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Expression of A152T human tau causes age-
dependent neuronal dysfunction and loss in
transgenic mice
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Abstract

A152T-variant human tau (hTau-A152T) increases risk for tauo-
pathies, including Alzheimer’s disease. Comparing mice with regula-
table expression of hTau-A152T or wild-type hTau (hTau-WT), we
find age-dependent neuronal loss, cognitive impairments, and spon-
taneous nonconvulsive epileptiform activity primarily in hTau-A152T
mice. However, overexpression of either hTau species enhances
neuronal responses to electrical stimulation of synaptic inputs and
to an epileptogenic chemical. hTau-A152T mice have higher hTau
protein/mRNA ratios in brain, suggesting that A152T increases
production or decreases clearance of hTau protein. Despite their
functional abnormalities, aging hTau-A152T mice show no evidence
for accumulation of insoluble tau aggregates, suggesting that their
dysfunctions are caused by soluble tau. In human amyloid precursor
protein (hAPP) transgenic mice, co-expression of hTau-A152T
enhances risk of early death and epileptic activity, suggesting
copathogenic interactions between hTau-A152T and amyloid-b
peptides or other hAPP metabolites. Thus, the A152T substitution
may augment risk for neurodegenerative diseases by increasing
hTau protein levels, promoting network hyperexcitability, and
synergizing with the adverse effects of other pathogenic factors.
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Introduction

The microtubule-associated protein tau accumulates in the brains of

patients with neurodegenerative disorders collectively known as

tauopathies [1–4]. Abnormal increases in neurofibrillary tangles,

composed primarily of filamentous tau aggregates [5–10], are a

pathological hallmark of Alzheimer’s disease (AD) [11] and corre-

late with cognitive decline in patients with AD [12,13]. Increased

levels of phosphorylated tau (p-tau) in cerebrospinal fluid [14] and

radiological evidence of abnormal tau accumulation in the brain

[15–17] are becoming important biomarkers for diagnosing AD and

related diseases. However, disease-linked mutations in the gene that

encodes tau in humans, MAPT, cause frontotemporal dementia

(FTD) with parkinsonism linked to chromosome 17 (FTDP-17), but

not AD [18,19]. Indeed, no MAPT mutations have been identified in

patients with autosomal dominantly inherited AD [20], which is

caused by mutations in APP, PS1, or PS2 that alter the proteolytic

cleavage of the human amyloid precursor protein (hAPP) [21]. In

addition, tau aggregates appear to differ in AD and other tauopathies

[22]. Consequently, it is unclear to what extent the tau dysfunction

in transgenic mice overexpressing human tau (hTau) with FTDP-17

mutations resembles that in AD patients.

An unusual MAPT variant encoding an A152T substitution was

reported to augment the risk not only for FTD spectrum (FTD-s)

disorders, but also for AD [23–25]. Investigating the in vivo effects

of this variant could shed light on the role of tau in these distinct

conditions and help identify pathogenic commonalities that may be

amenable to therapeutic intervention.

We therefore generated transgenic mice with neuronal

expression of A152T-variant hTau (hTau-A152T). To distinguish

the effects of the variant from those of hTau overexpression

per se, we generated transgenic mice expressing wild-type hTau

(hTau-WT) protein at comparable levels. In this study, we
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compared these new models using biochemical, histopathologi-

cal, electrophysiological, and behavioral approaches, as well as

challenge with an epileptogenic drug and crosses with hAPP

mice.

Results

Generation of transgenic mice with regulatable neuronal
expression of hTau-A152T or hTau-WT

We constructed a transgene encoding the 1N4R isoform of hTau-

A152T, the main isoform that accumulates in the brains of patients

with the A152T variant [26]. This transgene was placed under the

control of a second-generation minimal promoter that harbors

tetracycline response elements (pTRE-Tight; henceforth called TRE);

transgene expression requires co-expression of the tetracycline

transactivator protein (tTA) [27]. In this “tet-off” system, binding of

tTA to TRE, and consequently transgene expression, can be

prevented by feeding mice chow containing doxycycline (DOX).

Unless stated otherwise, the mice were not treated with DOX.

After pronuclear microinjection of the TRE-hTau-A152T trans-

gene, we obtained three transgenic founders, two of which gave

rise to transgenic lines (L1 and L3) in which TRE-hTau-A152T

expression could be transactivated by tTA. Heterozygous transgenic

mice from these lines were crossed with heterozygous transgenic

mice in which tTA expression is directed to excitatory forebrain

neurons by the calcium/calmodulin-dependent protein kinase II a
promoter (CaMKII-tTA) [28]. This cross resulted in the following

groups of littermates: nontransgenic (NTG) mice, singly transgenic

TRE-hTau-A152T or CaMKII-tTA mice, and doubly transgenic

CaMKII-tTA/TRE-hTau-A152T mice (henceforth called hTau-A152T

mice).

To determine whether the phenotype of hTau-A152T mice is

caused specifically by the A152T variant or by neuronal over-

expression of hTau, we also generated a TRE-hTau transgene

encoding 1N4R hTau-WT. Pronuclear microinjection of the TRE-

hTau-WT construct yielded seven transgenic founders, all of which

were crossed with the CaMKII-tTA line. In a pilot experiment,

cortical and hippocampal hTau protein levels in doubly transgenic

CaMKII-tTA/TRE-hTau-WT mice (henceforth called hTau-WT

mice) from L12 and L32 were closest to the levels in hTau-A152T
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Figure 1. Tau protein levels in brain tissues of hTau-WT and hTau-A152T mice and controls.

A–H Tau levels in the cortex (A, C–E) and hippocampus (B, F–H) of 4- to 10-month-old mice were determined by Western blot analysis. (A, B) Representative
Western blots of cortical (A) and hippocampal (B) homogenates from mice of the indicated genotypes show the levels of hTau (HT7) and total tau (Tau5).
Actin served as a loading control. (C–H) Quantitation of Western blot signals for full-length tau detected with the mTau/hTau cross-reactive antibodies
Tau5 (C, F) or EP2456Y (D, G) or the hTau-specific antibody Tau12 (E, H). n = 3–8 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed
unpaired t-test (E, H) or two-tailed Welch’s t-test (C, D, F, G). P-values were Holm-adjusted for multiple comparisons. Values are means � SEM. a.u.,
arbitrary units.
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L1 and L3. We therefore selected these hTau-WT lines for further

analysis.

To compare tau expression levels in cortical and hippocampal

homogenates in 4- to 10-month-old hTau-WT (L12), hTau-WT

(L32), hTau-A152T (L1), and hTau-A152T (L3) mice, we used

Western blot analysis with hTau-specific antibodies (HT7 and

Tau12) and mouse tau (mTau)/hTau cross-reactive antibodies

(Tau5 and EP2456Y) (Fig 1A–H). Cortical (Fig 1A and C) and

hippocampal (Fig 1B and F) hTau and total (m+hTau) tau levels

determined with HT7 and Tau5, respectively, were the highest and

best matched in hTau-WT (L32) and hTau-A152T (L1) mice. The

similarity of hTau expression levels in these lines was confirmed by

measuring hTau and total tau levels in another cohort of mice with

HT7 and two other antibodies (Tau12 and EP2456Y) (Figs 1D, E, G,

and H, and EV1A and B). Compared with endogenous tau levels in

NTG controls, total tau levels in hTau-WT (L32) and hTau-A152T

(L1) mice were increased 4- to 5-fold in the cortex (Fig 1D) and

3- to 4-fold in the hippocampus (Fig 1G), as determined by Western

blot analysis with EP2456Y.

The A152T variant increases the hTau protein/mRNA ratio and
decreases the formation of hTau fragments

Despite their comparable hTau protein levels, hTau-A152T (L1)

mice had 50% lower hTau mRNA levels than hTau-WT (L32)

mice (Fig 2A and B), suggesting that the GCC (Ala) to ACC (Thr)

replacement augments the production or reduces the turnover of

hTau protein. Consistent with the latter possibility, cortical and

hippocampal levels of hTau fragments were lower in hTau-A152T

(L1 and L3) than in hTau-WT (L12 and L32) mice (Figs 2C–F and

EV1C and D). These differences in hTau fragmentation/cleavage

may also account for differences between results obtained by

Western blotting and enzyme-linked immunosorbent assay

(ELISA). The ELISA detected higher levels of hTau in hTau-WT

(L32) than hTau-A152T (L1) mice (Fig EV1E–H), possibly because

of the additional signals from hTau fragments in the hTau-WT

(L32) line (Figs 2C–F and EV1C and D). Alternatively, the antibod-

ies used may have had different degrees of access to their epitopes

in these assays due to differences in tau conformation (on
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Figure 2. Levels of tau mRNA and tau fragments in brain tissues of hTau-WT and hTau-A152T mice and controls.

A–F Tau expression in the cortex (A, C, E) and hippocampus (B, D, F) of 4- to 10-month-old mice was determined by quantitative RT-PCR (A, B) and Western blot
analysis (C–F). (A, B) hTau mRNA levels in tissue homogenates were determined by quantitative RT-PCR. (C, D) Western blots from Fig 1A and B were enhanced to
better reveal tau fragments of ~40 kDa. (E, F) Quantitation of Western blot signals for tau fragments of ~40 kDa detected with Tau5 in tissue homogenates.
n = 3–4 mice per group. *P < 0.05, **P < 0.01 by two-tailed unpaired t-test (A, B) or two-tailed Welch’s t-test (E, F). P-values were Holm-adjusted. Values are
means � SEM.
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membrane after denaturation versus in solution without denatura-

tion).

Survival, general health, and early neuropathology

Our phenotype assessment focused on doubly transgenic mice

from hTau-WT (L32) and hTau-A152T (L1) because they had

comparable cortical and hippocampal levels of full-length hTau.

These mice were also compared with their NTG littermates.

Corresponding singly transgenic TRE-hTau-WT or TRE-hTau-A152T

mice and/or singly transgenic CaMKII-tTA mice from the respective

lines served as additional controls. Compared with the control

mice, hTau-WT (L32) and hTau-A152T (L1) mice survived

normally into old age (Fig EV2A and B). However, adult hTau-WT

(L32) and hTau-A152T (L1) mice weighed slightly less than NTG

controls (Fig EV2C–F).

Immunostaining of brain sections with the HT7 antibody

revealed widespread neuronal expression of hTau in the cortex,

hippocampus, amygdala, and striatum of hTau-WT (L32) mice and

hTau-A152T (L1) mice but not in NTG mice (Fig 3A–I).

Significant leakiness of expression in the absence of tTA has

been detected in a widely used singly transgenic TRE-hTau-P301L

line established with an earlier generation of the tetO promoter

[29–31]. In contrast, immunostaining of brain sections with the

HT7 antibody revealed no hTau expression in singly transgenic

TRE-hTau-WT (L32) or TRE-hTau-A152T (L1) mice (Fig EV3A–C),

whose transgenes contain a newer version of the tetO promoter

[27,32].

Consistent with the Western blot analysis, the intensity of

neuronal hTau immunoreactivity was similar in brain sections

from hTau-WT (L32) and hTau-A152T (L1) mice (Fig 3A–C).

However, in the CA1 region, hTau-A152T (L1) mice had a string-

like pattern of HT7 immunostaining that was not seen in hTau-WT

(L32) mice (Figs 3D–I and EV3D–M), possibly indicating a dif-

ference in the subcellular localization of hTau-A152T versus hTau-

WT in CA1 pyramidal cells, which are particularly vulnerable to

AD [33].

We also immunostained mouse brain sections with two antibod-

ies that are widely used to detect abnormal tau accumulations in

brains of humans with tauopathies: PHF1 (pSer 396, 404) and AT8

(pSer 199, 202, and pThr 205) [34,35]. In 2- to 4-month-old mice,

PHF1 labeled granule cells in the dentate gyrus of hTau-WT (L32)

and hTau-A152T (L1) mice but not NTG mice and stained mossy

fibers more strongly in hTau-WT (L32) and hTau-A152T (L1) mice

than in NTG controls (Fig 3J–L). AT8 yielded a similar staining

pattern, although the more extensive string-like staining in hTau-

A152T (L1) than hTau-WT (L32) mice was clearer with AT8 than

PHF1 (Fig 3M–O). PHF1 did not immunostain brain sections from

Mapt�/� mice, whereas AT8 gave low levels of background staining

that could be readily distinguished from the signal in hTau trans-

genic mice.

Western blot analysis of cortical or hippocampal homogenates

with PHF1 and EP2456Y revealed comparable ratios of p-tau to total

tau in hTau-WT (L32) and hTau-A152T (L1) mice that were higher

than those in NTG controls (Fig EV3N and O), suggesting that hTau

(or overexpressed tau) has a greater propensity to phosphorylation

than endogenous mTau and that the A152T substitution does not

alter the susceptibility of tau to phosphorylation.

Immunostaining of brain sections for glial fibrillary acidic protein

(GFAP) revealed astrocytosis in hTau-A152T (L1) mice by 4 months

of age, whereas age-matched hTau-WT (L32) mice showed only a

trend in this direction (Fig 3P–R). Immunostaining for the microglial

marker ionized calcium binding adaptor molecule 1 (Iba1) revealed

no obvious differences between hTau-A152T (L1) mice and NTG

mice at 4–8 months of age (Fig EV3P).

Accumulation of misfolded, nonfilamentous tau in neurons of
hTau-A152T mice is reversible

To determine whether the early neuropathology in hTau-A152T (L1)

mice is reversible, we suppressed hTau expression in hTau-A152T

(L1) mice with DOX for 2 months, starting at 6 months of age, and

analyzed them at 8 months of age. Immunostaining of brain

sections with the HT7 antibody confirmed complete suppression of

hTau expression in DOX-treated mice (Fig 4A–C). DOX also fully

reversed the abnormal immunostaining with PHF1 (Fig 4D–F). This

finding suggests that the increased PHF1 and HT7 immunoreactivi-

ties in hTau-A152T (L1) mice reflect the accumulation of soluble tau

species rather than insoluble tau aggregates, as insoluble tau aggre-

gates persisted even after the suppression of human tau expression

in other hTau transgenic models [31,36].

To further characterize the accumulating tau species in hTau-

A152T (L1) mice, we stained brain sections with the MC1 anti-

body, which detects abnormal conformations of tau in oligomeric

or filamentous tau assemblies [37,38]. In 8-month-old hTau-A152T

(L1) mice, HT7 and PHF1 labeled pyramidal cells in CA1–3, gran-

ule cells in the dentate gyrus, and mossy fibers, whereas MC1

labeled only mossy fibers emanating from granule cells in the

dentate gyrus (Fig 4A, D and G). MC1 also stained mossy fibers

but not CA1–3 pyramidal cells in hTau-WT (L12) and hTau-WT

(L32) mice (Fig EV3Q–S). The abnormal MC1 staining in hTau-

A152T (L1) mice was fully reversed by DOX treatment (Fig 4H and

I), providing additional evidence that it likely represents soluble and

possibly oligomeric tau rather than insoluble, filamentous tau. In

further support of this notion, Gallyas silver staining revealed dense

neuronal tau inclusions in the cortex and hippocampus of 10-

month-old rTg4510 mice, which express P301L-mutant hTau [31],

but not in 8- or 20- to 23-month-old hTau-A152T (L1) mice

(Fig EV4A–J). However, cortical neurons of old hTau-A152T (L1)

mice were faintly and diffusely labeled by silver staining

(Fig EV4D).

Doxycycline also effectively reversed the astrocytosis in hTau-

A152T (L1) mice (Fig 4J–M), demonstrating that it was caused by

hTau-A152T expression and not by a nonspecific confound such as

a line-specific insertional mutation.

To further examine tau aggregation in hTau-WT and hTau-

A152T mice, we used fractionation of brain tissue homogenates and

Western blot analysis to compare the amount of insoluble tau in

their cortex and hippocampus at 20–23 months of age with that in

PS19 mice at 10–12 months of age (Fig EV4K–P); PS19 mice express

the 1N4R isoform of hTau bearing the P301S mutation, which

strongly promotes hTau aggregation. Roughly comparable levels of

hTau expression were detected across these hTau transgenic lines,

but only PS19 mice had ~64-kDa tau (Fig EV4K, M and N), which

was recovered in sarkosyl-insoluble fractions (Fig EV4L, O and P).

These data support our conclusion that soluble and possibly
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Figure 3. hTau distribution and phosphorylation patterns, and astrogliosis in hTau-WT and hTau-A152T mice.
Coronal brain sections from 2- to 4-month-old mice of the indicated genotypes were immunostained with antibodies to tau (A–O) or GFAP (P–R).

A–I Sections of hemibrain (A–C), whole hippocampus (D–F), and CA1 region (G–I) immunostained for hTau (HT7).
J–O Hippocampal sections immunostained with phosphorylation-dependent tau antibodies: PHF1 (p396, 404) (J–L), AT8 (pSer 199, 202, and pThr 205) (M–O).
P–R Representative photomicrographs of GFAP immunostaining of the CA1 region (P, Q) and quantitation of GFAP immunoreactivity (R).

Data information: Scale bars: 1 mm (A–C), 300 lm (D–F and J–O), 100 lm (G–I), 25 lm (P, Q). n = 4 mice per genotype. **P < 0.01 by one-way ANOVA with post hoc
Tukey test. Values are means � SEM.
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hTau-A152T (L1) mice, DOX reduced hippocampal staining with HT7, PHF1, and MC1 (B, E, H) to the levels in DOX-treated NTG controls (C, F, I).

J–M DOX also normalized CA1 levels of GFAP immunoreactivity (IR) in hTau-A152T (L1) mice, as shown by representative photomicrographs (J–L) and quantitation of
GFAP immunoreactivity (M).

Data information: Scale bars: 300 lm (A–I), 25 lm (J–L). n = 3–4 mice per genotype. *P < 0.05 by two-tailed Welch’s t-test without Holm adjustment. Values are
means � SEM. a.u., arbitrary units.
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oligomeric tau rather than insoluble, filamentous tau accumulates in

brains of hTau-WT (L32) and hTau-A152T (L1) mice.

Age-dependent behavioral deficits in hTau-A152T mice

Nest building, an important innate behavior of diverse mammalian

species, depends on proper functioning of hippocampus and cortex

[39–41]. At 10–14 months of age, hTau-A152T (L1) but not

hTau-WT (L32) mice showed clear impairments in nest building

behavior, as compared with NTG and CaMKII-tTA controls (Fig 5).

Old hTau-A152T (L1) mice showed a trend in the same direction

(Fig EV5A), which was not statistically significant, possibly due to

an age-related decline in nest building capability in the control

groups.

To assess spatial learning and memory, we tested mice of all

four genotypes from hTau-A152T (L1) (cohort 1) in the Morris

water maze (MWM) at 4–6, 7–9, 11–14, and 17–19 months of age.

Compared with NTG mice, hTau-A152T (L1) mice showed age-

dependent impairments in learning and memory (Fig 6A–L). At

4–6 months of age, hTau-A152T (L1) mice learned the task more

poorly than NTG controls (Fig 6A) but showed no significant

memory retention deficits in a probe trial 24 h after the last train-

ing trial (Fig 6E and I). At 7–9 and 11–14 months of age, hTau-

A152T (L1) mice did not differ from NTG mice in task acquisition

and memory retention tests (Fig 6B, C, F, G, J and K). At

17–19 months, hTau-A152T (L1) mice, but not TRE-hTau-A152T

(L1) mice and CaMKII-tTA singly transgenic mice, showed

impaired learning relative to NTG controls. In the probe trial,

17- to 19-month-old hTau-A152T (L1) mice took longer to reach the

original platform location than age-matched NTG and CaMKII-tTA

mice and, unlike NTG and TRE mice, did not cross the target location

more often than equivalent locations in nontarget quadrants (Fig 6H

and L). Similar results were obtained in another cohort (cohort 2) of

11- to 17-month-old and 18- to 23-month-old hTau-A152T (L1) mice

(Fig EV5B–G).

To assess whether these behavioral deficits depend on the

A152T substitution, we tested a third cohort of 10- to 14-month-old

and 17- to 21-month-old hTau-WT (L32) and hTau-A152T (L1)

mice and NTG and CaMKII-tTA controls from both of these lines.

At 17–21 but not 10–14 months, hTau-A152T (L1) mice took

longer to reach the target platform during training than NTG

mice, whereas hTau-WT (L32) mice performed at control levels

(Fig 6M and N). In the probe trials, hTau-A152T (L1) mice tended

to take the longest to reach the original platform location and to

show the least preference for crossing the target location,

although these trends did not reach statistical significance

(Fig 6O–R). To increase the power of our analysis, we combined all

probe trial data from cohorts 1–3 at 10–17 and 17–23 months of age

(Fig 6S–V). The results of this extended analysis support the

conclusion that at ≥ 17 months of age hTau-A152T (L1) mice are

more impaired than hTau-WT (L32) mice (P = 0.0335 for latency

to target location and P = 0.0198 for target crossings, hTau-A152T

(L1) versus hTau-WT (L32) mice by unpaired one-tailed t-tests,

unadjusted), most likely as a result of the A152T substitution.

To assess social behavior, we analyzed a cohort of hTau-A152T

(L1) mice (Fig 7A and B) and another cohort of hTau-A152T (L1)

and hTau-WT (L32) mice (Fig 7C) with the social approach test at

young, middle, or old age. At all ages, all genotypes showed normal

social interaction, spending more time with an inverted wire cup

containing a live mouse than with an empty cup (Fig 7A–C).

Anxiety and exploratory behavior were assessed with the

elevated plus maze and the open field test, and motor functions

were assessed with the pole test, balance beam, and rotarod. It

should be noted in this context that transgene expression directed

by the CaMKIIa promoter is much more prominent in the forebrain

than the hindbrain [28]. At young ages, no significant differences were

detected among the genotypes in any of these tests (Fig EV6A–E).

Similar findings were obtained at old ages (Fig EV6F–J), except that

CaMKII-tTA mice showed less locomotor activity than hTau-A152T

(L1) mice, which did not differ from NTG mice (Fig EV6F), and that

hTau-A152T (L1) mice performed slightly better in the pole test than

NTG controls (Fig EV6G).

Age-dependent neuronal loss in hTau-A152T mice

To assess whether hTau-A152T may contribute to neuronal loss,

we stained coronal brain sections from 4- to 6-month-old and 20-

to 23-month-old NTG, hTau-WT (L32), and hTau-A152T (L1) mice

for the neuronal marker NeuN and counted NeuN-positive cells

with neuronal morphology in sections of the dentate gyrus and

hippocampal CA1 and CA3 regions. At 4–6 months of age, none

of the transgenic mice showed neuronal loss (Fig 8A–C). At

20–23 months, hTau-A152T, but not hTau-WT, mice had neuronal

loss in dentate gyrus and CA3 but not in CA1 (Fig 8D–F). These

findings suggest that the neuronal loss in hTau-A152T mice is

causally linked to the A152T substitution and is not simply caused

by overexpression of hTau per se. These findings are consistent

with the age- and A152T-dependent cognitive impairments

we observed in transgenic mice tested in the MWM (Figs 6 and

EV5B–G).
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Figure 5. Impaired nesting behavior of hTau-A152T mice.
Nesting behavior of mice at 10–14 months of age was scored 0–7 by an
investigator blinded to genotype. n = 17 NTG, 12 CaMKII-tTA, 13 hTau-WT (L32),
and 10 hTau-A152T (L1). Nest building was significantly impaired only in hTau-
A152T (L1) mice (P < 0.01 at 2 and 6 h) and CaMKII-tTA mice (P < 0.05 at 2 h,
P < 0.01 at 6 h) by nonparametric Wilcoxon rank-sum test with gatekeeping
approach and Holm adjustment. Values are means � SEM.
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We also looked for neuronal loss in CaMKII-tTA mice because

CaMKII-tTA expression has been reported to reduce neuronal counts

in mice of other genetic backgrounds, although toxicity on a

congenic C57BL/6J background was minimal [42]. We found no

neuronal loss in young CaMKII-tTA mice (Fig 8A–C). However,

there was a trend toward neuronal loss in older CaMKII-tTA mice

(Fig 8D and E) as compared to NTG controls (P = 0.088 in dentate

gyrus and P = 0.095 in CA3).

hTau accumulation increases synaptic transmission strength and
reduces paired-pulse facilitation

To examine synaptic functions before (4–8 months) and after

(20 months) cognitive impairments and neuronal loss arise in hTau-

A152T mice, we focused on the mossy fiber synapse between

dentate granule cells and CA3 pyramidal neurons, because mossy

fibers showed the most obvious accumulation of MC1-positive tau

in hTau-A152T (L1) and hTau-WT (L32) mice (Figs 4G and EV3S).

To examine transmission strength and plasticity at this synapse, we

stimulated mossy fibers and recorded field excitatory postsynaptic

potentials (fEPSPs) in CA3 stratum lucidum (Fig 9). Input/output

curves were analyzed by plotting the slope of the fEPSP as a func-

tion of fiber volley amplitude (Fig 9A–C). Even at 4–8 months of

age, the slope of the input/output curve in hTau-A152T (L1) mice

and hTau-WT (L32) mice was steeper than in NTG controls

(Fig 9B), suggesting increased synaptic transmission strength in

both hTau transgenic lines. Singly transgenic CaMKII-tTA and TRE-

hTau-WT (L32) mice did not differ from NTG mice. At 20 months,

synaptic transmission strength was further increased in both hTau-

A152T (L1) and hTau-WT (L32) mice (Fig 9C). These results

suggest that overexpression of hTau increases synaptic transmission

strength in an age-dependent manner and independently of the

A152T substitution, possibly as the result of hTau accumulation in

mossy fibers.

To determine whether the increased synaptic transmission

strength reflects presynaptic changes in the mossy fiber terminals,

we assessed paired-pulse facilitation [43,44]. The paired-pulse ratio

(PPR) did not differ among genotypes at 4–8 months (Fig 9D) but

was lower in hTau-WT (L32) and hTau-A152T (L1) than in NTG

mice at 20 months (Fig 9E). Thus, with aging, hTau expression

increases the probability of presynaptic vesicle release, which could

contribute to the age-dependent strengthening of synaptic transmis-

sion. In contrast, mossy fiber long-term potentiation (LTP) was

unchanged in hTau-A152T (L1) mice even at old age (Fig 9F).

The A152T variant enhances hTau-induced
network hyperexcitability

Patients with AD and related mouse models have an abnormal

proclivity to develop epileptiform network activity [45–48]. To

screen for such activity, we recorded electroencephalograms (EEGs)

in awake, behaving 4- to 9-month-old mice. At baseline, epilepti-

form spikes were more abundant in hTau-A152T (L1) mice and less

abundant in hTau-WT (L32) and CaMKII-tTA mice than in NTG

controls (Fig 10A, top, and B), suggesting a pro-epileptogenic effect

of the A152T variant.

In response to a subconvulsive dose of the GABAA receptor

antagonist pentylenetetrazol (PTZ, 30 mg/kg by intraperitoneal

injection), spike counts increased faster and reached higher levels in

hTau-A152T (L1) and hTau-WT (L32) mice than in NTG controls

(Fig 10A, bottom, and C). The number of spikes peaked during the

first 20 min after the injection in hTau-A152T (L1) and hTau-WT

(L32) mice but not until 20–40 min after injection in NTG controls.

These findings suggest that overexpression of hTau lowers the

threshold for chemically induced seizures. Curiously, CaMKII-tTA

mice had fewer epileptiform spikes than NTG mice 20–40 min after

injection (Fig 10C), consistent with the differences in their baseline

spike counts (Fig 10B).

Neuronal expression of hTau-A152T enhances risk of early death
and epileptic activity in hAPP mice

Since the A152T variant is associated with increased risk of AD

[23], we explored whether hTau-A152T sensitizes neurons to Ab-
induced dysfunction. We therefore crossed hTau-A152T (L1) mice

and hTau-WT (L32) mice with hAPP transgenic mice from line J20

(hAPP-J20) (Fig 11A–D). hAPP-J20 mice have pathologically

elevated levels of human Ab in the brain, increased risk of early

Figure 6. Age-dependent impairment of learning and memory of hTau-A152T mice in the MWM.
Mice from cohorts 1–3 were tested in the MWM at the indicated ages. Data from cohort 2 are shown in Fig EV5B–G.

A–D Learning curves of mice in cohort 1. Data at day 0 are from the first trial on day 1. Compared with NTG controls, only hTau-A152T (L1) mice showed significant
learning impairments at 4–6 and 17–19 (P < 0.001) months of age by Cox proportional hazards model analysis with mixed effects and Holm adjustment for the
following comparisons for each age range: NTG versus CaMKII-tTA, NTG versus TRE-hTau-A152T (L1), and NTG versus hTau-A152T (L1).

E–L Performance of mice from cohort 1 (E–L) in a probe trial (platform removed) 24 h after the last training trial. (E–H) Latency to reach original platform location.
(I–L) Number of times mice crossed the original platform location (black bars) or the average of their crossings of corresponding locations in the three other
quadrants (white bars).

M, N Learning curves of mice in cohort 3. Compared with NTG controls, only hTau-A152T (L1) mice showed significant learning impairments at 17–21 (P < 0.01) months
of age by Cox proportional hazards model analysis with mixed effects and Holm adjustment for the following comparisons for each age range: NTG versus
CaMKII-tTA, NTG versus hTau-WT (L32), NTG versus hTau-A152T (L1), and hTau-WT (L32) versus hTau-A152T (L1).

O–V Performance of mice from cohort 3 (O–R) and cohorts 1–3 combined (S–V) in a probe trial (platform removed) 24 h after the last training trial. (O, P, S, T) Latency
to reach original platform location. (Q, R, U, V) Number of times mice crossed the original platform location (black bars) or the average of their crossings of
corresponding locations in the three other quadrants (white bars).

Data information: Cohort 1: n = 12 (A–L) NTG; 13 (A, B, E, F, I, J), 11 (C, G, K), or 9 (D, H, L) TRE-hTau-A152T (L1); 11 (A, B, E, F, I, J), 10 (C, G, K), or 9 (D, H, L) CaMKII-tTA; and
14 (A, B, E, F, I, J), 13 (C, G, K), or 12 (D, H, L) hTau-A152T (L1) mice. Cohort 3: n = 17 (M–R) NTG; 12 (M, O, Q) or 11 (N, P, R) CaMKII-tTA; 13 (M, O, Q) or 12 (N, P, R) hTau-
WT(L32); and 10 (M–R) hTau-A152T (L1) mice. Cohorts 1+2+3: n = 47 (S, U), or 39 (T, V) NTG; 11 (S, U) or 9 (T, V) TRE-hTau-A152T (L1); 34 (S, U) or 31 (T, V) CaMKII-tTA; 13
(S, U) or 12 (T, V) hTau-WT(L32); and 43 (S, U) or 36 (T, V) hTau-A152T (L1) mice. *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA with post hoc Tukey (E–H, O, P) or
Dunnett’s (S, T) test, or one-tailed paired t-test with Holm adjustment (I–L, Q, R, U, V). Values are means � SEM.
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death (most likely from epileptic activity), and AD-like features,

including memory problems, behavioral alterations, synaptic

impairments, amyloid plaques, neuritic dystrophy, astrocytosis, and

microgliosis [49–53].

Among 141 offspring from crosses of hTau-A152T (L1) and

hAPP-J20 mice, only two were triply transgenic (TRE-hTau-A152T

(L1) + CaMKII-tTA + hAPP-J20), and both died shortly after weaning

(Fig 11A). This inheritance pattern differs from Mendelian princi-

ples (P = 0.0008 by chi-square test), and logistic regression con-

firmed a significant interaction between the three transgenes

(P = 0.0046) (Fig 11A).

Among 94 offspring from crosses of hTau-WT(L32) and hAPP-J20

mice, only five were triply transgenic (Fig 11C), which suggests only

a trend toward deviation from Mendelian inheritance (P = 0.110 by

chi-square test). In addition, only two of the five triply transgenic

mice from the hTau-WT (L32) × hAPP-J20 cross died at 2 months of

age, suggesting that coexpression of hAPP/Ab with hTau-A152T

may be more detrimental than coexpression with hTau-WT.

Notably, suppression of transgene expression by treating mothers

and offspring with DOX increased the number of triply transgenic

mice to around the average of other genotypes (Fig 11B and D).

Thus, the pathogenic effects of hTau-A152T, and possibly also

hTau-WT, on the phenotype of hAPP mice were not caused by

genomic effects but by expression of the transgene products.

To increase the survival of mice coexpressing hAPP/Ab and

hTau-A152T, we crossed hTau-A152T (L1) mice with mice from

hAPP line J9 (hAPP-J9), which express hAPP/Ab at lower levels

than hAPP-J20 mice [50,54–56]. Among 282 offspring from crosses

of hTau-A152T (L1) and hAPP-J9 mice, only eight were triply trans-

genic (Fig 11E). The inheritance pattern of this cross also did not

follow Mendelian principles (P < 0.0001 by chi-square test) and,

once again, logistic regression analysis revealed a significant inter-

action between the three transgenes (P = 0.036). However, none of

the triply transgenic mice died before adulthood. One died at

7 months and another at 10 months of age; the remaining six mice

were still alive at 11–17 months of age.

The survival of some hAPP-J9/hTau-A152T (L1) mice allowed us

to examine the combined effects of hAPP/Ab and hTau-A152T on

neural network activity in 3- to 10-month-old mice (Fig 11F). In

EEG recordings, hTau-A152T (L1) mice and singly transgenic hAPP-

J9 mice had more epileptic spikes than NTG mice, but these trends

were not statistically significant (P = 0.0773 for hTau-A152T (L1)

and P = 0.0556 for hAPP-J9 versus NTG by unpaired two-tailed

Welch’s t-test without Holm adjustment). In contrast, epileptic

spikes were more abundant in hAPP-J9/hTau-A152T (L1) mice than

in NTG controls (Fig 11F). These results suggest that neuronal

expression of hTau-A152T increases susceptibility to hAPP/Ab-
dependent epileptiform activity, which may explain the copatho-

genic interaction of these proteins reflected in the poor survival of

hAPP/hTau-A152T (L1) mice.

Discussion

Our side-by-side comparison of hTau-A152T and hTau-WT mice

suggests that the A152T substitution increases the hTau protein/

mRNA ratio in vivo, which could promote tau accumulation in the

brains of A152T carriers. This effect may explain, at least in part,
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Figure 7. Normal sociability of hTau-A152T-WT (L32) and hTau-A152T
(L1) mice.

A–C One cohort of mice was assessed with the social approach test at young
(A) and old (B) age and another cohort of mice at middle age (C). Mice
were placed individually into the empty center chamber of a three-
chamber apparatus. One side chamber contained an empty cup, and the
other an identical cup with an unfamiliar live mouse in it. Close contact
with each cup was monitored for 10 min. n = 12 (A, B) or 17 (C) NTG; 13
(A) or 10 (B) TRE-hTau-A152T (L1); 12 (A), 9 (B), or 12 (C) CamKII-tTA; 13
(C) hTau-WT (L32); and 14 (A), 12 (B), or 10 (C) hTau-A152T (L1) mice.
*P < 0.05, **P < 0.01, ***P < 0.001 by one-tailed paired t-test with Holm
adjustment. Values are means � SEM.

ª 2016 The Authors EMBO reports Vol 17 | No 4 | 2016

Sumihiro Maeda et al Phenotype of A152T human tau transgenic mice EMBO reports

539



the increased susceptibility of hTau-A152T carriers to diverse

tauopathies [23,57]. Higher levels of tau may also be responsible for

the increased AD risk associated with a more common single

nucleotide polymorphism in MAPT [58]. Increased tau levels also

predict the development of epilepsy, which is more frequent in

patients with mild cognitive impairment (MCI) or AD than in control

populations and may be associated with an earlier cognitive decline

in AD [45,48,59].

While additional studies are needed to determine whether the

A152T substitution increases the production or decreases the turn-

over of hTau protein, its effect on the hTau protein/mRNA ratio is

unlikely to have confounded our comparison of hTau-A152T and

hTau-WT mice, as the lines we analyzed were selected to have

comparable protein levels of full-length hTau-A152T versus hTau-

WT. Our comparison of these lines suggests that the A152T variant

augments the detrimental effects of neuronal hTau accumulation on

neuronal survival, neural network activity, behavior, and cognitive

functions. In addition, the co-expression of hAPP/Ab impaired

survival more severely in hTau-A152T than hTau-WT mice. Thus,

the A152T variant may promote the development of tauopathies

through multiple mechanisms, including increased tau protein

levels, network hyperexcitability and synergistic interactions with

copathogens.

In transgenic lines with matched expression of full-length

hTau, cortical and hippocampal tau fragment levels were lower in

hTau-A152T than hTau-WT mice. Because the ratios of full-length

hTau protein to hTau mRNA were higher in hTau-A152T than

hTau-WT mice, we suspect that the A152T substitution interferes

with the proteolytic cleavage of hTau—a hypothesis that merits test-

ing. Our findings differ from those obtained in human neurons

derived from induced pluripotent stem cells, in which the A152T

variant increased tau fragmentation [60]. This discrepancy may

reflect differences in neuronal maturation, the complexity of the

experimental models, or the species analyzed.

hTau fragments can cause or promote tau aggregation, mitochon-

drial and lysosomal dysfunction, axonal transport deficits, and

increases in NMDA receptor levels [61–65]. Thus, it is interesting

that hTau-A152T (L1) mice, despite their lower levels of tau frag-

ments, had more neuronal dysfunction than hTau-WT (L32) mice.

These findings raise three nonexclusive possibilities: (i) The accu-

mulation of full-length tau may be more detrimental than the accu-

mulation of tau fragments, at least in vivo and in the presence of the
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Figure 8. Age-dependent neuronal loss in hTau-A152T (L1) mice.

A–F Coronal brain sections obtained from mice at 4–6 (A–C) or 20–23 (D–F) months of age were immunostained for NeuN. The number of NeuN-positive cells with
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means � SEM.
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D, E Short-term plasticity assessed by measuring the PPR (second pulse/first pulse) with 50-ms interpulse interval at 4–8 (D) or 20 (E) months of age.
F Mossy fiber LTP at 20 months of age. Arrowhead, stimulation 2× 125 pulses at 25 Hz.
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A152T substitution, (ii) fragments of hTau-A152T may be more

toxic than those of hTau-WT, and (iii) the tau fragments we

detected in hTau-WT mice may differ from the toxic tau fragments

analyzed in previous studies.

Two caveats apply to many, if not most, tau transgenic models,

including the ones presented here: (i) They were generated by

random insertion of transgenes into the genome, and (ii) they over-

express tau to ensure and accelerate the development of tauopathy

within the short lifetime of laboratory animals. We addressed these

caveats in two ways. First, we used a regulatable promoter system

in which transgene expression can be suppressed with DOX. By

showing the dependence of phenotypes on protein expression, this

system makes it possible to exclude nonspecific effects such as

insertional mutagenesis or genomic destabilization as confounding

causes of the phenotypes observed. Second, we generated trans-

genic lines that express hTau-A152T or hTau-WT at comparable

levels, which controls for the effects of hTau overexpression per se.

Using this well-controlled experimental design, we identified

several abnormalities in our transgenic lines that were likely caused

by neuronal overexpression of hTau per se, as they were observed

to a similar extent in hTau-A152T and hTau-WT mice. One was the

accumulation of phosphorylated (PHF1- and AT8-positive) and

putatively misfolded (MC1-positive) but nonfilamentous (Gallyas-

negative) tau in both transgenic models. Unlike filamentous tau

inclusions in other hTau models [31,36,66], this form of tau

vanished after suppression of transgene expression with DOX for

2 months. The elimination of detectable hTau protein after DOX

treatment for 2 months is consistent with the prominent reduction

in endogenous tau levels in brains of NTG mice within 4 weeks after

intracerebroventricular infusion of antisense oligonucleotides

against tau [67]. Our findings indicate that nonaggregated tau or tau

oligomers can be eliminated by suppressing tau expression.

The observation that overexpression of hTau-WT can lead to the

intraneuronal accumulation of p-tau is consistent with previous stud-

ies [68–73]. It is also consistent with the fact that WT rather than

mutant hTau accumulates in the majority of patients with tauopathy.

Surprisingly, hTau-A152T mice did not have filamentous

neuronal tau inclusions even at 20 months of age, despite their early

astrocytosis and age-dependent development of neuronal, behav-

ioral, and cognitive dysfunctions. These findings suggest that their

neuronal impairments were caused by soluble tau species such as

tau monomers or oligomers with pathogenic conformations.

Neuronal dysfunction was observed before tau aggregation also in

an independent hTau-A152T mouse model generated by Decker et

al [74].

Besides increasing the levels of soluble tau species, the A152T

substitution might also increase their toxicity or sensitize neurons to

their effects. Indeed, we observed hTau-A152T-dependent neuronal

loss in the hippocampus, consistent with findings obtained by

Decker and colleagues [74]. Mechanisms to explore in future studies

include potential effects of the A152T substitution on (1) hTau/Fyn

interactions [75], which could contribute to NMDA receptor-

mediated neurotoxicity [74], (2) network hyperexcitability [50,76],

and (3) tau’s Gly155–Gln244 region, which is exposed on the surface

of tau oligomers [77] and might mediate interactions between these

assemblies and cellular targets.

Although mossy fibers of hTau-A152T mice contained misfolded

p-tau, we did not detect impairment of mossy fiber LTP in these

mice. However, both hTau-A152T and hTau-WT mice had age-

dependent increases in synaptic transmission strength and decreases

in paired-pulse facilitation at the mossy fiber/CA3 pyramidal cell

synapse. In contrast, synaptic transmission and facilitation were

unaltered or reduced at this synapse in hTau mice bearing FTDP-17

mutations (P301L and ΔK280) that strongly promote tau aggregation

[36,78–81]. Whether and how these phenotypic differences relate to

specific conformations and assemblies of tau [82] remains to be

determined.

Our findings suggest that overexpression of hTau-WT or hTau-

A152T directly or indirectly increases the strength of synaptic

transmission at the mossy fiber/CA3 synapse, at least in part by

increasing presynaptic neurotransmitter release, in agreement

with findings obtained by Decker et al [74]. Possibly related to this

effect—and consistent with the observation that reduction of endo-

genous tau blocks network hyperexcitability and epilepsy of diverse

causes [50,67,83–85]—both hTau-WT mice and hTau-A152T mice

were more susceptible to chemically induced epileptiform activity.

Similar findings were obtained in hippocampal slice cultures from

an independent hTau-A152T mouse model [74] and in hTau mice

carrying the FTDP-17 mutations G272V, P301L, and R406W [86].

Because reduction in body weight is a potential risk factor for

AD [87], it is interesting that hTau-WT and hTau-A152T mice

weighed less than NTG controls. In combination with our previous

observation that tau ablation increases body weight in aging mice

[88], these findings raise the intriguing possibility that tau also

contributes to AD-related phenotypes through signaling pathways

that regulate body weight.

Abnormalities we found in both hTau-A152T and hTau-WT

mice were likely caused by overexpression of hTau. Notably, even

these abnormalities could be of particular relevance to A152T-

associated pathogenesis, as this variant increased the hTau

protein/mRNA ratio and thus might raise neuronal hTau protein

levels in human carriers. However, because we also identified

clear phenotypic differences between hTau-A152T and hTau-WT

mice, it is likely that the A152T variant promotes the development

of neurological deficits through additional mechanisms. These dif-

ferences included nest building impairments in middle-aged hTau-

A152T mice as well as neuronal loss and deficits in spatial learn-

ing and memory in old hTau-A152T mice, none of which were

seen in age-matched hTau-WT mice. hTau-A152T and hTau-WT

mice also differed strikingly in the level of spontaneous epileptic

spike activity at baseline, which was higher in hTau-A152T mice,

but lower in hTau-WT mice, than in NTG controls. Thus, over-

expression of hTau-A152T or hTau-WT lowered the threshold for

chemically induced epileptic activity, but at comparable levels of

expression, only hTau-A152T caused network hypersynchrony at

baseline. Of note, periodic sharp wave complexes have been

reported in a human A152T carrier [26].

Curiously, spike counts in singly transgenic CaMKII-tTA mice

were lower than in NTG controls, both at baseline and 20–60 min

after PTZ injection. Conceivably, tTA increases the expression of

endogenous genes whose products have anti-epileptic effects. Alter-

natively, insertion of the CaMKII-tTA transgene into the genome

may have inactivated a gene whose product promotes or enables

epileptic activity. These possibilities are not mutually exclusive and

deserve to be explored in future studies. The anti-epileptogenic

CaMKII-tTA effect could explain, at least in part, why crosses of
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hAPP and hTau mice yielded more hAPP/CaMKII-tTA doubly trans-

genic mice than hAPP singly transgenic mice and suggests that the

epileptogenic effects of the A152T variant may exceed those we were

able to detect in mice co-expressing hTau-A152T and CaMKII-tTA.

Consistent with the effects of hTau-A152T and hTau-WT on

evoked and spontaneous epileptic activity, expression of either hTau

species enhanced the increased risk of early death in hAPP mice,

which have epileptiform activity even in the absence of hTau

overexpression [46,49]. hTau-A152T was more detrimental in this

regard than hTau-WT. This functional synergism with hAPP/Ab
may be a special, if not unique, feature of the A152T substitution, as

it was not observed in mice co-expressing hAPP/Ab with hTau bear-

ing FTDP-17 mutations [89–93]. Thus, besides increasing hTau

levels, the A152T substitution appears to enhance tau’s ability to

support network hyperexcitability, a mechanism through which it

could promote excitotoxicity and neurodegeneration.

Materials and Methods

Transgene construction

To generate 1N4R hTau cDNA, we amplified the hTau-WT

sequence from the pCI-neo hTau plasmid (a gift from Dr. Akihiko

Takashima) by polymerase chain reaction (PCR). For consistency

with other studies, the amino acid and base pair residues are

listed with reference to the 2N4R isoform of hTau. To enhance

hTau expression, an intervening sequence and a Kozak sequence

(ACC) were ligated to the 50 end, and the bovine growth hormone

polyA sequence was ligated to the 30 end. The hTau sequence was

then subcloned into the pTRE-Tight vector (Clontech Laboratories)

at the EcoRI and NotI sites. Thus, hTau-encoding transgenes

consisted (50 to 30) of a TRE-Tight promoter (TRE), a synthetic

intron amplified from the pIRES-neo vector (Clontech), a Kozak

(ACC) sequence, cDNA encoding A152T-variant or WT hTau

(1N4R), and a bovine growth hormone polyA signal sequence

(bGHpA). To introduce the A152T variant into the hTau construct,

the GCC (Ala) at positions 454–456 was converted to ACC (Thr)

by PCR mutagenesis. The fragment of hTau-WT or hTau-A152T

generated by NotI and XhoI digestion was used for pronuclear

microinjections.

Mice, DOX treatment, and tissue preparation

TRE-hTau-A152T lines 1 and 3 and TRE-hTau-WT lines 12 and 32

were generated as described above. CaMKII-tTA singly transgenic

mice on the C57BL/6J background were from The Jackson Labora-

tory (stock number 007004) [28]. hAPP mice from line J20 were

generated in-house [54]. All of these mouse lines were maintained

on a C57BL/6J background. rTg4510 mice on an FVB/N × CBA F1

background [31] were obtained from Dr. Jada Lewis (Mayo Clinic

Jacksonville). Brain tissues of PS19 mice [94] on a C57BL/6J × C3H

F1 background were obtained from Dr. Li Gan (Gladstone Institute of

Neurological Disease, San Francisco). Newborn mice were weaned

4–6 weeks after birth. Mice were maintained on a 12-h light/12-h

dark cycle and had free access to food and water. Unless indicated

otherwise, they were group housed with up to five mice per cage.

Mice were maintained on a regular chow (PicoLab Rodent Diet 5053,
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Figure 10. hTau-A152T enhances network hypersynchrony.

A–C Subdural EEG recordings from freely behaving mice at 4–9 months of
age before (A top trace, B) and after (A bottom trace, C) injection of PTZ
at a dose (30 mg/kg) that did not produce convulsions. (A) Representative
EEG traces from an hTau-A152T (L1) mouse. Arrows indicate epileptic
spikes. (B, C) Quantitation of spikes per hour at baseline (B) and of spikes
per 20-min intervals after PTZ injection (C). n = 31 (B) or 23 (C) NTG; 13
(B) or 11 (C) CaMKII-tTA; 12 (B) or 10 (C) hTau-WT (L32); and 22 (B) or 21
(C) hTau-A152T (L1) mice. *P < 0.05, **P < 0.01, ***P < 0.001 by
two-tailed Welch’s t-test with Holm adjustment (B) or by two-way
repeated-measures ANOVA and Tukey test (C). Values are means � SEM.
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Figure 11. Poor survival of mice coexpressing hAPP/Ab and hTau-A152T.

A–D Numbers of offspring from crosses of hAPP-J20 mice with hTau-A152T (L1) (A, B) or hTau-WT (L32) (C, D) mice that were not (A, C) or were (B, D) treated with DOX
and that were alive 4–6 weeks after birth.

E Numbers of offspring from crosses of lower expresser hAPP-J9 mice with hTau-A152T (L1) mice that were not treated with DOX and that were alive 4–6 weeks after
birth.

F Subdural EEG recordings from untreated 3- to 10-month-old mice were analyzed to compare their number of spikes at baseline. n = 8 NTG, 6 hAPP-J9, 6 hTau-
A152T (L1), and 8 hAPP-J9/hTau-A152T (L1). Values are mean � SEM.

Data information: n = 141 (A), 112 (B), 94 (C), 83 (D), and 282 (E) mice per cohort. Yields from two crosses indicated significant deviations from Mendelian inheritance:
hAPP-J20 × TRE-hTau-A152T (L1) × CaMKII-tTA without DOX (Holm-adjusted P = 0.003, unadjusted P = 0.0008) and hAPP-J9 × TRE-hTau-WT (L32) × CaMKII-tTA
without DOX (adjusted and unadjusted P < 0.0001) by chi-square goodness-of-fit test. *P < 0.05, **P < 0.01 by logistic regression analysis for three-way interaction of
the three transgenes with Holm adjustment (A–E) or by two-tailed Welch’s t-test with Holm adjustment (F).
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TestDiet) or chow containing DOX (200 mg/kg) (S3888, Bioserv,

Fig 4; or 5TS4, Modified PicoLab Rodent Green, TestDiet, Fig 11).

For tissue analyses, mice were deeply anesthetized with avertin

(2,2,2-tribromoethanol, 250 mg/kg) by intraperitoneal injection and

perfused transcardially with 0.9% NaCl. For Western blot analyses,

hemibrains were snap frozen and stored at �80°C. For histological

analyses, hemibrains were drop fixed in a glass vial with 10 ml of

4% paraformaldehyde, which was replaced after 48 h with

phosphate-buffered saline containing 30% sucrose. After the brains

settled to the bottom of the vial, they were cut with a microtome

(SM200R, Leica) and stored at �20°C.

Western blot analysis

Brain tissue samples were homogenized with a polypropylene pestle

homogenizer in modified radioimmunoprecipitation (RIPA) assay

buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 0.25%

(wt/vol) sodium deoxycholate, and 1 mM EDTA) containing Halt

Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific).

Samples were sonicated (Episonic 1000, Epigentek) at amplitude 40

for 5 min and centrifuged at 20,000 relative centrifuge force (rcf) for

20 min. Protein concentration in supernatants was determined with

a Bio-Rad protein assay (Bio-Rad). Equal amounts of protein were

loaded onto NuPAGE 4–12% Bis-Tris gels (Life Technologies) and

transferred to nitrocellulose membranes with iBlot (Life Technolo-

gies). Nonspecific binding was blocked with Odyssey blocking

buffer (927-50000, LI-COR), and the membranes were labeled with

anti-actin antibody (A2066, Sigma; 1:2,000) and the following

anti-tau antibodies (1:2,000): HT7 (MN1000, Thermo Scientific),

Tau5 (MAB361, Millipore), Tau12 (MAB2241, Millipore), EP2456Y

(MAB10417, Millipore), or PHF1 [34] (a gift from Dr. Peter Davies,

Albert Einstein College of Medicine, New York) for 12–15 h at 4°C.

The membranes were co-incubated with secondary antibodies:

680LT donkey anti-rabbit (P/N 926-68023, LI-COR; 1:20,000) and

800CW donkey anti-mouse (P/N 926-32212, LI-COR; 1:20,000)

for 1 h at room temperature. Signals were quantified with an

Odyssey CLx infrared imaging system and ImageStudio (LI-COR).

Insoluble tau extraction

Brain tissue samples were homogenized in RIPA buffer, sonicated,

and centrifuged at 13,000 rcf for 10 min. The supernatant was saved

as total fraction, and the protein concentration was determined. The

total fraction (100 ll, 1 mg/ml protein concentration) was centri-

fuged at 150,000 rcf for 15 min in a TLA100 rotor (Beckman Coul-

ter). The pellets were dissolved in 2% sarkosyl for 2 h followed by

centrifugation at 150,000 rcf for 15 min in a TLA100 rotor. After

two repetitions of this step, the pellets were added to sample loading

buffer and loaded on SDS-PAGE at equal volumes.

Quantitative RT-PCR

Total RNA was isolated from dissected frozen mouse brain tissue

with the RNeasy Mini kit (Qiagen) and reverse transcribed

with random hexamers and oligo(dT) primers. The TaqMan gene

expression assay and ABI Prism 7900HT sequence detector (Applied

Biosystems) were used to determine the levels of hTau, and GAPDH

mRNA according to the manufacturer’s instructions. ABI probes

were used to detect hTau (Hs00902194_m1) and mouse GAPDH

mRNA (Mm99999914_g1-VIC). For quantification, hTau/GAPDH

ratios were normalized to the average value in hTau-WT (L32)

mice.

Immunohistochemistry

Coronal brain sections 30 lm thick were prepared and immuno-

stained as described [29]. The primary antibodies were the anti-tau

antibodies MC1 (1:1,000) [37,38], PHF1 (1:1,000), HT7 (1:1,000),

and AT8 (1:250, MN1020, Thermo Scientific); anti-GFAP (1:1,000,

MAB3402, Millipore); anti-Iba1 (1:5,000, ab15690, Abcam); and

anti-NeuN (1:1,000, MAB377, Millipore). Binding of these antibod-

ies was detected with biotinylated donkey anti-mouse antibodies

(Jackson Immunoresearch; 1:1,000), avidin–biotin complexes (Vec-

tor Laboratories), and 3,30-diaminobenzidine (Sigma).

Sections labeled with anti-tau antibodies were imaged on a digital

microscope (BZ-9000, Keyence America). Sections immunostained

with an antibody against GFAP were analyzed with an Olympus

bright field digital microscope (BX41, Olympus America Inc.). For

each mouse, a total of three sections (four digital images per section

at 400× magnification) were obtained from the hippocampus and

analyzed with the ImageJ program (NIH) to estimate the average

optical density of immunoreactivities and correct for differences in

background staining. Sections labeled with an antibody against Iba1

were analyzed with the same microscope system using the Image-

Pro Plus program (Media Cybernetics). For each mouse, a total of

three sections (10 digital images per section at 400× magnification)

were analyzed to estimate the average number of immunolabeled

cells per unit area (0.1 mm2).

Sections immunostained for NeuN were used to estimate

neuronal counts by unbiased stereology [95]. For each mouse, three

coronal hemibrain sections containing the neocortex and hippocam-

pus were outlined using an Olympus BX51 microscope running

StereoInvestigator 8.21.1 software (Micro-BrightField). Grid sizes for

the granular layer of the DG and for the pyramidal layers of CA3

and CA1 were 150 × 150 lm and the counting frames were

30 × 30 lm. A systematic sampling of the regions of interest was

made from a random starting point. Full penetration of the section

by the antibody was confirmed by focusing throughout the entire

Z-axis. Sections were analyzed using a 100× 1.4 PlanApo oil-

immersion objective. The average mounted tissue thickness was

8.0 lm, and a 4.0-lm high dissector allowed for 2-lm top and

bottom guard zones. Results were expressed as estimated total

number of NeuN-positive cells per brain region.

Gallyas silver staining

Brain sections were silver-stained according to the method of

Gallyas [96] with several modifications. Brain tissues fixed in 4%

paraformaldehyde were sectioned at 40 lm with a vibratome and

mounted on Superfrost Plus slides. Sections were rinsed in distilled

water and placed in 5% periodic acid for 5 min. After two washes

in distilled water, they were placed in alkaline silver iodine solu-

tion (4% sodium hydroxide, 10% potassium iodide, and 1% silver

nitrate in distilled water) for 1 min and washed in 0.5% acetic acid

for 10 min. They were then placed for 8 min in developer solution,

which was freshly prepared as described [96] with the following
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exceptions: 2.0 g of ammonium nitrate was used to prepare solu-

tions B and C, and 2.5 ml of 37% formaldehyde was used to

prepare solution C. Subsequently, sections were washed in 0.5%

acetic acid for 3 min and in distilled water for 5 min. They were

then placed in 0.1% gold chloride for 5 min, rinsed in distilled

water, placed in 1% sodium thiosulfate solution, washed with tap

water, counterstained with 0.1% nuclear fast red for 1 min,

washed with tap water, and dehydrated and mounted in Entellan

mounting medium.

Behavioral testing

Mice were tested in different behavioral paradigms in the sequence

summarized in Appendix Table S1. The order in which mice were

tested in any given behavioral paradigm was randomized and inves-

tigators were blinded to the genotype of mice.

Morris water maze

After 2–3 days of single housing, mice were spatially trained to

locate a hidden platform for 4–9 days, probed for spatial memory

retention 24 h after the last hidden training trial, and then trained

to find a cued platform, as described [88]. Briefly, training with the

hidden platform was continued until the mean latency of NTG mice

reached ~20 s. Twenty-four hours after the last training session,

the mice were tested in a 60-s probe trial followed by training to

locate a visibly cued platform to exclude general performance defi-

cits. To minimize carryover effects between repeated MWM assess-

ments in the same mice, different rooms with different spatial

configurations were used; however, because of scheduling and

space constraints, 4- to 6-month-old and 11- to 14-month-old mice

from cohort 1 were tested in the same room, but the configuration

of the extramaze cues was explicitly altered from the previous test-

ing configurations.

Exceptions to this standard testing protocol were made for 11- to

14-month-old mice from cohort 1 and 11- to 17-month-old mice

from cohort 2. Notably, within these groups, all conditions were

consistently applied to all mice regardless of genotype. Because the

same groups of mice were tested repeatedly in the MWM at different

ages, which can improve performance with increasing levels of

experience, we decreased the training for 11- to 14-month-old mice

from cohort 1 by giving them just two trials per day on days 1–4.

Because NTG mice from this group rapidly achieved mean escape

latencies < 20 s, we conducted interim probe trials on all mice of

this group before the training trials on days 2–4 to assess spatial

memory. Despite their short escape latency during training trials,

the NTG mice did not show clear spatial memory in the interim

probe trials. To further improve spatial learning and memory, we

increased the number of training trials on day 5 to four.

The other exception to the standard protocol involved 11- to 17-

month-old mice from cohort 2, which were group housed and

trained to locate first a cued platform (six trials) using a latency

cutoff of 60 s and then a hidden platform using just two trials per

day and a latency cutoff of 90 s. Twenty-four hours after the last

training trial, these mice were tested in a probe trial for 90 s. To

combine these probe trial results with those from the standard train-

ing protocol, we analyzed only the first 60 s of the probe trials

(Fig 6S–V). Data reflecting the full 90-s probe trial are shown in

Fig EV5D–G.

Swim paths were recorded and analyzed with an Ethovision

XT video tracking system (Noldus Information Technology).

Performance measures included the latency and distance to locate

the platform and swim speed in the hidden and cued learning trials,

and the latency to cross the original platform location and platform

crossings in the probe trials.

Elevated plus maze

The elevated plus maze (Kinder Scientific) consists of two open

arms (without walls) that intersect at 90° with two enclosed arms

(with walls) 63 cm above the ground. Before testing, mice were

allowed to habituate to the testing room under dim light for 1 h.

During testing, mice were placed at the intersection of the open and

closed arms and allowed to explore for 10 min. Their movements

were recorded by breaks in infrared beams positioned along the

length of the open and closed arms. The maze was cleaned with

70% ethanol between mice.

Open field

Open field activity was assessed in a clear plastic chamber

(41 × 41 × 30 cm) with two 16 × 16 photobeam arrays that auto-

matically detect horizontal and vertical movements (Flex-Field/

Open Field Photobeam Activity System, San Diego Instruments).

Before testing, mice were allowed to habituate to the testing room

under normal light for 1 h. During testing, mice were placed in one

of four identical clear plastic chambers for 15 min. The chambers

were cleaned with 70% alcohol between mice.

Nesting

To assess innate nesting behavior, mice were single-housed with

one nestlet per cage. The ability of each mouse to build a new nest

was assessed at 2, 6, and 24 h after the introduction of the new nest-

let. Composite nest building scores were assigned at each time point

based on the following criteria: 0, nestlet untouched; 1, < 10% of

the nestlet was shredded; 2, 10–50% of the nestlet was shredded

but there was no shape to the nest; 3, 10–50% of the nestlet was

shredded and there was shape to the nest; 4, 50–90% of the nestlet

was shredded but there was no shape to the nest; 5, 50–90% of the

nestlet was shredded and there was shape to the nest; 6, > 90% of

the nestlet was shredded but the nest was flat; and 7, > 90% of the

nestlet was shredded and the nest had walls that were at least as tall

as the mouse on > 50% of its sides.

Pole test

Mice were placed face down atop a vertical pole (50 cm high and

1 cm in diameter). The latency to climb down the pole was recorded

during three trials per day for three consecutive days with a latency

cutoff of 60 s per trial. No mouse fell from the pole. The mean

latency on day 3 was analyzed by genotype.

Balance beam

The balance beam apparatus consisted of an acrylic beam (0.5

inch in diameter), an elevated stage, and an elevated dark box.

The stage was placed at one end of the beam and the dark box

at the other; the dark box had an opening at the end of the beam

to allow entry. Mice were placed on the stage and trained to

traverse the beam toward the dark box. On day 1, two guided

and three unguided trials were carried out. Mice were guided to
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the dark box if they did not reach it by 120 s. On day 2, mice

were trained in three unguided trials (120-s latency cutoff). On

day 3, the beam was replaced with a thinner, more challenging

beam (0.25 inch in diameter). Three trials without guidance were

recorded, and the mean latency from the three trials was

analyzed by genotype.

Rotarod

On day 1 of training, mice were placed on the rotarod apparatus

(Med Associates) with the rod rotating at a constant speed of

16 rpm. A trial ended when the mouse fell off the rod or after 5 min

had elapsed. The mice were tested at the constant speed in three

trials 15–20 min apart. On day 2 of training, after mice were placed

on the rotarod, the rotation speed was increased by 4 rpm every

30 s, from 4 to 40 rpm. A trial ended when the mouse fell off the

rod or after 5 min had passed. If a mouse wrapped itself around the

rotarod and spun for two or more rotations, the trial was stopped,

and the latency was recorded. There were six trials on day 2 and the

mean latency to fall was analyzed by genotype.

Social approach test

Social approach and preference were assessed with a three-chamber

apparatus by comparing the amount of time mice spent in close

contact (nose within 2 cm and directly pointed at the cup) with an

inverted wire cup containing a stranger mouse or an identical empty

cup. The apparatus consisted of a polycarbonate box

(24 × 16 × 8.75 inches) partitioned into three 8 × 16 inch cham-

bers. The test was performed under dim light over 2 days. On day 1,

test mice were individually placed in the empty box and allowed to

habituate for 25 min; in separate sessions, stranger mice were habit-

uated to the wire cups in the box for at least 20 min (10-min

session, 10-min break, 10-min session). On day 2, test mice were

habituated to the empty box for 5 min. After habituation, an empty

cup was placed in one chamber, and a cup containing a stranger

mouse of the same sex was placed in the opposite chamber. The test

mouse was then placed in the center chamber and allowed to

explore the box for 10 min. Movements were recorded with video

cameras, and the amount of close contact time was analyzed (Top-

scan, CleverSys).

EEG and PTZ challenge

For video-EEG, electrodes were implanted between the skull and the

surface of the left frontal cortex (reference) and both parietal

cortices as described [46]. All EEG recordings were done at least

3 weeks after electrode implantation on freely behaving mice. For

Fig 10, digital EEG activity and video were recorded with Harmonie

software (version 5.0b, Stellate Systems; Natus). Epileptic spikes

were detected automatically with threshold Amp8. Artifactual spikes

associated with movements of the recording wire were excluded

from analysis. Spike frequency at rest was measured for 6 h during

the light cycle and 6 h during the dark cycle and expressed as

number of spikes per hour. Mice were then injected with PTZ

(30 mg/kg) during the light cycle. The PTZ stock solution (5 mg/ml

in phosphate-buffered saline) was prepared from powder on the

same day.

For Fig 11F, digital EEG activity and video were recorded

with a PowerLab data acquisition system 16/35 and analyzed

with LabChart 7 Pro software (AD Instruments) [85]. Spike

frequency at rest was measured for 4 h during the light cycle

and 3.2–4 h during the dark cycle and expressed as number of

spikes per h.

Acute slice electrophysiology

Hippocampal slice preparation

Acute sagittal brain slices (400 lm) from 4- to 20-month-old mice

were prepared with a modified neuroprotective slicing and recovery

method as described [97] to improve the health of slices from aged

animals. Briefly, mice were deeply anesthetized with isoflurane and

transcardially perfused with 30 ml of chilled oxygenated (95% O2,

5% CO2) slicing artificial cerebrospinal fluid (ACSF; 92 mM

N-methyl-D-glucamine, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM

NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM

sodium ascorbate, 3 mM sodium pyruvate, 12 mM N-acetyl-L-

cysteine, 0.5 mM CaCl2, 10 mM MgSO4). Brains were quickly

removed and sliced with a vibrating microtome (HM650V, Thermo

Scientific). Slices were first incubated in slicing ACSF for 10 min at

35°C and then in recovery ACSF (92 mM NaCl, 2.5 mM KCl,

1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose,

2 mM thiourea, 5 mM sodium ascorbate, 3 mM sodium pyruvate,

12 mM N-acetyl-L-cysteine, 2 mM CaCl2, 2 mM MgSO4) for 1 h at

room temperature. Slices were then transferred to a holding cham-

ber containing room temperature oxygenated recording ACSF

(126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3,

12.5 mM glucose, 2.5 mM CaCl2, 1.3 mM MgSO4) and allowed to

equilibrate for at least 1 h before recording. For recording, slices

were placed in a recording chamber mounted on an Olympus

BX51WI microscope equipped with infrared DIC optics (900 nm)

and perfused with warmed (30–33°C) oxygenated recording ACSF at

a flow rate of 2 ml/min.

Field potential measurements

A bipolar concentric electrode was placed on mossy fibers at the

hilar/CA3 border to evoke fEPSPs. fEPSPs were recorded 250 lm
away in the stratum lucidum of CA3 region with glass micro-

pipettes (3–4 MΩ) filled with recording ACSF. Data were acquired

with a MultiClamp 700B amplifier (Molecular Devices) and

WinLTP software (University of Bristol). The stimulation rate was

0.05 Hz throughout the experiment unless otherwise noted. Three

responses were averaged for each data point. Mossy fiber fEPSPs

were identified with the following criteria [98,99]: (i) negative

waveform restricted to the stratum lucidum, (ii) short latency

(< 5 ms), (iii) fast time course (< 10 ms), and (iv) selective

reduction by the group II metabotropic glutamate receptor agonist

(2S,20R,30R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV, 2 lM;

Tocris Bioscience). Stimulation strength that elicited 30% of the

maximum response was used to assess paired-pulse facilitation

and LTP. Paired-pulse facilitation was induced with two

stimulation pulses 50 ms apart, and the PPR was calculated by

dividing the response elicited with the second pulse by the

response elicited with the first pulse. LTP was induced with 125

stimulation pulses at 25 Hz, repeated twice 20 s apart. Data were

analyzed offline with Clampfit software (Molecular Devices). Slices

in which baseline fEPSP responses fluctuated > 20% were

excluded from the analysis.
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Statistical analysis

The statistical tests used for each dataset are specified in the

figure legends. Statistical analyses were done with Prism 6

(GraphPad Software) or the statistical programming language R

(http://www.R-project.org/). Normality was assessed with the

Shapiro–Wilk test for datasets with sample size < 10 per group. For

larger groups, parametric tests were used without assessing normal-

ity. Variances were assessed with the F-test (two groups) or

Bartlett’s test (more than two groups). A two-tailed t-test was used

for most comparisons of two groups with Gaussian distribution and

equal variances. However, crossings of the target location in MWM

probe trials were analyzed by one-tailed t-test because we expected

to see more crossings of target than nontarget locations. For indi-

vidual pairs in a dataset, P-values were adjusted with the Holm

correction for multiple comparisons. The two-tailed Welch’s t-test

was used to compare two groups with unequal variances. For

comparisons of nesting scores, the nonparametric Wilcoxon rank-

sum test was used because the nesting scores were discrete. For

multiple group comparisons with Gaussian distribution and equal

variance, we used one-way ANOVA with post hoc Tukey or

Dunnett’s test. For multiple group comparisons with non-Gaussian

distribution and equal variance, Kruskal–Wallis test with post hoc

Dunn’s test was used. For multiple group comparisons with Gaus-

sian distribution and unequal variance, two-tailed Welch’s t-test

was used. Input/output curves were assessed by linear regression

analysis. Learning curves in the MWM were analyzed with a Cox

proportional hazards model with mixed effects. To assess devia-

tions from the Mendelian inheritance of transgenes, we used chi-

square goodness-of-fit tests. Interactions among the three transge-

nes were evaluated by logistic regression. Values reported are

means � SEM. Differences were considered significant at P < 0.05.

Expanded View for this article is available online.
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