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Abstract

Background: Recent work has shown that mitochondrial biogenesis and mitochondrial functions
are critical determinants of embryonic development. However, the expression of the factors
controlling mitochondrial biogenesis in early embryogenesis has received little attention so far.

Methods: We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA) in
bovine oocytes and in various stages of in vitro produced embryos. To investigate the molecular
mechanisms responsible for the replication and the transcriptional activation of mtDNA, we
quantified the mRNA corresponding to the mtDNA-encoded cytochrome oxidase | (COXI), and
two nuclear-encoded factors, i.e. the Nuclear Respiratory Factor | (NRFI), and the nuclear-
encoded Mitochondrial Transcription Factor A (mtTFA).

Results: Unlike findings reported in mouse embryos, the mtDNA content was not constant during
early bovine embryogenesis. We found a sharp, 60% decrease in mtDNA content between the 2-
cell and the 4/8-cell stages. COXI mRNA was constant until the morula stage after which it
increased dramatically. mtTFA mRNA was undetectable in oocytes and remained so until the 8/16-
cell stage; it began to appear only at the morula stage, suggesting de novo synthesis. In contrast,
NRFI mRNA was detectable in oocytes and the quantity remained constant until the morula stage.

Conclusion: Our results revealed a reduction of mtDNA content in early bovine embryos
suggesting an active process of mitochondrial DNA degradation. In addition, de novo mtTFA
expression associated with mitochondrial biogenesis activation and high levels of NRFI mRNA
from the oocyte stage onwards argue for the essential function of these factors during the first
steps of bovine embryogenesis.

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16285882
http://www.rbej.com/content/3/1/65
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Reproductive Biology and Endocrinology 2005, 3:65

Background

Mitochondria, which are maternally inherited organelles,
perform several cellular functions, e.g. energetic metabo-
lism, calcium and iron homeostasis, signal transduction,
and apoptosis, and play a role in metabolic pathways such
as those involved in the biosynthesis of heme, lipids,
amino acids and nucleotides [1]. These mitochondrial
functions are therefore likely to be critical determinants of
early embryonic development at various levels including
spindle organization, chromosomal segregation, cell-
cycle regulation, and morpho-dynamic processes such as
compaction, cavitation and blastocyst hatching [2].

Pre-existing oocyte components are critical during the
interval between fertilization and the so-called maternal-
embryonic transition (MET) when the transcriptional
activity of the embryonic genome becomes fully func-
tional. During this period the development of the embryo
is supported by maternal RNAs, proteins and organelles
stored in the ooplasm. The transcription of the embryonic
genome start at the 2-cell stage in the cow, defining a step
called minor activation of the embryonic genome [3].
During the first cell divisions there is a balance between
maternal and embryonic transcripts. Indeed, embryonic
transcription and the degradation of maternal mRNA are
gradual processes [4]. When the embryo reaches the 8/16-
cell stage, the MET occurs, marking the major activation of
the embryonic transcription and explaining the sharp
increase in the RNA level at the blastocyst stage [3].
Throughout the preimplantation period the gene expres-
sion pattern is not constant but varies according to the
gene considered.

The active transcription of the mitochondrial genome
starts at different developmental stages depending on the
species. In mice, the mtDNA transcription occurs in the
late 2-cell stage, whereas it occurs in the 4/8-cell stage in
humans and in the 8/16-cell stage in cattle [5,6]. The
molecular mechanisms responsible for this transcrip-
tional activation of mtDNA during early embryogenesis
are not well understood. Ubiquitous transcription factors,
such as the nuclear respiratory factor 1 (NRF1) and the
mitochondrial transcription factor A (mtTFA), are well
known to regulate mtDNA transcription in various tissues.
NRF1 transactivates the promoters of a number of mito-
chondrial-related genes including genes coding for respi-
ratory chain subunits and mtTFA [7]. Mitochondrial TFA
is a nuclear-encoded high-mobility group (HMG) box
protein, which binds upstream of the light- and heavy-
strand mtDNA promoters [8]. This transcription factor
also regulates mtDNA replication, since the initiation of
replication of the leading strand of mtDNA depends on an
RNA primer produced by transcription from the light-
strand promoter. Moreover, there is new evidence that
mtTFA plays a role in the direct regulation of the mtDNA
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copy number [9]. A recent study on early mouse embryo-
genesis shows that sharp changes in the abundance of
NRF1 and mtTFA mRNAs occur in the 8-cell stage, which
is one cell cycle before changes appear in mitochondrial
oxidative phosphorylation transcripts, although mtDNA
replication does not occur until later in the development
[10]. In contrast to mouse embryos, in vitro fertilized
bovine embryos showed a significantly higher mtDNA
copy number at the blastocyst stage [11]. Since the bovine
blastocyst has a high mtDNA copy number, it offers a
good mammalian model to study the regulation of the
transcription of factors controlling mtDNA replication in
the preceding stage.

The purpose of this study was to explore the variation of
mtDNA and mitochondrial RNA (mtRNA) content
through the different stages of early bovine embryogene-
sis and to investigate the possible role of NRF1 and mtTFA
in the activation of mtDNA replication and transcription.
To achieve this, we used the real-time polymerase chain
reaction (PCR) to quantify mtDNA, and real-time reverse-
transcription PCR (RT-PCR) to quantify mtDNA tran-
scripts as well as NRF1 and mtTFA transcripts in met-
aphase II bovine oocytes and in bovine embryos at early
stages of development.

Methods

In vitro production of bovine oocytes and embryos
Cumulus oocyte complexes (COCs) were obtained from
bovine ovaries collected immediately after slaughter and
transported to the laboratory in container maintained at
30°C. The content of antral follicles 2-8 mm in diameter
was aspirated and recovered in a conical 50-ml tube con-
taining 10 ml of HEPES-buffered M199 medium at 39°C.
Oocytes were selected on the basis of their morphology
and rinsed before in vitro maturation. COCs containing
degenerated oocytes, oocytes with irregular ooplasm, and
COCs with abnormal or expanded cumulus investments
were discarded.

The maturation of the COCs was carried out as described
in the literature [12]. Briefly, the COCs were matured in
vitro for 22-24 h at 39°C under a humidified atmosphere
of 5% CO, and air in M199 medium supplemented with
10% fetal calf serum (FCS) (Life Technologies, Cergy,
France), 10 pg/ml FSH (Stimufol, Mérial, Lyon France), 1
pg/ml LH and 1 ug/ml estradiol 17f (Sigma). At the end
of the maturation period, cumulus-expanded oocytes
where either inseminated in vitro with frozen-thawed
semen, or dechoronized and retained if they present their
first polar body (group of metaphase II oocytes before
insemination). One ejaculate from a single bull was used
throughout all the experiments. Eighteen hours after ferti-
lization, presumptive zygotes had their cumulus cells
removed by vortexing and were transferred into 50 pl
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Table I: Primer couples and PCR conditions
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Gene Primer sequence D Primer sequence R PCR! AT2 CN3
COXIl 5-AAA-TAA-TAT-AAG-CTT-CTG-ACT-CC-3' 5'-TCC-TAA-AAT-TGA-GGA-AAC-TCC-3' 190 56 4.8

mtTFA  5'-CAA-ATG-ATG-GAA-GTT-GGA-CG-3' 5-AGC-TTC-CGG-TAT-TGA-GAC-C-3' 148 58 6.1
NRFI 5'-CCC-AAA-CTG-AGC-ACA-TGG-C-3' 5'-GTT-AAG-TAT-GTC-TGA-ATC-GTC-3' 162 58 5.6

I'PCR: PCR product length/pb
2 AT: Annealing temperature/degree C°
3 CN: Copy Number in | ng of PCR product x 10°

microdrops of B2 medium (CCD-laboratories, Paris,
France) supplemented with 2.5% of FCS and containing a
layer of Vero cells for coculture according to a technique
described elsewhere [12]. A total number of 610 in vitro
matured oocytes were inseminated through 5 replicate
experiments. Inseminated oocytes were distributed by
groups of about 30 presumptive zygotes in microdrops.
Oocytes that failed to divide at 28 hpi were collected at
that time to constitute the group of uncleaved oocytes.
Each microdrop was then allocated to the collection of
one of the following specific developmental stage : 2-cell
at 28 hpi, 4/8-cell at 48 hpi, 8/16-cell at 72 hpi, morula at
120 hpi and blastocyst at 168 hpi. Only the more
advanced embryos in development for each stage, and
morulas and blastocysts of highest visual quality were
included in the study. Fach sample was constituted by a
single oocyte or embryo rinsed in 50 pl of PBS - immedi-
ately frozen in liquid nitrogen and individually stored at -
80°C until assay.

DNA extraction and mtDNA quantification was per-
formed on 105 oocytes and embryos: 15 single metaphase
II oocytes collected just before insemination, 15 met-
aphase II oocytes, which had failed to cleave, and 15 iso-
lated embryos at each of the developmental stages. RNA
extraction and RNA transcript quantification were carried
out on a similar series of 105 oocytes and embryos at the
same developmental stage.

DNA extraction

DNA was extracted from each single oocyte or embryo by
means of the High Pure PCR Template Preparation Kit
(Roche Diagnostics, Mannheim, Germany) according to
the manufacturer's recommendations. The DNA was
bound specifically to glass fibers following the combined
action of a chaotropic agent (guanidine), a detergent (Tri-
ton X-100) and the enzyme proteinase K. After washing,
the silica-bound DNA was eluted with 200 ul of pre-
warmed (72°C) elution buffer and maintained at 4°C.
The extraction efficiency, assessed as described elsewhere
[13], was greater than 90%.

RNA extraction and Reverse transcription (RT)

Poly(A) RNA was prepared from isolated single oocytes
and embryos using the High Pure Viral RNA Kit (Roche
Diagnostics, Manheim, Germany) following the manufac-
turer's instructions. Briefly, lysis was accomplished by
incubation of the sample in a special Binding Buffer (4.5
M guanidine-HCl, 50 mM Tris-HCI, 30% Triton® X-100)
supplemented with poly(A) carrier RNA. The nucleic acids
then bound specifically to the surface of glass fibers in the
presence of a chaotropic salt. After washing, the silica-
bound RNA was eluted with 50 pl of elution buffer and
stored at -80° C until use. To confirm the absence of con-
taminating DNA, each RNA extract was subjected to the
amplification protocol with the COX1 primer (see below)
before reverse transcription.

Ten microlitres of each resultant poly(A) mRNA sample
were used in duplicate. The RT-PCR reaction was carried
out with the Advantage RT for PCR Kit (Becton Dickinson,
Franklin Lakes, NJ, USA) following the manufacturer's
instructions using a random hexamer mix to prime the RT
reaction and to produce cDNA. Tubes were heated to
70°C for 2 mn to denature the secondary RNA structure
and the RT mix was completed with 200 U of the MMLV
RT enzyme. They were then incubated at 42°C for 1 hour
to promote the reverse transcription of RNA, followed by
incubation at 94°C for 1 mn to denature the RT enzyme.
Each sample was completed to 50 ul with RNAse-free ster-
ile water and stored at -80°C until use.

Primer design

For mtDNA quantification, we used a couple of primers
located in the COX1 gene (Table 1). The PCR product was
a 190-bp DNA fragment. mtRNA quantification was per-
formed using the same couple of primers. Because bovine
sequences for mtTFA and NRF1 are currently unknown,
we first used primers located in sequences highly con-
served between species in order to amplify bovine
sequences. The conserved sequences of NRF1 and mtTFA
mRNAs were evaluated by nucleotide multiple-sequence
alignments of several orthologues using Clustal W 1.83
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[14]. Alignments of complete NRF1 coding sequences
were performed using sequences available in RefSeq from
Homo sapiens (NM_005011), Mus musculus
(NM_010938) and Danio rerio (NM_131680). Align-
ments of complete mtTFA coding sequences were per-
formed using sequences available in RefSeq from Homo
sapiens (NM_003201), Mus musculus (NM_010938),
and Rattus norvegicus (NM_131680).

After purification (High Pure Purification Kit, Roche Diag-
nostics, Mannheim, Germany) and sequencing of the PCR
products, we designed bovine-specific primer couples.
The PCR products were a 148-bp DNA fragment for
mtTFA and a 162-bp DNA fragment for NRF1 (Table 1).

We also tried to quantify the housekeeping genes -actin
and histone H2A using primers described in the literature
[15,16].

Preparation of external standards

For each gene studied, PCR reactions were carried out
under standard conditions with 100 ng of total bovine
DNA, extracted from a piece of bovine muscle, in a 50 ul
volume: 1.5 mM MgCl,, 75 mM Tris-HCI (pH 9 at 25°C),
20 mM (NH,),SO,, 0.01% Tween 20, 50 pmol of each
primer, 200 uM of each ANTP and 2 units of GoldStar
DNA polymerase (Eurogentec, Belgium). Each of the 30
cycles consisted of a denaturation step of 30 seconds at
94°C, a hybridization step of 30 seconds at 58°C, and an
extension step of 1 min at 72°C. The PCR products were
purified using the High Pure Purification Kit (Roche Diag-
nostics, Mannheim, Germany) and quantified by spectro-
photometry. The quality of purification was checked by
means of the 260/280 ratios, values between 1.8 and 2.0
being considered acceptable. It was assumed that 1 ng of
a 100 bp product contained 9.1 x 102 molecules of dou-
ble-stranded DNA. Table 1 shows the number of mole-
cules of double-stranded DNA per nanogram of each of
the PCR products obtained. Several serial dilutions were
then made in order to assess the concentrations of a
known number of templates. These were used as external
standards for real-time PCR. The serial dilutions were all
stored at -20°C in single-use aliquots.

Quantification of mtDNA and cDNA

We used a Roche LightCycler to determine the mtDNA
and the cDNA copy number using the LightCycler Fast-
Start DNA master SYBR Green 1 kit (Roche, Mannheim,
Germany) as described elsewhere [13]. Briefly, 20-ul PCR
reaction mixtures were prepared as follows: 1x buffer con-
taining 4 mM MgCl,, 0.2 mM dNTPs, 0.5 uM of both
primers for each gene, SYBR Green I dye, 0.25 U HotStart
Taq DNA polymerase and 10 pl of the extracted mtDNA
or 10 pl of the cDNA obtained or 10 pl of standard with a
known copy number. The reactions were performed as
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follows: initial denaturing at 95°C for 7 min and 40 cycles
at 95°Cfor 1s, 56-59°C for 55, and 72°C for 13 s. The
SYBR Green fluorescence was read at the end of each
extension step (72°C). A melting curve (loss of fluores-
cence at a given temperature between 66°C and 94°C)
was analyzed in order to check the specificity of the PCR
product. For each run, a standard curve (log of the initial
template copy number on the abscissas, and the cycle
number at the crossing point on the ordinates) was plot-
ted using five 10-fold serial-dilutions (100-1,000,000
copies) of the external standard. This standard curve,
which depends on the efficiency of the PCR reaction,
allowed the determination of the starting copy number of
mtDNA or of the cDNAs in each sample. All samples were
tested twice. The raw data was then multiplied by 20 to
calculate the total mtDNA content in each oocyte or
embryo. For the transcripts studied, we multiplied the raw
data by 25 to express the cDNA level for each oocyte or
embryo treated. The precision of the real-time PCR quan-
tification was assessed as described elsewhere [13]. The
CV of the intra-assay and inter-assay values ranged from
3.9% to 9.1% and from 9.3% to 12.7% respectively.

Statistical analysis

Since the distribution of the variables analyzed was non-
Gaussian, all comparisons were made using the non-par-
ametric Mann-Whitney and Kruskal-Wallis U-tests.
Results are given as mean values + SE. Statistical analysis
was performed with SPSS software, version 10.1 (SPSS,
Chicago, IL, USA) and differences were considered signif-
icant at p < 0.05.

Results

In this study, the in vitro cleavage rate was 88% (as
assessed by the number of embryos with 2 cells or more at
48 hpi) and 54,4% of cleaved oocytes developed to the
blastocyst stage at day 7.

mtDNA copy number

The mean mtDNA copy number at each embryonic stage
is shown in Figure 1. There was no statistical difference
between the mean mtDNA copy number in metaphase 11
oocytes (373,000 + 63,000) and 2-cell embryos (371,000
+ 52,000). In contrast, the mtDNA content was signifi-
cantly higher in 2-cell embryos compared to 4/8-cell
embryos (p = 0.0008). There was no significant variation
of the mean mtDNA copy number between the 4/8-cell
stage (135,000 + 28,000), the 8/16-cell stage (163,000 =
36,000) and the morula stage (180,000 + 26,000). How-
ever, there was a considerable increase in the mtDNA copy
number at the blastocyst stage (688,000 + 50,000) (p <
0.0001).
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Comparison of mtDNA content in bovine oocytes and
embryos at various stages of development. The mtDNA con-
tent decreases between the 2-cell and the 4/8-cell stages (p =
0.0008); in contrast, it increases sharply between the morula
and the blastocyst stages (p < 0.0001). Bars with different
superscript differ significantly.

mRNAs quantification

It seems illusory to seek a detectable and constant house-
keeping gene during early embryogenesis. Indeed, this is a
much debated subject [10,15-17]. In our study B-actin lev-
els remained low or undetectable during the first stages
(oocyte, 2-cell, 4/8-cell, 8/16-cell stages), and then
increased dramatically during the morula stage. Moreo-
ver, histone H2A was not detectable until the morula stage
(data not shown). The reproducibility of the results (two
RT-PCRs for each sample tested twice for each gene) and
the homogeneity at a given embryonic stage led us to
express our results in arbitrary units per oocyte or embryo.

The levels of mitochondrial COX1 mRNA, which
remained roughly constant from the oocyte to the 8/16-
cell stage, increased sharply after the morula stage (p =
0.002) (Figure 2). The mtTFA mRNA was undetectable
until it appeared at the morula stage. The quantity of this
transcript increased dramatically at the blastocyst stage (p
< 0.0001) (Figure 2). The quantity of NRF1 transcripts
remained practically constant from the oocyte to the
morula stage, after which it increased significantly up to
the blastocyst stage (p < 0.0001) (Figure 2).
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Figure 2

Comparison of COXI, mtTFA and NRFI transcript levels in
oocytes and at various stages of bovine embryonic develop-
ment. Levels of COXI mRNA remain constant from the
oocyte to the 8/16-cell stage, and then increase sharply from
the morula stage onwards (p = 0.002). mtTFA mRNA was
not detected before the morula stage. The abundance of this
transcript increased dramatically at the blastocyst stage (p <
0.0001). The abundance of NRFI transcripts remained prac-
tically constant from the oocyte to the morula stage, after
which it increased significantly up to the blastocyst stage (p <
0.0001).

Uncleaved oocyte

There was no significant difference between mean mtDNA
copy number of post insemination uncleaved oocytes
(415,000 + 24,000) and 2-cell embryos (371,000 =
52,000) both collected 28 hpi. However, the number of
COX1 and NRF1 RNA transcripts was significantly lower
in the uncleaved oocytes as compared to the embryos that
cleaved or to the oocyte before insemination (p < 0.0001)
(Figure 3). Moreover, the mean mtDNA copy number and
transcripts levels are similar in oocytes collected before
insemination and 2-cell embryos (Figure 3).

Discussion

The mean mtDNA copy number per bovine metaphase II
oocyte reported here (373,000) is comparable to the
260,000 copies/oocyte first determined in 1982 [18]
using the hybridization technique, and very close to the
377,000 copies/oocyte recently found by our group using
real-time quantitative PCR [19]. Experiments on bovine
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oocytes have shown that the mtDNA content, in at least
some species, is related to the competence of develop-
ment to the blastocyst stage [19]. The progression of the
mtDNA content during early embryogenesis in vitro has
been performed only in mouse eggs [20]. This study, per-
formed on pooled oocytes and embryos with the South-
ern-blot technique, showed that the mtDNA content
remained constant from the oocyte to the implantation
stage. These results have led to the general belief that
mtDNA replication does not occur until after implanta-
tion [21]. This result has just been confirmed by quantita-
tive PCR analysis on mouse embryos [10]. However, the
fact that the mtDNA copy number remains stable during
early mouse embryogenesis could be due to a balance
between the degradation and synthesis of mtDNA.
Indeed, a recent report has indicated that mtDNA replica-
tion occurs in pronuclear and 2-cell stage mouse embryos
[22]. In contrast to the mouse model, a marked increase
of mtDNA replication from the blastocyst stage onwards
was found in bovine embryos. Thus, DNA replication is
disconnected from the implantation event (21 days in the
bovine), and occurs at an earlier embryonic stage in this
species. We observed a significant reduction of about 60%
in the mtDNA content between the 2-cell and the 4/8-cell
stages. This finding is reinforced by the fact that the met-
aphase II oocytes and the 2-cell embryos had similar high
mtDNA levels, whereas the 4/8-cell, the 8/16-cell embryos
and the morulas had similar low mtDNA levels (Figure 2).
This drastic reduction of mtDNA content argues in favor
of active destruction rather than a reduced turnover of
mtDNA molecules. It has been demonstrated that in the
course of mammalian embryogenesis, the paternal
mtDNA is destroyed at the same stage by a mechanism
involving the proteasome [23]. The active destruction of
mtDNA would be compatible with the bottleneck hypoth-
esis proposed to explain the homogeneity of the transmit-
ted mitochondrial genomes. This phenomenon of
restriction-amplification in the mtDNA copy number
seems to occur in multiple steps during oogenesis and
embryogenesis [24].

COX1 is a respiratory chain protein encoded by mtDNA.
We found that COX1 mRNA increases sharply from the
morula stage onwards. The same pattern of expression has
been described for cytochrome b mRNA, which is another
respiratory chain transcript encoded by the mitochondrial
genome [25]. According to several reports [5,6], the onset
of mitochondrial transcriptional activity appears to occur
at the same time as the MET. Before this, during the early
stages of bovine embryogenesis, the level of mitochon-
drial transcripts remains roughly constant. This observa-
tion is supported by other studies in which the inhibition
of mitochondrial transcription permitted embryonic
development in the mouse up to the blastocyst stage
(8,26]
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Figure 3

Comparison between uncleaved oocytes and 2-cell embryos
(both collected at 28 hpi), and oocytes collected before
insemination. Although, the mean mtDNA copy numbers did
not differ between these three groups, COXI and NRF|
transcripts were significantly fewer in uncleaved oocytes (p <
0.0001).

In mammals, mtTFA has been isolated only in humans
[27], in mice [28], and in rats [29]. The mouse mtTFA
gene, estimated to span about 10 kb, consists of 7 exons
and 6 introns [30]. The NRF1 gene sequence in mice,
sheep, fish and humans is partially or totally known. The
human NRF1 gene spans 65 Kb and comprises 11 exons
and 10 introns [31]. Since the sequences of bovine mtTFA
and NRF1 genes remain unknown, we selected nucleotide
sequences of primer couples among the exon sequences
that are highly conserved between species to obtain
bovine PCR products. We retained only the primer cou-
ples that yielded single, pure PCR products. Upon
sequencing, these PCR products showed a homology of
76% with human mtTFA and a homology of 89% with
human NRF1.

NRF1 and mtTFA are ubiquitous factors well known to
regulate mtDNA transcription and replication in various
tissues. The critical role of mtTFA in embryogenesis has
been demonstrated in transgenic experiments. Indeed, in
knockout mice the implication of mtTFA in the regulation
of the mtDNA copy number has been demonstrated
together with its essential involvement in mitochondrial
biogenesis and embryonic development [8]. In our study,
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we found no mtTFA expression before the morula stage.
The appearance of mtTFA transcripts is concomitant with
the increase of mitochondrial mRNA and just precedes the
increase of the mtDNA copy number. This result strongly
suggests that the activation of mitochondrial biogenesis in
the bovine embryo occurs between the 8/16-cell and the
morula stages under the impulse of mtTFA.

Moreover, it has been shown that the homozygous dis-
ruption of the mouse NRF1 gene leads to embryonic
death around the time of implantation. The depletion of
mtDNA occurring between fertilization and the blastocyst
stage suggests that NRF1 is required for mitochondrial
maintenance in vivo. In this mouse model, the transcrip-
tion of NRF1 occurred not only during oogenesis but also
in early embryogenesis [32]. We found that NRF1 expres-
sion was constant up to the blastocyst stage. Thus, it is
likely that NRF1 mRNA pre-exists in the oocyte and that a
balance is established between the degradation of mater-
nal transcripts and the synthesis of embryonic mRNA. The
expression of NRF1 all through early embryogenesis may
be necessary to maintain mitochondrial activity and other
vital embryonic functions without the intervention of
mtTFA [33]. This hypothesis is supported by the finding
that homozygous NRF1 knockout embryos died signifi-
cantly earlier than homozygous mtTFA knockout mouse
embryos (at an average age of 6.5 days versus 10.5 days).
Conversely, the onset of mitochondrial biogenesis at the
MET stage under the dependence of mtTFA may be initi-
ated either by NRF1, progressively unmasked to become
functional, or by other transcription factors known, at
least in humans, to act on the mtTFA promoter [34].

We found that bovine oocytes that failed to cleave at 28
hpi contained significantly fewer transcripts implicated in
mitochondrial biogenesis (COX1 and NRF1 mRNAs)
than 2-cell stage embryos (collected at the same time) as
well as potentially fertilizable oocytes collected before
insemination. This finding substantiates the hypothesis
that mitochondrial quality is closely related to the fertiliz-
ability of the oocyte and to the developmental capacity of
the embryo [35]. Indeed, in the case of human oocytes,
the developmental potential of the embryo has been
shown to be related to the ATP content of the cells [36].
Furthermore, the injection of a small number of mito-
chondria into mouse oocytes prevents these cells from
undergoing apoptosis [37]. However, further investiga-
tion will be needed to establish whether the impairment
of the factors of mitochondrial biogenesis is the central
cause of fertilization failure or merely incidental to a
vaster death process.

To our knowledge, this is the first study on a bovine
model and using isolated oocytes and embryos. We have
determined the kinetics of mtDNA replication and tran-

http://www.rbej.com/content/3/1/65

scription during early bovine embryogenesis in vitro and
studied the expression of mtTFA and NRF1, the two main
regulators of mitochondrial biogenesis. Our results sup-
port the hypothesis that these factors play a critical role in
mitochondrial biogenesis during early embryogenesis.

Authors' contributions

MPP carried out the DNA and RNA extraction, the PCR
(and the RT-PCR) reactions and drafted the manuscript.
VX and HY participated in collecting the oocytes and
embryos and collaborated in the design and the coordina-
tion of this study. CMF and TM have made substantial
contributions to the analysis and interpretation of the
data. They have been involved in revising the manuscript
critically for its content. MY has been involved in revising
the manuscript critically for his content. RP conceived the
study and participated in its design and coordination and
helped to draft the manuscript. All the authors have read
and approve of the final manuscript.

Acknowledgements

The authors wish to thank Ms Y. Lavergne for the technical preparation of
bovine oocytes and embryos, and Dr K. Malkani for his critical reading of
the manuscript.

References

I.  Delbart c: Role des mitochondries. In Les mitochondries: biologie et inci-
dences physiopathologiques Paris: Tec & Doc; 2000:61-93.

2. Van Blerkom J: Mitochondria in human oogenesis and preim-
plantation embryogenesis: engines of metabolism, ionic reg-
ulation and developmental competence. Reproduction 2004,
128:269-280.

3. Memili E, Dominko T, First NL: Onset of transcription in bovine
oocytes and preimplantation embryos. Mol Reprod Dev 1998,
51:36-41.

4.  Gandolfi TA, Gandolfi F: The maternal legacy to the embryo:
cytoplasmic components and their effects on early develop-
ment. Theriogenology 2001, 55:1255-1276.

5.  Telford NA, Watson A), Schultz GA: Transition from maternal to
embryonic control in early mammalian development: a
comparison of several species. Mol Reprod Dev 1990, 26:90-100.

6.  Thompson ]G, McNaughton C, Gasparrini B, McGowan LT, Tervit
HR: Effect of inhibitors and uncouplers of oxidative phospho-
rylation during compaction and blastulation of bovine
embryos cultured in vitro. | Reprod Fertil 2000, | 18:47-55.

7.  Scarpulla RC: Nuclear control of respiratory chain expression
in mammalian cells. | Bioenerg Biomembr 1997, 29:109-119.

8. Larsson NG, Wang ], Wilhelmsson H, Oldfors A, Rustin P, Lewan-
doski M, Barsh GS, Clayton DA: Mitochondrial transcription fac-
tor A is necessary for mtDNA maintenance and
embryogenesis in mice. Nat Genet 1998, 18:231-236.

9.  Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M,
Hultenby K, Rustin P, Gustafsson CM, Larsson NG: Mitochondrial
transcription factor A regulates mtDNA copy number in
mammals. Hum Mol Genet 2004, 13:935-944.

10.  Thundathil J, Filion F, Smith LC: Molecular control of mitochon-
drial function in preimplantation mouse embryos. Mol Reprod
Dev 2005, 71:405-413.

I'l. Smith LC, Thundathil ], Filion F: Role of the mitochondrial
genome in preimplantation development and assisted repro-
ductive technologies. Reprod Fertil Dev 2005, 17:15-22.

12. Menck MC, Guyader-Joly C, Peynot N, Le Bourhis D, Lobo RB,
Renard JP, Heyman Y: Beneficial effects of Vero cells for devel-
oping IVF bovine eggs in two different coculture systems.
Reprod Nutr Dev 1997, 37:141-150.

13.  Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner
F, Barriere P, Malthiery Y: Mitochondrial DNA content affects

Page 7 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9712315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9712315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11327683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11327683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11327683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2189447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2189447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2189447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10793625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10793625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10793625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9239537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9239537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15895466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15895466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15745628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15745628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15745628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9178355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9178355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331664

Reproductive Biology and Endocrinology 2005, 3:65

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

the fertilizability of human oocytes. Mol Hum Reprod 2001,
7:425-429.

Thompson JD, Higgins DG, Gibson TJ, Clustal W: improving the
sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
Lonergan P, Rizos D, Gutierrez-Adan A, Moreira PM, Pintado B, De
La Fuente ], Boland MP: Temporal Divergence in the Pattern of
Messenger RNA Expression in Bovine Embryos Cultured
from the Zygote to Blastocyst Stage In Vitro or In Vivo. Biol
Reprod 2003, 69:1424-1431.

De Sousa PA, Watson AJ, Schultz GA, Bilodeau-Goeseels S: Ooge-
netic and zygotic gene expression directing early bovine
embryogenesis: a review. Mol Reprod Dev 1998, 51:112-121.
Robert C, McGraw S, Massicotte L, Pravetoni M, Gandolfi F, Sirard
MA: Quantification of housekeeping transcript levels during
the development of bovine preimplantation embryos. Biol
Reprod 2002, 67:1465-1472.

Michaels GS, Hauswirth WW, Laipis PJ: Mitochondrial DNA copy
number in bovine oocytes and somatic cells. Dev Biol 1982,
94:246-251.

Tamassia M, Nuttinck F, May-Panloup P, Reynier P, Heyman Y, Char-
pigny G, Stojkovic M, Hiendleder S, Renard JP, Chastant-Maillard : In
vitro embryo production efficiency in cattle and its associa-
tion with oocyte adenosine triphosphate content, quantity of
mitochondrial DNA, and mitochondrial DNA haplogroup.
Biol Reprod 2004, 71:697-704.

Piko L, Taylor KD: Amounts of mitochondrial DNA and abun-
dance of some mitochondrial gene transcripts in early
mouse embryos. Dev Biol 1987, 123:364-374.

Cummins JM: The role of mitochondria in the establishment of
oocyte functional competence. Eur | Obstet Gynecol Reprod Biol
2004, 115(Suppl):523-29.

McConnell JM, Petrie L: Mitochondrial DNA turnover occurs
during preimplantation development and can be modulated
by environmental factors. Reprod Biomed Online 2004, 9:418-424.
Sutovsky P, Moreno RD, Ramalho-Santos |, Dominko T, Simerly C,
Schatten G: Ubiquitinated sperm mitochondria, selective pro-
teolysis, and the regulation of mitochondrial inheritance in
mammalian embryos. Biol Reprod 2000, 63:582-590.

Smith LC, Bordignon V, Couto MM, Garcia SM, Yamazaki W,
Meirelles FV: Mitochondrial genotype segregation and the bot-
tleneck. Reprod Biomed Online 2002, 4:248-255.

Bilodeau-Goeseels S, Schultz GA: Changes in the relative abun-
dance of various housekeeping gene transcripts in in vitro-
produced early bovine embryos. Mol Reprod Dev 1997,
47:413-420.

Piko L, Chase DG: Role of the mitochondrial genome during
early development in mice. Effects of ethidium bromide and
chloramphenicol. | Cell Biol 1973, 58:357-378.

Fisher RP, Clayton DA: Purification and characterization of
human mitochondrial transcription factor I. Mol Cell Biol 1988,
8:3496-3509.

Larsson NG, Garman JD, Oldfors A, Barsh GS, Clayton DA: A single
mouse gene encodes the mitochondrial transcription factor
A and a testis-specific nuclear HMG-box protein. Nat Genet
1996, 13:296-302.

Gadaleta G, D'Elia D, Capaccio L, Saccone C, Pepe G: Isolation of a
25-kDa protein binding to a curved DNA upstream the ori-
gin of the L strand replication in the rat mitochondrial
genome. | Biol Chem 1996, 271:13537-13541.

Larsson NG, Barsh GS, Clayton DA: Structure and chromosomal
localization of the mouse mitochondrial transcription factor
A gene (Tfam). Mamm Genome 1997, 8:139-140.

Gopalakrishnan L, Scarpulla RC: Structure, expression, and chro-
mosomal assignment of the human gene encoding nuclear
respiratory factor |. J Biol Chem 1995, 270:18019-18025.

Huo L, Scarpulla RC: Mitochondrial DNA instability and peri-
implantation lethality associated with targeted disruption of
nuclear respiratory factor | in mice. Mol Cell Biol 2001,
21:644-654.

Scarpulla RC: Transcriptional activators and coactivators in
the nuclear control of mitochondrial function in mammalian
cells. Gene 2002, 286:81-89.

Virbasius )V, Scarpulla RC: Activation of the human mitochon-
drial transcription factor A gene by nuclear respiratory fac-

35.

36.

37.

http://www.rbej.com/content/3/1/65

tors: a potential regulatory link between nuclear and
mitochondrial gene expression in organelle biogenesis. Proc
Natl Acad Sci U S A 1994, 91:1309-1313.

Hsieh RH, Au HK, Yeh TS, Chang §), Cheng YF, Tzeng CR:
Decreased expression of mitochondrial genes in human
unfertilized oocytes and arrested embryos. Fertil Steril 2004,
81(Suppl 1):912-918.

Van Blerkom ], Davis PW, Lee J: ATP content of human oocytes
and developmental potential and outcome after in-vitro fer-
tilization and embryo transfer. Hum Reprod 1995, 10:415-424.
Perez GI, Trbovich AM, Gosden RG, Tilly JL: Mitochondria and the
death of oocytes. Nature 2000, 403:500-501.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 8 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12826577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12826577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12826577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9712325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9712325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9712325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12390877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12390877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6295849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6295849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2443405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2443405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2443405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15511342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15511342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15511342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10906068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10906068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10906068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12709275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12709275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9211425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9211425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9211425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4738106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4738106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4738106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3211148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3211148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8673128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8673128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8673128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9060414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9060414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9060414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7629110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7629110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7629110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11943463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11943463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11943463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8108407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8108407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8108407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8108407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15019829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15019829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15019829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7769073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7769073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7769073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676949
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	In vitro production of bovine oocytes and embryos
	DNA extraction
	RNA extraction and Reverse transcription (RT)
	Primer design
	Preparation of external standards
	Quantification of mtDNA and cDNA
	Statistical analysis

	Results
	mtDNA copy number
	mRNAs quantification
	Uncleaved oocyte

	Discussion
	Authors' contributions
	Acknowledgements
	References

