2007;
Rubinov and Sporns, 2010).

E =
1
n

∑
i∈N

∑
j,h∈N,j6=i d−1

ij

n− 1
(3)

Betweenness centrality and Katz centrality are measures
which can be used to assess the importance of a node in the
effective communication of a network. Betweenness centrality
quantifies the number of shortest paths between nodes that pass-
through a given node (Freeman, 1978; Brandes, 2001; Rubinov
and Sporns, 2010).

bi =
1

(n− 1)(n− 2)

∑
h, j ∈ N

h 6= j, h 6= i, j 6= i

ρhj(i)
ρhj

(4)

Katz centrality applies an eigenvector approach to this
metric by weighting the connections involving more highly
connected nodes more heavily than those from lesser connected
nodes when considering the makeup of the shortest paths which
pass through a given node (Katz, 1953; Hubbell, 1965). The
attenuation factor, α, used for this analysis was 0.1 (Zhan et al.,
2017).

CKatz,i =

∞∑
k=1

n∑
j=1

αk(Ak)ij (5)

Network resiliency was assessed through targeted node
deletion and an assessment of the size of the largest community
of connected nodes and global network efficiency with each
deletion. Nodes were targeted for deletion in decreasing order,
from nodes with the highest degree to those with the lowest.
Degree was recalculated after each deletion and the list was
reordered accordingly.

Network metrics were both compared across conditions
as well as used to assess small world-like network properties
compared to random control network topology. Small world
network distribution can be described as being efficient at both
local and global scales (Watts and Strogatz, 1998). Random null
control networks were generated for both the cognitive training
and control groups and were matched for network size, overall
degree, and degree distribution. Local efficiency was assessed by
comparing mean clustering coefficients, while global efficiency
was assessed by comparing bootstrapped global efficiency values
with one hundred replacements. Networks were considered to
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display small world-like properties if they had displayed both
the high global efficiency characteristic of a random network and
increased local efficiency relative to random networks (Wheeler
et al., 2013).

Statistical analyses

Behavioral data from all tasks was recorded and analyzed
using ANY-Maze (Stoelting, Wood Dale, IL, United States).
All t-tests and Two-Way ANOVA for comparing behavioral
data, regional c-Fos expression, segmentation and regional
area approximation validation, and functional connectivity
networks were conducted using GraphPad Prism (GraphPad
Software, San Diego, CA, United States). GraphPad Prism
was also used to conduct the linear regression used to
assess inter-position memory and repeated new learning
in the Morris Water Task. The analysis of functional
connectivity networks was conducted using MATLAB.
Figures were generated using MATLAB, Cytoscape, and
GraphPad Prism.

Results

Morris water maze training alters
memory performance in unrelated
tasks

A repeated acquisition and performance testing variant
of the Morris Water Maze was used to provide chronic
cognitive stimulation (Figures 1A–C). Simple linear regression
was applied to assess inter-position memory and the presence of
repeated new learning. The slope of the best fit line of the linear
regression applied to the mean distance traveled by each mouse
across each training session was −0.067. When examining the
mean distances traveled across all first days at a given platform
position, the line of best fit had a slope of −0.068. Across
all second days at a given platform position, this slope was
determined to be −0.069. Within each platform location, the
line of best fit of the linear regression yielded a mean slope of
−0.97 which differed significantly from zero and was indicative
of improved performance over time within the same platform
location (one sample t test; p = 0.0010).

FIGURE 3

Pairwise correlation matrices (A,D), binarized adjacency matrices (B,E) and circle plots (C,F) showing significant correlations between regions
for control (A-C) and Morris Water Maze trained (D-F) groups. See Supplementary Table 1 for full list of regions. MWM training increased (G)
network density and (H) global network efficiency.
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To assess the generalization of improved cognitive
performance following long-term spatial learning, mice were
trained and tested in a contextual fear conditioning paradigm
(Figure 1D). The percentage of time that mice exhibited
freezing behavior was compared between groups and across the
training and retention test sessions. Across both sessions, there
were no significant differences in freezing behavior (Figure 1E).
However, when the retention was divided into a first half and a
second half, mice who had received cognitive training displayed
increased freezing behavior during the first half of the test
and then decreased freezing during the second half of the test
(Figure 1F).

Validation of c-Fos segmentation and
neuroanatomical atlas registration

To assess the reliability of the semi-automated c-Fos
segmentation and mouse brain atlas registration pipeline
used in this study (Figure 2A), we compared c-Fos counts
obtained using this pipeline to those gathered manually (see
representative images Figure 2B). We found that the number
of c-Fos labeled cells quantified using Ilastik processing fell
within the range of values counted manually by four different
experimenters across a subset of regions with varying levels
of background autofluorescence (Figure 2C). The inter-rater

FIGURE 4

(A) Consistent with definitions of small world organization, in both control and MWM trained networks the majority of nodes were of a low
degree. However, water maze training shifted the degree distribution and increased the number of highly connected nodes. (B) Also consistent
with small world organization, both control and MWM trained networks showed equivalent global efficiency to random networks matched for
degree distribution. (C) A third requirement for the classification of a small world organization is a higher clustering coefficient than a random
network. Compared to random networks matched for degree distribution, both control and MWM trained networks showed heightened
clustering. Data shown are mean ± 95% confidence intervals.
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reliability was determined to be 15% across the datasets as
a whole and the semi-automated cell counts were within
3.75% of the average of the manual cell counts. Manual and
automated cell counts were highly correlated across the sampled
brain regions (Figure 2D). WholeBrain region registration also
produced regional area approximations that correlated highly
with hand-traced regional area values (Figure 2E).

Prior spatial learning alters c-Fos
expression associated with context
memory recall

Changes in regional c-Fos expression density are depicted
in Figure 2F as the percent change from the regional c-Fos
expression density from the control condition to the group
which had underwent long-term spatial learning. We observed
decreased c-Fos expression density in all brain regions that
were analyzed in mice that had received prior spatial training.
With respect to brain-wide activity, prior spatial training
resulted in an overall significant decrease in c-Fos expression
(Supplementary Figure S1. Unpaired t test; p = 0.0003).

Morris water maze training alters
functional connectivity network
topology

Analyses of cross-correlated regional c-Fos expression
density revealed differences in global functional connectivity
network topology. On a global scale, we observed a
reorganization of connections throughout the brain
(Figures 3A–F). Relative to control conditions, mice that
underwent prior cognitive training exhibited an increase in the
overall density of functional connections during subsequent
contextual fear memory retrieval (Figure 3G). Furthermore,
the organization of these networks after prior cognitive training
resulted in increased global efficiency relative to the control
condition (Figure 3H). These increases were also present in
the networks constructed with both more or less conservative
thresholds, indicating that this effect was not an artifact of the
thresholding level (Supplementary Figure S2).

Control and morris water maze
training networks exhibit small-world
qualities

Networks from both control and spatial learning groups
exhibited heavy-tailed degree distribution characteristic of a
small-world network, with the majority of nodes making
very few connections and a lesser number of nodes carrying

disproportionate importance to the overall connectivity of the
network (Figure 4A) (Bassett et al., 2006; Bullmore and Sporns,
2009). Comparisons to random null networks also highlighted
that both the control and spatial learning networks maintained
the high global efficiency characteristic of random networks
(Figure 4B) while displaying increased clustering (Figure 4C).
Together, these analyses indicate that the functional connectivity
networks engaged during memory recall in both the control and
spatial learning conditions exhibit properties that are consistent
with small-world topology.

Morris water maze training alters
cluster organization and connectivity

Changes in network topology were also observed at the
local level. The organization of local communities within global
networks changes with long-term spatial learning. While the
size of the giant component (GC) (Figures 5A–C) underwent
very little change with MWM training, differences arose in the
connectivity patterns within this component. Within the GC,
MWM training increases the mean number of connections per
node (Figure 5D). The changes in connectivity coincided with
changes in network resiliency. When faced targeted deletion
of nodes, with deletions occurring in the order of decreasing
degree, long-term spatial learning increased the ability of the
network to preserve its giant component size (Figure 5E) and
global efficiency (Figure 5F).

Coinciding with these changes in network resiliency were
changes in Katz centrality. Katz centrality is a measure of
centrality which differentially weighs connections based on
the degrees of the nodes involved (Katz, 1953). This measure
has previously been shown to correlate highly with neuronal
activity compared to other measures of centrality (Fletcher and
Wennekers, 2018). While most nodes in the control network
had similar Katz centrality vectors (Figure 5G), MWM training
increased the centrality of a subset of regions (Figure 5H). There
was considerable overlap between these regions with increased
Katz centrality and the regions in the most densely connected
region of the GC. This was further corroborated by analysis
of regional degree distribution (Supplementary Figure S3)
and change in Katz centrality (Supplementary Figure S4)
which further highlighted an increase in connectivity and of
importance of numerous amygdala subregions following spatial
learning.

Discussion

In the current study we employed a brain-wide activity
mapping approach to examine the impact of a prolonged period
of repeated spatial learning on brain-wide patterns of activation
and functional connectivity. We posited that repeated activation
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FIGURE 5

Network plots of (A) control and (B) MWM trained networks with the giant component (GC) highlighted in each in the darker shade. (C) In these
networks, there is very little difference in the size of the GC. (D) Within the GC, there was an increase in the mean number of edges per node
with MWM training (Two-tailed t test, p < 0.0001). MWM training also made the (E) integrity of the GC and the (F) global efficiency of the
network more resilient to targeted node deletion. Relative to the control condition (G), MWM training (H) also increased Katz centrality of a
subset of regions within the network. Data shown are mean ± SEM when applicable.

of the circuits underlying spatial learning and memory might
alter the networks that represent other forms of hippocampus
dependent memory in the future. During the spatial learning
manipulation, we saw that in changing the hidden platform
location in the Morris Water Maze every second day, mice were

encouraged to continuously learn. This continuous learning was
evident by improved performance within platform positions
between the first and second days, supported by a significantly
negative slope in the regression analysis performed on the
mean distances travelled between these days. Furthermore, there
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was minimal change in performance across all trials with new
platform locations, as was evident by the minimal slope of
the regression line when analyzing mean swimming distance
across all trials, all first days only, and all second days only.
These findings suggest that mice were continuously learning
new platform positions and that this new learning was only
minimally altered by prior learning of conflicting platform
locations. Our results also clearly indicate that this prior spatial
learning manipulation caused significant changes to the task-
related functional connectivity associated with retrieval of a
contextual memory. In the current study, prior exposure to
repeated spatial learning episodes had minimal effects on the
overall retrieval of a subsequently acquired contextual fear
memory. Interestingly, when subdividing the retrieval period,
we noticed that the nature of the memory was different in
mice that had prior spatial training. Specifically, the retention
was stronger in the first half of the test and decreased in
the second half, whereas control mice showed stable retention
throughout the test. This could be indicative of an increase
in behavioral flexibility and/or increased rate of extinction in
the absence of additional foot shocks. That we did not observe
major differences in memory retrieval was not surprising given
that the subjects were normal mice without memory deficits,
the memory in control mice was already very strong and the
retention interval was short (24 h). This similarity in behavioral
performance between conditions allowed us to assess patterns
of neuronal activation without the confound of differential
memory ability. When we examined neuronal activation and
network organization underlying the memory in these two
groups, we observed a number of differences that could enhance
retention/retrieval in the face of cognitive decline.

We were most interested in investigating whether such a
manipulation, which might be viewed as memory practice or
training, would enhance measures of efficiency when examining
the storage and retrieval of future memories. The efficiency
of brain activity underlying cognitive function is vulnerable to
aging and disease. Decreased efficiency of cognitive processing
has been reported in several neurological conditions, including
major depressive disorder (Zhang et al., 2020), schizophrenia
(Sheffield et al., 2016), and Alzheimer’s disease (Srivishagan
et al., 2020). Even in healthy adults, patterns of brain activation
become less efficient with age (Ajilore et al., 2014; Chong et al.,
2019). These decreases in efficiency also coincide with decreased
cognitive performance, thereby indicating that an intervention
which can improve the efficiency of the functional connectome
may preserve cognitive function in these conditions (van den
Heuvel et al., 2009). We show here that the efficiency of brain-
wide activation, as measured by c-Fos expression, is greatly
increased in the mice that had prior spatial training. Efficiency
can be defined as equal or greater memory performance with
the expenditure of fewer resources (i.e., a decrease in activation)
(McQuail et al., 2020). Our results show that contextual
memory retrieval following spatial learning was associated with

a decrease in the total c-Fos expressing cells throughout the
brain compared to mice that had not previously experienced
any spatial training. Previously, it has been reported that c-Fos
expression density is increased in several neuroanatomical
regions following water maze training (Guzowski et al., 2001;
Teather et al., 2005). When interpreting the results of the
current study, it is imperative that we highlight the differences
in experimental designs which could underlie this difference.
In these studies, c-Fos expression was tagged directly to water
maze performance, while in the present study this expression
was tagged to the recall of a contextually conditioned memory.
Furthermore, the duration of the spatial learning period in
these previous studies was much shorter than that used in
the current design. Therefore, our results showing that all
brain regions exhibited reduced activity are not contradictory
with existing literature. Taken together, this pattern of activity
perhaps indicates that the behavioral expression of the memory
retrieval is more efficient on the level of neuronal activation.

At a network level, global efficiency can be estimated as the
inverse of the average shortest path lengths between all network
nodes. This measure represents the relative ease or difficulty
of integrating information between nodes in a network. Using
this measure, we found that mice which had received prior
spatial training exhibited enhanced global efficiency and higher
clustering compared to controls during subsequent contextual
memory retrieval. Both of these findings are consistent with the
effects of memory training observed using human functional
neuroimaging (Langer et al., 2013). This analysis corroborates
the interpretations of increased efficiency based on overall
brain activation. Further corroborating these interpretations are
changes in the Katz centrality within these networks. Centrality
measures can be used as proxies of the relative importance
of a node in the maintenance of effective communication
across a network and as indicators of the functional segregation
of the network as a whole. Spatial training increased the
centrality of a subset of nodes. This pattern of distribution
suggests a higher degree of network segregation and that this
subset of regions is relatively more important to the behavioral
expression of the context memory. Comparatively, based on the
variability of regional Katz centrality, all regions in the network
generated from untrained mice are of similar importance in
the expression of this same behavior. These findings coincide
with increased centrality in resting state memory networks
following working memory training in human neuroimaging
studies (Takeuchi et al., 2017). Together these metrics illustrate
that the redistribution of neuronal activation induced by prior
spatial learning is not only more efficient from the perspective
of energetic resources, but also proves to be more efficient with
respect to global flow of information throughout the brain.

Functional connectivity networks in the brain are
considered to be complex networks. Many complex networks
exhibit small world organization. Small-world networks
balance global efficiency with local clustering by having a
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small proportion of nodes to contribute disproportionately to
the overall connectivity of the network (Watts and Strogatz,
1998; Bassett et al., 2006; Sporns and Honey, 2006). This type
of organization facilitates specialized processing in dense,
local clusters while maintaining efficient information transfer
between clusters. Regardless of prior spatial training exposure,
the networks engaged by contextual memory retrieval displayed
characteristic small-world properties. Compared to random
networks, we observed that the memory networks had a
small number of highly connected regions, an increase in
clustering coefficient, and equivalent global efficiency. Small
world organization facilitates specialized processing in densely
connected local communities while also allowing for efficient
transfer of information between local communities. We used
Markov chain clustering to detect the structure of these
communities within the networks. In both networks there was a
large interconnected central component, referred to as the giant
component, which did not change in size as a result of prior
spatial training. However, there was a significant increase in
the density of connections within the GC of the group of mice
who had received prior spatial learning. The densely connected
giant component at the core of the network underlying context
memory expression in mice with prior spatial training contained
many redundant connections. Therefore, we hypothesized that
more successive deletions would be required to break apart
communities in a way which would be consequential to the
effective communication of the network. This hypothesis
was supported by the results of targeted node deletion. By
sequentially deleting nodes in the descending order of their
degree, we noted that mice which had prior spatial training were
able to retain a higher percentage of their basal global efficiency
and giant component size. In being more resistant to targeted
attack, this network can be said to be more resilient than the
network obtained from control mice (Achard et al., 2006).

Increased resiliency to targeted node deletion
presents interesting possibilities from the perspective
of neurodegenerative disease. The pathology of many
neurodegenerative conditions does not arise uniformly
throughout the brain and rather targets the most highly
involved regions of a network reviewed in Crossley et al. (2014).
In addition to suffering from targeted attacks, the functional
connectomes characteristic of many neurodegenerative
conditions networks also display decreased redundancy in their
connectivity patterns, rendering networks more vulnerable
to these attack (Langella et al., 2021). An efficient network
which is more resilient to attack has the potential to delay or
reduce cognitive decline during early neurodegenerative disease
progression (Rittman et al., 2019). The present study found that
cognitive stimulation through repetitive learning experiences
was able to increase network efficiency and resilience. Therefore,
the potential exists for prior exposure to repetitive learning
experiences to increase resiliency to deterioration. Future
studies of this phenomenon might build upon this by

examining whether prolonged cognitive stimulation and
the resulting alterations in functional connectivity are sufficient
for reducing cognitive deficits observed in early stages of
neurodegeneration. From the current results it is not known
whether the observed change in functional connectivity and
activity would be observed in tasks other than contextual fear
conditioning and as such this should also be investigated in
future studies.

In the present study, networks were generated based on
correlated expression of c-Fos across the brain. While this
method has been demonstrated at various levels of regional
organization in previous publications (Wheeler et al., 2013;
Vetere et al., 2017; Silva et al., 2019; Scott et al., 2020),
it is worth acknowledging the limitations of this approach.
While exhibiting excellent spatial resolution at the single cell
level, c-Fos expression is limited in its temporal resolution.
It is important to consider the delay that occurs between
cellular activity and c-Fos expression. A delay of 90 minutes
between cellular activity and peak c-Fos expression allows
us to use c-Fos to examine brain-wide activity tagged to
behavioral paradigms which are incompatible with head-fixed
neuroimaging techniques. However, it is impossible under the
current design to establish patterns of c-Fos expression during
distinct bouts of freezing or movement during conditioned
context reintroduction. In an experiment such as this in
which freezing behaviors were consistent between groups, it
is possible that this limitation has less of an impact on the
ability to interpret the results than in an experiment in which
the behaviors corresponding with the tagged neuronal activity
vary greatly between groups. In such scenarios, follow-up
experiments using an in vivo measure of regional activation
would be advised to assess the specificity functional connections
to distinct behavioral outputs.

When analyzing networks based on brain-wide correlated
c-Fos expression density the entire group is treated as a single
network. This limits the inferential statistics that can be applied
when comparing network metrics between groups. However, it
can be easy to overlook that underlying each cell in a correlation
matrix is a p value. In thresholding these correlation matrices
to generate the binary adjacency matrices that form the bases
of the presented network analyses, the statistical significance of
each correlation is heavily weighted. The thresholds examined
in the present study (α = 0.05, α = 0.005, and α = 0.0005)
were implemented so as to only consider the most statistically
significant correlations in the network analysis, thereby ensuring
than any descriptive comparisons between networks were
based on the organization of highly significant patterns of co-
activation.

Additionally, while we attribute the changes in network
topology to spatial learning, there are other possible factors
present during these episodes which may also contribute
to network reorganization. These heavily intertwined factors
include, exercise, motor activity, sensory exposure, and repeated
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acute stress. Among these factors, there is considerable debate
surrounding stress in the Morris water maze (Sandi et al.,
1997; Engelmann et al., 2006; Harrison et al., 2009). Repeated
exposure to this mild stressor could result in changes in
the HPA axis, which could then impact behavior and the
organization of functional connectivity networks underlying
a contextually conditioned fear memory (Sandi et al., 2003;
Rodríguez Manzanares et al., 2005). Mice given pool exposure
matched to the duration of the water maze training group
without an escape platform location to learn, commonly
referred to as a yoked control group, may superficially control
for exposure to the water maze. However, other issues arise
with yoked control group as there may be differences between
escapable and inescapable stressors. These points considered, it
was decided that measures controlling for exercise, such as the
use of a yoked control group might induce further variability.
However, the important conclusion of the current study is
that repeated learning and memory episodes induce widescale
changes in brain activity and functional connectivity during
encoding and/or retrieval of subsequent unrelated memory
tasks. Future studies will be required to assess the relative
influence of specific factors occurring during task exposure.
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