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Abstract: The aim of this work was to analyze and compare the bacterial communities of 663
samples from a Brazilian hospital by using high-throughput sequencing of the 16S rRNA gene.
To increase taxonomic profiling and specificity of 16S-based identification, a strict sequence quality
filtering process was applied for the accurate identification of clinically relevant bacterial taxa.
Our results indicate that the hospital environment is predominantly inhabited by closely related
species. A massive dominance of a few taxa in all taxonomic levels down to the genera was observed,
where the ten most abundant genera in each facility represented 64.4% of all observed taxa, with a
major predominance of Acinetobacter and Pseudomonas. The presence of several nosocomial pathogens
was revealed. Co-occurrence analysis indicated that the present hospital microbial network had low
connectedness, forming a clustered topology, but not structured among groups of nodes (i.e., modules).
Furthermore, we were able to detect ecologically relevant relationships between specific microbial
taxa, in particular, potential competition between pathogens and non-pathogens. Overall, these
results provide new insight into different aspects of a hospital microbiome and indicate that 16S rRNA
sequencing may serve as a robust one-step tool for microbiological identification and characterization
of a wide range of clinically relevant bacterial taxa in hospital settings with a high resolution.

Keywords: microbiota; nosocomial pathogens; hospital-acquired infections; 16S rRNA; clinical
microbiology; Acinetobacter; Staphylococcus; Pseudomonas

1. Introduction

Hospital-acquired infections (HAIs) represent a serious public health problem, affecting millions
of people worldwide [1]. Also known as nosocomial infections, they are the fifth leading cause of death
in acute-care hospitals. In the United States, these infections cost several billions of dollars and result
in approximately 90,000 deaths annually [2,3]. In developing countries, where the burden of endemic
healthcare-associated infection is significantly higher [4], the prevalence of HAIs varies between 5.7%
and 19.1% [1].

One of the challenges in preventing HAIs is understanding the microbial diversity associated
with the hospital environment, the sources of infectious agents and the routes of transmission. Recent
studies have suggested that environmental contamination plays a significant role in HAIs and several
pathogens can persist for months in surfaces and serve as vehicles of transmission and dissemination in
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hospital facilities [5–7]. Thus, understanding the hospital microbiome could be essential to maintaining
low levels of HAI infections and to help improving healthcare assistance.

DNA sequencing of the 16S rRNA gene has been successfully used for the characterization of
microbial populations in a variety of habitats [8–11]. The advantage of this approach is that all microbial
taxa may be detected and the limitations of culture conditions are easier to overcome [12]. Consequently,
the application of such molecular methods has the potential to revolutionize the landscape of clinical
microbiology and infectious diseases [13–15], and reveal which bacteria are present in hospitals and
how they interact with each other and the environment. For these reasons, metagenomic studies
involving both whole-genome sequencing and targeted gene sequencing are necessary to characterize
in detail the microbial communities associated with hospital environments.

With the advent of next generation sequencing technologies, which have allowed the massive
parallel sequencing of the 16S rRNA gene, the identification and tracking of bacterial diversity in
hospital environments has become feasible. These pioneer studies have demonstrated the potential
use of amplicon sequencing to identify a variety of pathogens associated with the development of
HAIs [16–19]. Nevertheless, the information obtained from them is limited and sparse, i.e., usually
based on few samples when considering the complex environments of a hospital. A comprehensive
view of the hospital microbiome will help us better understand different aspects concerning the
microbial ecology of this heterogeneous environment, which is subject to different selective pressures
and still poorly explored. Furthermore, it will be essential for the development of the new practices
and preventive measures needed to significantly reduce the high rates of hospital infections.

In order to identify new patterns that help better characterize the hospital microbiome, the aim of
this work was to analyze and compare the bacterial communities from different inanimate surface
environments of a Brazilian teaching hospital using high-throughput sequencing of the 16S rRNA
gene. Overall, our results indicated that the hospital microbiome presents a homogeneous structure
composed of a massive dominance of a few taxa in all taxonomic levels and a microbial network with
low connectedness forming a clustered topology.

2. Results

2.1. Library Characterization

For bacterial community profiling at high-resolution and with high accuracy, we applied a rigorous
filtering process at different depths and levels before any taxonomic analysis (in particular, the removal
of operational taxonomy units (OTUs) with less than 5 reads during the clustering process and the
removal of spurious OTUs later). The resulting library, after all filtering steps, is summarized in
Table S1.

In total, 663 samples were collected during the six months. 502 (75.7%) samples contained
classifiable sequences, while 161 (24.3%) did not present sequences after the filtering process. It is
worth nothing that the library presented some particular features that were taken into account before
further analysis. First, a relatively low number of sequences in most libraries was observed, which can
be partially related to the rigorous filtering process, but most importantly, due to the intrinsic feature
of the hospital environment presenting only a few number of microorganisms (when compared to
other environments), as a consequence of its constant cleaning and sterilization procedures. Second,
a large variability in library sizes across samples was observed, which indicated that rarefying the
libraries with a non-parametric test should be the chosen method of normalization.

2.2. Composition of Bacterial Communities

After all trimming steps, the resulting library composed of the 502 samples contained 7,925,186
classifiable sequences grouped in 878 OTUs, which belong to 567 species and 203 genera. This dataset
of high quality classifiable sequences was used to compute the final OTU table. Due to such high
variability in library size, the raw OTU table was normalized using CSS.
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The analysis of the sequences showed the presence of only five phyla (Figure 1). A major dominance
of Proteobacteria was observed in all facilities (67.5%), with smaller proportions of Firmicutes (22.0%),
Actinobacteria (5.0%), Bacteroidetes (3.4%), and Fusobacteria (1.9%). Such dominance of a few taxa
was observed in all taxonomic levels. The ten most abundant genera in each facility represented 64.4%
of all observed taxa (Table 1), with major predominance of Acinetobacter and Pseudomonas.
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Table 1. Most abundant genera in the hospital facilities. Relative abundances are shown as percentages
(%). Abbreviations: ECU, Emergency Care Unit; MU, Medical Unit; SC, Surgery Center; IU, Inpatient Unit;
ICU-A, Intensive Care Unit A; ICU-B, Intensive Care Unit B.

Phyla Genera Total ICU-B ICU-A IU MU ECU SC

Proteobacteria Acinetobacter 17.2 17.8 15.9 18.1 14.9 21.6 15.0
Proteobacteria Pseudomonas 16.2 17.9 16.7 13.1 16.5 18.4 14.4

Firmicutes Staphylococcus 6.8 9.0 8.6 6.4 5.9 3.5 7.2
Proteobacteria Klebsiella 6.6 8.5 9.0 6.5 7.2 2.2 6.4

Firmicutes Streptococcus 3.5 2.3 3.8 3.5 4.5 1.4 5.7
Proteobacteria Pantoea 3.4 3.5 4.9 5.0 1.0 3.4 2.9

Firmicutes Bacillus 3.3 1.2 2.0 3.7 5.5 6.0 1.6
Proteobacteria Escherichia 2.9 4.7 3.3 2.4 2.3 2.2 2.8
Proteobacteria Stenotrophomonas 2.3 1.7 1.7 2.7 2.8 3.6 1.5
Proteobacteria Moraxella 2.2 1.7 1.7 2.5 1.7 3.1 2.5
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2.3. Structure and Diversity of Bacterial Communities

To explore the relationship among the bacterial communities of all samples, principal coordinates
analyses (PCoA) based on Sorensen-Dice and Bray-Curtis indices were performed. Both analyses
demonstrated that no pattern of clustering was observed (Figure 2a,b).

To investigate whether the sample grouping in different categories was statistically significant,
the non-parametric multivariate statistical test ANOSIM (analysis of similarity) was performed on the
distance matrices generated from the beta diversity step. The p-value observed indicated that there
were significant differences for the four categories. However, the low correlation value of R suggested
that the clustering of samples based on the categories was relatively weak (Table S2).

When attempting to correlate the sample grouping with environmental parameters, no significant
relationship was observed for surface temperature, ambient temperature, and relative humidity
(Table S3).

We next attempted to study the bacterial diversity in each grouping category using Shannon
and Simpson diversity metrics. The results are summarized in Figure 3. For the facility category,
no significant difference was observed. For the room and sample type categories, differences were only
evident in some cases.
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Figure 3. Boxplots showing the distribution of Shannon and Simpson diversity indices for samples
grouped in the facility, room, and sample type categories. Abbreviations: ECU, Emergency Care
Unit; MU, Medical Unit; SC, Surgery Center; IU, Inpatient Unit; ICU-A, Intensive Care Unit A; ICU-B,
Intensive Care Unit B.

2.4. Single OTUs

From the 878 OTUs, 347 (42.6%) were present only once (Table S4). With the exception of
Pseudomonas cremoricolorata, which is one of the taxonomically and ecologically closely-related species
of the Pseudomonas putida species complex, the most prevalent species from these OTUs are usually
not associated with the hospital environment nor considered potential pathogens.

In order to find any pattern among the single OTUs, their percentages in each grouping category
were summarized and plotted in Figure 4. As observed in Figure 4b, the Emergency Care Unit (ECU)
was the facility with the highest percentage of OTUs (25.7%), and Intensive Care Unit B (ICU-B) had
the lowest (7.9%).
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Although 19% of the single OTUs were found in the Surgery Center (SC), only 8% and 6% were
found in the surgery room and surgery device, respectively, which indicate that other non-strict SC
places, i.e., those also found in other facilities (especially the lunch room, common place, and locker
room), have higher concentrations of such transient, sporadic taxa. In other facilities, the prevalence of
single OTUs was observed in sample types (Figure 4d) related to a patient room and the lunch room
(Figure 4c).

2.5. Differential Abundance

The QIIME Python script group_significance.py was used to calculate significant changes, using
Kruskal-Wallis analysis as the significance test. Differences were considered significant when Bonferroni
adjusted p-values < 0.05. The Kruskal-Wallis test identified 12 OTUs showing differential abundances
among the facilities (Table 2). Most of them were associated with ICU-B and ICU-A. The presence of
nosocomial pathogens was also notable, including Acinetobacter baumannii, Staphylococcus epidermidis,
Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter nosocomialis.

Table 2. Differentially abundant operational taxonomy units (OTUs) in each hospital facility. Statistical
confidence was accessed using the Krustal-Wallis test.

OTU Species Bonferroni p ICU-B ICU-A IU MU ECU SC

596827 Pseudomonas stutzeri 1.78 × 10−10 4.41 2.34 0.55 2.92 0.51 1.20
624096 Acinetobacter baumannii 7.00 × 10−6 4.50 4.42 1.87 3.65 1.22 3.07
623550 Staphylococcus epidermidis 2.72 × 10−5 4.66 4.12 3.14 3.30 1.25 4.13
602646 Aerococcus viridans 0.01 0.09 0.30 0.40 0.11 0.23 1.48
617614 Anaerococcus vaginalis 0.01 1.33 0.74 0.00 0.00 0.44 0.13
587128 Murdochiella asaccharolytica 0.01 1.30 0.57 0.00 0.00 0.34 0.24
584857 Porphyromonas bennonis 0.01 1.30 0.85 0.00 0.00 0.41 0.12
624114 Pseudomonas aeruginosa 0.01 2.35 0.99 0.48 1.52 0.32 0.92
614684 Acinetobacter lwoffii 0.01 1.85 1.15 0.97 1.17 3.23 0.35
624449 Escherichia coli 0.01 5.46 4.37 2.92 3.22 2.21 3.92
598572 Staphylococcus hominis 0.01 2.38 1.96 1.30 0.62 0.54 0.99
607150 Acinetobacter nosocomialis 0.02 1.36 1.02 0.00 0.00 0.66 0.25

2.6. Most Prevalent OTUs Across Samples

Out of the total 878 bacterial OTUs identified in the hospital community, 32 were present in more
than 10% of the samples (Figure 5), and 70 were present in more than 5% of the samples. The three
most abundant were Escherichia coli–OTU624449 (38%), Staphylococcus epidermidis–OTU623550 (35%),
and Acinetobacter baumannii–OTU624096 (30%). Here as well, the presence of several nosocomial
pathogens was notable. Indeed, 30% of the OTUs present in more than 5% of the samples were
composed of nosocomial pathogens and 20% of rare nosocomial pathogens. Only 14% were composed
of non-pathogens. The pathogen status of the 70 OTUs is presented in Table S5.

2.7. Co-Occurrence Network Analysis

The hospital microbial network (Figure 6) consisted of 70 nodes or OTUs (representing the
70 taxa present in more than 5% of the samples) and 274 edges (with a mean of 3.9 edges per node).
The clustering coefficient (that is, the extent to which nodes are embedded in their neighborhood)
was 0.074 and the modularity index was 0.282 (values >0.4 suggest that the network has a modular
structure). Those results indicated that the hospital microbial network had relatively low connectedness,
forming a clustered topology, but not structured among groups of nodes (i.e., modules). From the
274 interactions (Table S6), 140 (51.46%) were negative and 134 (48.54%) were positive.
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To further explore the clinical relevance of the spatial co-occurrence network from the hospital
microbiota, we analyzed the interaction patterns of non-pathogenic species against nosocomial and
rare nosocomial pathogens. The results indicated that 43.47% of the interactions were negative,
including negative interactions with several nosocomial pathogens like Acinetobacter nosocomialis,
Klebsiella pneumoniae, Serratia marcescens, and Staphylococcus haemolyticus (Table S6).

To study the influence of potential keystone species within the hospital microbial network,
two measures were used: betweenness centrality (which indicates the relevance of a node as capable of
holding together communicating nodes) and eigenvector centrality (used to measure the importance
of a node by the number of important nodes the node links to). The ranking of OTUs was different for
each parameter, which was expected, considering that they were calculated in different ways (Table S5).
However, they both had a particular feature, i.e., only the first three OTUs in each rank presented high
enough scores to be considered as keystone OTUs. Acinetobacter nosocomialis–OTU606882, for example,
presented the highest number of interactions (degree: 21) and score for betweeness centrality (148.87),
though only prevalent in 5% of the samples.
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2.8. Pattern of Samples with No Reads

Due to the high number of samples with no reads, we tried to find any pattern related to them.
In this regard, samples were grouped in different categories. The results are summarized in Figure 7.
In terms of facilities, SC (33.3%) followed by both ICU-A (27.8%) and ICU-B (26.3%) presented the
highest percentages of samples with no reads. Purge room (50.0%), surgery room (45.8%), recovery
room (44.4%), and medication room (33.3%) presented the highest percentages of samples with no
reads, while reception (0.0%), nurse chief room (2.8%), resting room (2.8%), and lunch room (3.3%)
presented the lowest. Sample types related to these rooms followed the same pattern.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 18 
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3. Discussion

In this study, we used high quality sequences generated from 16S rRNA gene amplicons to explore
the bacterial population at inanimate surfaces of different hospital environments and ascertain the
accuracy of routine microbiological identification of a broad range of clinically relevant bacterial taxa.
To increase the taxonomic profiling and specificity of 16S-based identification, we applied a strict
sequence quality filtering process including pre-clustering of our sequences into OTUs at the 100%
identity level (with the removal of clusters with less than 5 reads), followed by alignment against a
curated reference database at the 99% identity level.

Given our interest in identifying medically relevant taxa, we focused our analysis on OTUs
classified at the species level sharing a 99% 16S rRNA gene sequence identity to match bacterial names
with standing in nomenclature. In our analysis, 17% of the sequences were not able to be classified at
the species level.

Another important aspect of our approach was the primers chosen for the amplification of the 16S
rRNA gene. To improve the taxonomic resolution in our analysis, we used the primers 341F and 806R,
which generated an amplicon of 465 bp flanking the hypervariable V3-V4 region of the 16S rRNA.
This primer set provides ample information for taxonomic classification of microbial communities from
specimens associated with human microbiome studies [20]. Therefore, the data generated using the
V3-V4 primer pair from sequencing using the MiSeq platform can be compared with the existing data in
the human microbiome literature, especially for bacterial skin microbiomes [21], which are of primary
relevance for high-touch surface samples. High-touch surfaces are recognized as a possible reservoir of
infectious agents and their contamination can also pose a risk for the spread of pathogens [22,23]. In fact,
there is now strong evidence from a series of studies and reports that contaminated surfaces contribute
to the transmission of hospital pathogens [24]. In a retrospective study, for example, there was more
than a two-fold risk of acquiring Clostridium difficile if the prior room occupant had this infection [25].
A similar risk was noted for Acinetobacter spp. and Pseudomonas aeruginosa [26].

But the actual proportion of HAIs attributed to environmental surfaces is largely unknown.
This uncertainty occurs mainly because it is complicated to track the transmission of pathogens
in healthcare settings and very difficult to link a specific transmission event or infection to an
environmental source. Many attempts have been made, but they have been individual [24]. At the
hospital level, it is important to have a comprehensive infection prevention program that tracks not
only HAIs and major nosocomial pathogens individually, but also all other microorganisms composing
that community. Such an approach is essential to assess temporal or geographic patterns that might
suggest how microbial taxa spread and interact with each other in the hospital environment, which is
of critical importance in determining the role of hospital surfaces and equipment in vectoring pathogen
and non-pathogen microbes.

Given the sparse and fragmented knowledge related to the microbial communities present in
hospital environments, our comprehensive study was designed to provide a general picture of the
hospital microbiome with its diversities and dynamics while being able to focus as well on those
taxa of primary relevance for HAIs. Our findings complement the major work of Lax et al. (2017),
focused on the bacterial dynamics among hospital surfaces, patients, and staff over the course of
1 year as a new hospital became operational [27]. Overall, the results of beta diversity revealed an
overlap among the bacterial communities present in the six facilities, which suggests that hospital
microbiomes present a homogeneous structure. Differences in alpha diversity were dependent on
individual sample grouping at room and sample type categories. Based on these results, it was possible
to answer the two main questions of this work. The answer to the first question, related to potential
differences among the microbial communities of the different hospital environments, was contrary to
our initial hypothesis that predicted a heterogeneity among the hospital facilities. Such heterogeneity
was expected based on previous studies indicating significant differences when two or more hospital
facilities were compared, and also by the unique operating features (e.g., type and number of patients
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and professionals) and cleaning/sterilization routines of each facility, which can generate different
selective pressures in each environment.

However, the results of this study indicate that this hospital microbiome is homogeneous.
Such homogeneous features of the microbial communities were the basis of the answer to the second
question of this work, i.e., whether there was a pattern characterizing the hospital microbiome as a
whole. Overall, our findings corroborated the hypothesis that the hospital microbiome presents a
characteristic pattern, i.e., with a homogeneous structure composed by a massive dominance of a few
taxa and microbial network with low connectedness forming a clustered topology.

In contrast to previous studies suggesting a higher diversity of microbial communities in hospital
environments [16,19], our study indicates a massive dominance of a few taxa in all taxonomic levels
down to the genera, where the ten most abundant genera in each facility represented 64.4% of all
observed taxa. These differences may be partially explained by the removal of 17% of the sequences
not classified at the species level for analysis, and, most probably, due to the different and roughly
strict pipeline we employed to analyze the 16S rRNA gene high-throughput sequencing data.

While previous pipelines generate high numbers of OTUs (many of them considered spurious, as
the result of low quality filtering processes), usually with low taxonomic resolution and ambiguous
taxon level identities [17,18,28,29], our analysis resulted in 878 OTUs, in which many of them belonged
to the same species. This means that the hospital environment is predominantly inhabited by closely
related taxa, a pattern quite different from other environments usually composed of a high diversity
even at high taxonomy levels [9,11]. Such patterns also explain the results in the PCoA analysis, which
indicated that the structure of the bacterial communities in the hospital environments were similar.

In this sense, closely related taxa may play similar roles within the hospital, while their distributions
may vary significantly in each environment. The closely related species Acinetobacter pitti and
Acinetobacter nosocomialis, for example, may play a role similar to Acinetobacter baumannii, but the relative
distribution of these three Acb complex species seem to vary geographically [30]. Notably, we observed a
high presence of several potential nosocomial pathogens, including Acinetobacter baumannii, Acinetobacter
nosocomialis, Bacillus cereus, Klebsiella oxytoca, Pseudomonas aeruginosa, Pseudomonas putida, Staphylococcus
aureus, Staphylococcus epidermidis, and Serratia marcescens, among others. Some of these nosocomial
species were also differentially abundant in the hospital facilities analyzed, which may provide better
clues about the preferential habitats of these particular species, as well as their potential reservoirs
in hospital environments. The presence of potential pathogens differentially abundant in ICU-B and
ICU-A may be explained by the fact that these facilities usually receive patients with severe illnesses,
some of them associated with severe infections caused by these pathogens. Nevertheless, their presence
in inanimate surfaces should be of primary concern and demonstrate that the cleaning routine of these
environments should be reviewed.

The pattern of single OTUs gives better clues on the main routes of entry of microorganisms in
the hospital environment. Those samples and sites with higher concentrations of transient, sporadic
taxa, are probably the ones disseminating new microorganisms within hospitals. In our study, a higher
prevalence of single OTUs was observed in samples related to patient room, lunch room, common
place, and locker room.

The pattern of samples with no reads also provides an expected, but noteworthy feature of the
hospital microbiome, i.e., the highest percentage of samples with no reads was usually associated with
samples known to undergo rigorous cleaning and sterilization procedures, for example, SC (33.3%),
ICU-A (27.8%), and ICU-B (26.3%), in terms of facility. On the other hand, the lowest percentage of
samples with no reads was usually associated with samples known to undergo less rigorous cleaning
procedures; e.g., reception (0.0%), nurse chief room (2.8%), resting room (2.8%), and lunch room (3.3%),
in terms of rooms.

By employing network analyses, we described the complex pattern of inter-relationships between
bacterial taxa co-occurring in the hospital environment. Only correlations with r ≥ ±0.9 (p ≤ 0.05)
were used to generate the hospital network. Such strict cutoff increases the confidence of our analysis
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for detecting only strong interactions, which ensures that strongly non-random distribution patterns
are mostly due to ecological reasons. Positive correlations suggest the occurrence of a mutualistic
interaction while negative correlations suggest the presence of direct or indirect competition between
the bacterial taxa co-occurring in the hospital environment.

The results indicated that the hospital microbial network presents a unique co-occurrence pattern
by forming a low connectedness and clustered topology, but was not structured among groups of nodes
(i.e., modules), as usually found in most natural environments [31,32]. These structural properties
offer the potential for comparison among different healthcare ecosystems in order to explore how the
general traits of a given hospital may influence the assembly of microbial communities. It also helps
us understand which organisms are most important in maintaining the structure and interactions
of microbial communities in hospital facilities. In this sense, the identification of potential keystone
species is of primary relevance. A keystone species is a taxon whose importance is relatively higher
than others for maintaining the structure of a community. [33]. In this study, the two most suitable
parameters (defined by Rampelotto et al., 2014 [34]) identified only a few potential keystone taxa,
which suggests that the hospital microbial network is evenly distributed.

A novel and important strength of our co-occurrence analysis is the ability to detect ecologically
relevant relationships between specific microbial taxa, in particular, potential competition between
pathogens and non-pathogens. To date, a limited number of studies addressing the events associated
with microbial competition in a spatial and multiplexed fashion have been performed, due in part to
the lack of available tools. In this sense, we hypothesize that this strategy could be used as a theoretical
framework to identify potentially strong negative correlations between pathogens and non-pathogens,
which in turn could guide more focused and experimental studies to screen for bioactive compounds
against pathogenic bacteria derived from any non-pathogenic microbe that possesses a competitive
advantage. As a proof of concept, by using in vitro co-cultivation, Gonzalez et al., 2011 demonstrated
that the non-pathogenic Bacillus subtilis, a bacterium that is nearly ubiquitous in nature, was able to
inhibit the growth of an epidemic Staphylococcus aureus isolate and possessed the ability to directionally
release a molecule with antimicrobial and metabolism-altering properties [35]. In another interesting
case, a recent in vitro study provided the first evidence that the harmless bacteria Corynebacterium
accolens, which commonly colonizes the nose, can help inhibit Streptococcus pneumoniae through a direct
antagonistic interaction between these species [36].

In our study, we have identified different taxa presenting a strong negative co-occurrence with a
variety of nosocomial and rare nosocomial pathogens. These taxa could be the focus of future in vitro
co-culture experiments exploring the underlying mechanisms of antagonistic interactions between
commensal and pathogenic bacteria, to address how one species prevents the growth of another and to
identify which components are involved in such interactions.

Another promising application would be the direct use of the non-pathogenic species or genetically
engineered harmless variants of rare opportunistic pathogens as microbial-based sanitizing agents to
reduce and control the colonization of nosocomial pathogens. This new concept, originally suggested
by Falagas and Makris [37], has already successfully been applied in recent years as an alternative
method to chemical disinfectants [38–40]. The rational design and use of probiotic bacteria and
biosurfactants for nosocomial infection control may overcome the problems associated with the
chemical germicides, which present risks towards the environment and the patient’s safety [41].
Several studies have demonstrated that more than 50% of hospital room surfaces are inadequately
cleaned and disinfected when conventional chemical disinfectants are used. In addition, disinfectants
can select resistant bacterial strains against themselves and also against antibiotics [42], which has
been recently reported for chlorhexidine induction of resistance against Colistin [43], an antibiotic
considered, until 2016, as a last-resort drug for treatment of infections sustained by multidrug-resistant
(MDR) gram-negative bacteria.
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This emerging concept of microbial remediation for the prevention and control of hospital-acquired
infections is a paradigm shift in the field, in which, instead of eradicating all pathogens, replacing
pathogens by beneficial microbes might be more effective in decreasing infections [44–46].

Although 16S rRNA gene sequencing as a clinical screening tool has many advantages over
traditional culture-based techniques, it is important to ponder its limitations. As any amplification
based on rRNA genes, it only analyzes a short, specific genomic region, and taxonomic resolution or
functional inference may be limited, especially for closely related species (i.e., sharing >99% similarity
in their 16S rRNA gene sequence) [47–49]. As an example, Clostridium botulinum and Clostridium
sporogenes exhibit a 99.7% similarity [50,51]. Another example may be found in the genus Rickettsia,
in which 16S rRNA gene sequence similarity values >99% are found among all 26 species that have
names with standing in nomenclature [52]. In general, 2.4% of complete sequenced genomes have 16S
rRNA sequences with <99% mean similarities [53]. Another major limitation of the 16S rRNA sequence
is its inability to discriminate among virulent strains, which means it is not possible to distinguish
pathogenic Clostridium difficile or Escherichia coli strains from nonpathogenic strains. Thus, for accurate
identification of certain bacterial species and virulent strains, further methods, such as multiplex PCR
assay, mass spectrometry, or whole genome sequencing must be applied.

Despite these limitations, the framework provided in this study for the detection of multiple
clinically relevant microbial targets is a promising addition to current diagnostic techniques and can
play an important role in routine healthcare-associated infections’ surveillance.

4. Materials and Methods

4.1. Sampling Site and Collection

The study was carried out at a tertiary-level teaching hospital with 200 beds located in southern
Brazil. 111 surface samples were collected monthly at six hospital facilities between April–September
2015, including two intensive care units (ICU-A and ICU-B), one surgery Ccenter (SC), one medical
unit (MU), one inpatient unit (IU), and one emergency care unit (ECU). In total, 663 samples were
collected during the six-month period of the study (three samples were discarded due to problems
during the sequencing). The types of surfaces sampled within the facilities were chosen based on
the frequency with which the surfaces were touched (here defined as high-touch surfaces), such as
workstations, medical, and surgical devices. All sampling locations and their characteristics are given
in Supplementary Table S1. Beyond individual characterization, samples were also grouped in four
categories, named month, facility, room, and sample type. For example, all samples collected in April
were grouped in the “April” month category, all samples collected in the emergency care unit during
the six-month period of sampling were grouped in the “ECU” facility category. Room and sample type
categories followed the same principle.

Sterile swabs and gloves were used for sampling collection. Swabs were moistened with sterile
saline solution and streaked across the surface of each sample. After sampling, the swabs were
transported back to the laboratory for DNA extraction, library preparation, and DNA sequencing.

4.2. Environment Measurements

Measurements of relative humidity and air temperature were carried out soon after the
sample collection using a digital hygro-thermometer (Incoterm–TTH100). For surface temperature
measurements, a digital laser infrared thermometer (GM300, Benetech) was used.

4.3. DNA Extraction, PCR Amplification, and Amplicon Sequencing

DNA was extracted following an optimized magnetic bead-based DNA extraction and purification
protocol, owned by Neoprospecta Microbiome Technologies (Brazil). Barcoded PCR amplification
was performed using the 341F and 806R primers (with 465 bp amplicons flanking the highly variable
V3-V4 region of the 16S rRNA gene sequence) with the following conditions: the first PCR primers
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contain the Illumina sequences based on the TruSeq structure adapter (Illumina, San Diego, CA, USA),
allowing the second PCR with indexing sequences. PCR was always carried out in triplicate using
Platinum Taq (Invitrogen, USA) with the conditions: 95 ◦C for 5 min, 25 cycles of 95 ◦C for 45 s, 55 ◦C
for 30 s, 72 ◦C for 45 s, and a final extension of 72 ◦C for 2 min for PCR 1. In PCR 2 the conditions
were 95 ◦C for 5 min, 10 cycles of 95 ◦C for 45 s, 66 ◦C for 30 s, 72 ◦C for 45 s, and a final extension
of 72 ◦C for 2 min. Taq Platinum was chosen due to its capacity to better amplify samples with low
amounts of DNA (i.e., <5 ng) and PCR cycles for the amplicon PCR were reduced to 21 to diminish
PCR bias. The final PCR was cleaned up using AMPureXP beads (Beckman Coulter, Brea, CA, USA)
and samples were pooled in the sequencing libraries for quantification. Library estimations were
performed with Picogreen dsDNA assays (Invitrogen, USA), and then the libraries were diluted for
accurate quantification by qPCR using the KAPA library quantification kit for Illumina platforms
(KAPA Biosystems, Woburn, MA, USA). The libraries were sequenced in a MiSeq system using a V2
kit, with a single-end 300 nt run.

4.4. 16S rRNA Reads Processing for Downstream Analyses

Sequencing raw data from MiSeq was processed using a customized python script. Briefly,
all the reads were individually submitted to a quality filter, based on the sum of the DNA bases’
probabilities errors, allowing a maximum of 1% of accumulated errors. Subsequently, the DNA
sequences corresponding to the Illumina adapters were removed. Sequences that presented 100%
identity were clustered and defined as an operational taxonomy unit (OTU). If any cluster was
represented by fewer than 5 reads, it was not considered in further analysis. Each OTU was then
aligned against a private reference alignment database (owned by Neoprospecta) at the 99% identity
level, using Blast [54]. The taxonomy associated with each OTU was assigned as the taxonomy
associated with the reference sequence defining the OTU. For all OTU-based analyses except the
co-occurrence network, the original OTU table was normalized using cumulative sum scaling (CSS)
method [55].

4.5. Community Composition and Diversity Analysis

QIIME version 1.9.0 was used to estimate alpha and beta diversity [56]. OTU abundances were
used to calculate the alpha diversity metrics, including OTU richness (unique OTUs), ChaoI richness
estimation and Shannon’s diversity indices. For overall comparison of significant differences among
bacterial communities (i.e., beta diversity), principal coordinates analysis (PCoA) was performed.
Samples were grouped in four categories, named month, facility, room, and sample type (Table S1).
A matrix using Bray-Curtis and Sørensen-Dice metrics for each pair of environments was calculated.
The distances were turned into points in space with the number of dimensions one less than the number
of samples. The first three principal dimensions were used to plot a three-dimensional graph that was
visualized using EMPeror [57].

To achieve statistical confidence for the sample grouping observed by PCoA (month, facility,
room, and sample type), we performed the ANOSIM multivariate test, using the vegan package,
through the compare_category.py script of QIIME. The otu_category_significance.py script was run
using the ANOVA to find OTUs whose members were differentially represented among the hospital
facilities. Moreover, to analyze whether there was any significant relationship between samples and
environmental parameters, we performed the Mantel test. The most prevalent OTUs across samples
were analyzed with compute_core_microbiome.py at different cut-off values.

4.6. Co-Occurrence Network Analysis

Non-random co-occurrence network analyses were performed using SparCC from the raw count
OTU table [58]. Ten interactions were used to estimate the median correlation of each pairwise and
the statistical significance of the correlations was calculated by bootstrapping with 100 iterations.
SparCC correlations with a magnitude of 0.9 and statistical significance (p < 0.01) were incorporated
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into the network analyses. The nodes in the reconstructed networks represent the OTUs, whereas the
edges (that is, connections) correspond to a strong and significant (positive or negative) correlation
between nodes. In order to describe the topology of the resulting network, two centrality measures
(i.e., betweenness centrality and eigenvector centrality) were calculated and the network was visualized
using the interactive platform Gephi [59].

5. Conclusions

The results of our investigation provide new insights into different aspects of the hospital
microbiome and indicate that the high-throughput sequencing of the 16S rRNA gene can be used as a
robust first-step tool for microbiological identification and characterization of a wide range of common
bacterial pathogens in hospital settings with high resolution. Through the use of a well-annotated
database of 16S rRNA sequences, and the use of a rigorous filtering process, we have demonstrated
that high-resolution profiling of bacterial communities can be achieved and have concluded that the
framework developed in this study may be an integral part of routine diagnostic testing for hospital
surveillance and infection control. Further improvements on the framework can make this technology
an even more user-friendly tool in the routine of hospitals, to control, and more importantly, prevent,
hospital outbreaks. This approach also shows potential for clinical application in infectious disease
diagnostics, an area in which 16S rRNA gene sequence identification might have an immediate and
direct impact on patient care.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/12/
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