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Abstract

Background: Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the
foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a
high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is
hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose
of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using
an unsupervised statistical approach to define disease subtypes within a case-only pediatric population.

Methods: A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using
whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological
data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate
multiple data sources were used to cluster patients into more homogeneous groups using biological and
radiological data both individually and collectively.

Results: All clustering analyses resulted in the significant identification of patient classes, with the pure biological
classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient
classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base
morphological and clinical traits.

Conclusions: Our results implicate several strong biological candidates warranting further investigation from the
dura expression analysis and also identified a blood gene expression profile corresponding to a global
down-regulation in protein synthesis.

Keywords: Chiari Type I Malformation, Posterior fossa, Disease subtypes, Whole genome expression, Cranial base
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Background
Chiari Type I Malformation (CMI), characterized by the
downward displacement of the cerebellar tonsils through
the foramen magnum at the base of the skull, has an es-
timated prevalence in the United States of slightly less
than one percent [1,2]. While there is currently a lack of
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consensus regarding diagnostic criteria, patients are
usually diagnosed if both tonsils are herniated 3 mm or
more or one tonsil is herniated 5 mm or more. Patients
can either experience a wide range of debilitating neuro-
logic symptoms, with the hallmark symptom consisting
of occipital headaches triggered by Valsalva maneuver,
or be asymptomatic. Currently, the only treatment for
CMI without hydrocephalus is posterior fossa (PF) decom-
pression surgery that expands the posterior fossa, allowing
more room for the cerebellar tonsils and achieving
improved cerebrospinal fluid flow.
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Although patients may be diagnosed with CMI without
additional classification, disease presentation is highly vari-
able among patients with respect to symptom presentation,
including presence of associated conditions, and the extent
of cerebellar tonsillar herniation. Age of onset is also varied
with some patients diagnosed shortly after birth while
others are diagnosed well into adulthood. Even response to
surgery is variable, with some patients achieving significant
relief from headaches and associated neurologic symp-
toms, while others continue to exhibit symptomology
post-surgery. In addition to clinical heterogeneity, multiple
distinct biological mechanisms have been proposed for
tonsillar herniation including cranial constriction, cranial
settling, spinal cord tethering, intracranial hypertension,
and intraspinal hypotension [3]. The “cranial constriction”
mechanism, which is generally thought to represent
“classical” CMI, is believed to result from underdevel-
oped occipital bones resulting in a posterior fossa (PF)
that is too small to accommodate the normal sized
cerebellum [4,5]. This clinical, mechanistic, and likely
etiologic variability coupled with the fact that no consistent
diagnostic criteria exist for CMI, pose significant challenges
in identifying the genetic basis of the disease and call for
approaches that dissect and account for this heterogeneity.
Despite the fact that several lines of evidence exist

supporting a genetic contribution to CMI such as twin
studies, familial clustering, and co-segregation with known
genetics syndromes (Reviewed in [6]), limited research
has been conducted to identify the specific genetic factors
involved. The first whole genome screen, conducted in
2006, reported significant evidence for linkage to regions
on chromosomes 9 and 15 using 23 non-syndromic,
CMI multiplex families [7]. There has been one published
case–control candidate gene association study that identi-
fied four SNPs in CDX1, FLT1, ALDH1A2 that were
significantly associated (FDR < 0.10) with CMI when the
study population was restricted to those 186 patients de-
termined to have a small posterior fossa [8]. Our group has
subsequently carried out two additional whole genome
screens. In the first screen, we used 66 non-syndromic,
CMI multiplex families and conducted a stratified linkage
analysis using clinical criteria to reduce heterogeneity [6].
This approach resulted in a marked increase in evidence
for linkage to multiple regions of the genome, including
chromosomes 8 and 12, both of which contain growth
differentiation factors (GDF6 and GDF3, respectively).
Growth differentiation factors have been previously impli-
cated in Klippel-Feil syndrome [9-11], presenting in about
3-5% of CMI patients [12,13]. In the second genome
screen, we conducted an ordered subset analysis (OSA)
using heritable, disease-relevant PF traits to identify in-
creased evidence for linkage within subsets of families that
were similar with respect to cranial base morphological
traits [14]. Results from OSA identified multiple genomic
regions showing increased evidence for linkage, includ-
ing regions on chromosomes 22 and 1 which implicated
several strong biological candidates for disease [14].
While the motivation for the present study is simi-

lar to our two recent CMI genetic studies, the approach
adopted here differs substantially. In the previous studies,
patients were stratified into homogeneous groups based
only on observable phenotypic differences (e.g. clinical
criteria or posterior fossa traits) with the goal of reducing
genetic heterogeneity and increasing power to identify
disease genes within etiologically more similar strata.
In the present study, an unsupervised approach was used
to define subtypes within a case-only population of unre-
lated individuals. Furthermore, in addition to the use of cra-
nial base morphological traits, whole genome expression
profiles from CMI patient tissue and blood samples were
used to cluster patients to establish disease subtypes.
Appropriate tissue selection for gene expression ana-

lysis can be difficult, especially for what is considered to
be a developmental disorder in most cases and one in
which limited knowledge exists about the underlying
biological mechanism. While both the age and source of
the tissue can influence gene expression, there are a lim-
ited number of non-postmortem tissues that can be ex-
amined for CMI due to accessibility. One of the most
easily obtainable tissues (dura mater) during a standard
CMI decompression surgery with duraplasty was there-
fore selected for whole genome expression analysis. The
dura mater is the outermost meningeal layer surrounding
the brain and spinal cord. In addition to ease of collection
from surgical patients, dura mater may also be relevant to
CMI as previous studies have reported the presence of a
thickened dural band at the cranio-vertebral junction of
CMI patients [15,16], which shows evidence of increased
collagen fiber splitting and branching, as well as hyalino-
sis, calcification, and ossification [15]. Furthermore, exam-
ination of the transcription profile of this tissue can shed
additional light regarding its potential relevance since the
expression profile of dura has not been previously exam-
ined in this context. Finally, the comparison of blood vs.
dura expression profiles may provide insight regarding the
usage of potential biomarkers in blood for the identifica-
tion of patient subsets.
The present study uniquely allows us to examine disease

heterogeneity using biological and radiological data both
individually, as well as collectively, to define homogeneous
classes of patients or subtypes. The use of biological data
alone allows us to identify pure biological subtypes, yet
still be able to correlate them with clinical and radiological
traits for additional interpretation and characterization. In
comparison, the integration of biological and radiological
data during the clustering analysis places a greater em-
phasis on genes and PF traits that are related and collect-
ively establish disease subtypes. The ultimate goal of this
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study is to gain insight into what factors may be driving
disease heterogeneity and to aid in the identification of
potential genetic factors that contribute to the develop-
ment of CMI.

Methods
Study population
Study participants were less than 18 years of age, diag-
nosed with CMI, and had a malformation severe enough
to warrant PF decompression surgery with duraplasty.
Eligible study participants were identified over a period
of 1 year and 8 months through the pediatric neurosur-
gery practices at the Duke University Medical Center
(H.F., G.G.). Participation in the study involved signing
consent forms for the release of medical records and
pre-surgical brain MRIs, providing a blood and dura
sample for RNA extraction, and completing a clinical
questionnaire. A total of forty-four pediatric CMI pa-
tients were included in this study and detailed study
population characteristics are provided in Table 1. The
participation rate was high, with only 7.9% of eligible
participants declining enrollment. Parents of all minor
children and children aged 12 and above provided written
informed consent for participation in the study that had
been approved by the institutional review board of Duke
University Medical Center.
Table 1 Study population description

Description N Percentage

Total number of individuals 44

Sex

Male 28 63.6%

Female 16 36.4%

Race

White 31 70.5%

African American 13 29.6%

Syrinx

Yes 10 22.7%

No 34 77.3%

Family history

Yes 6 13.6%

No 36 81.8%

Unknown 2 4.6%

Datasets

Blood gene expression 44 100.0%

Dura gene expression 44 100.0%

Cranial 40 90.9%

Clinical questionnaire 36 81.8%

Age at surgery (years)a 8.89 ± 5.19
aAverage age at surgery ± standard deviation.
Posterior cranial fossa measurements
Forty of the forty-four individuals had pre-surgical T1-
weighted sagittal brain MRIs available for measurements
of the PF region. In total, 18 PF measurements were taken
and 8 separate PF areas were estimated per individual
(Figure 1) as has been previously described in detail
[14]. All measurements were performed by one trained
researcher and then confirmed by a board certified
neuroradiologist (D.E.). Measurements were taken for
right and left herniation (also computed minimum and
maximum herniation), as well as the foramen magnum,
tentorium, supraoccipital bone, clivus, tentorial opening, PF
height, basion to reference line, opisthion to reference
line, tentorium to reference line, trapezoid height, tentorial
angle, occipital angle, basal angle, Boogaard’s angle, PF
area, PF area above the reference line, PF area below the
reference line, and areas 1–5 as described previously
(Figure 1) [14].

Clinical questionnaire
A clinical questionnaire collecting information regarding
pre-surgical symptom presentation, pregnancy history, pres-
ence of associated conditions, and family medical history
was provided to participants. The questionnaire was sent
to participants post-surgery and was completed either in a
web-based or paper-based format, or administered over
the phone by study personnel. Thirty-six of the forty-four
individuals completed the questionnaire at least partially
and, in most cases, the parent was the informant.

Laboratory protocols
Sample collection and storage
All biological samples were collected during PF decom-
pression surgery performed by one of two pediatric neu-
rosurgeons (G.G. or H.F). The standard decompression
surgery involves a craniectomy followed by the creation
of a “Y” shaped dural opening spanning from the suboc-
cipital region down to the bottom of the cerebellar ton-
sils. The dura is then closed with a cadaveric pericardial
patch to expand the subarachnoid space beneath. During
this procedure (duraplasty), a small piece of dura mater
(<5 mm × 5 mm) was obtained from either the superior
or lateral flap in the cranial portion of the dural opening
and immediately stored in a tube filled with 1.25 ml of
RNALater (Life technologies, Grand Island, NY) at room
temperature. The tube was then placed at 4°C for
24 hours before it was moved to −20°C for long term
storage. In addition to the collection of dura, blood
was collected in a 2.5 ml Paxgene RNA tube (Qiagen,
Valencia, CA) under anesthesia from an arterial line
for intraoperative monitoring and blood draws. The
Paxgene RNA tubes were incubated at room temperature
for 2 hours and then transferred to −20°C for long
term storage.



Figure 1 Posterior cranial fossa measurements taken from the midline of a sagittal, T1-weighted MRI. A1 to A5 shown in red indicate the
regions in which area was estimated. Additional measurements not explicitly labeled include (a) basal angle (BASAL_ANG), (b) boogaard angle
(BOOG_ANG), (c) occipital angle (OCC_ANG), (d) tentorial angle (TENT_ANG), (e) basion to reference (BASTOREF), (f) opisthion to reference
(OPISTOREF), (g) trapezoid height (TRAPHEIGHT), and (h) tentorium to reference (TENTTOREF). Abbreviations: TENT_OPEN = tentorial opening,
TENT = tentorium, OCC = supraoccipital bone, FM = foramen magnum, PFH = posterior fossa height, and HERN = cerebellar tonsillar herniation.
This figure is reproduced from [14], a Wiley publication.
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RNA extractions
Although patient ascertainment lasted for over a year,
all samples were extracted within one month following
the completion of ascertainment. RNA was extracted
from the dura using the Qiagen fibrous tissue mini kit
(Valencia, CA) per the manufacturer’s protocol. Using
the OmniBead Ruptor 24 - Bead Mill Homogenizer
(Omni International, Kennesaw, GA), the dura samples
were first homogenized at 4°C in 2 ml Omni bead ruptor
tubes prefilled with 2.38 mm metal beads and buffer
RLT (Qiagen, Valencia, CA) plus β-Mercaptoethanol.
The following machine settings were used to homogenize
all samples: Speed of 6.3 m/s, 2 cycles of 30 seconds, and a
30 second dwell. After extraction, a DNAse digestion of the
RNA eluate was performed followed by clean-up using the
Qiagen Fibrous Tissue Mini kit (Valencia, CA) according to
the manufacturer’s protocol for the Qiagen RNeasy Mini
kit (Valencia, CA). RNA was extracted from the blood
using the PAXgene Blood RNA kit (Qiagen, Valencia, CA)
per the manufacturer’s protocol. During the protocol
an on-column DNAse digestion was performed. Purified
RNA samples from both the blood and dura were stored
in multiple aliquots at −80°C in order to minimize the
number of freeze-thaw cycles.
The Nanodrop (ThermoScientific, Wilmington, DE)

was used to quantify the RNA and the Agilent RNA 6000
Pico chip (Santa Clara, CA) was used to determine a final
concentration and assess quality using the RNA Integrity
Number (RIN). RNA samples were required to have a
RIN exceeding 6 and a total yield of at least 50 ng for
further processing.

Whole genome expression arrays
Prior to running Illumina HT-12 v4 Expression BeadChips
(San Diego, CA), high quality RNA was amplified and con-
verted to biotin-labeled cRNA. All RNA samples were first
concentrated using a vacuum centrifuge at 35°C in order to
obtain the necessary starting concentration for the Illumina
TotalPrep-96 RNA Amplification Kit (San Diego, CA). The
protocol was followed according to the manufacturer’s
instructions and, in addition to the processing of patient
RNA samples, three additional controls were included in
the 96 well plate: a positive control included in the Illumina
TotalPrep kit (San Diego, CA), a dura control sample
(Clontech human dura matter total RNA), and a blood con-
trol sample (Clontech human blood, peripheral leukocytes
total RNA). Quantification of the cRNA was performed
using the Nanodrop (ThermoScientific, Wilmington, DE).
An RNA 6000 Pico chip (Agilent, Santa Clara, CA) was
run using a subset of representative cRNA samples with
varying yield in order to assess the overall size distribution.
cRNA samples were then diluted to a concentration of
150 ng/ul and run on Illumina HT-12 v4 Expression
BeadChips (San Diego, CA) according to the manufacturer’s
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protocol. In total, eight chips were run in one experimental
batch that included forty-four blood RNA patient samples,
forty-four dura RNA patient samples, and one blood and
one dura control RNA sample both run in quadruplicate.
An attempt was made to distribute samples evenly across
the chips according to race, age at surgery, sex, and
surgeon. Dura samples were run across four chips with
the same dura control sample run on each chip. Similarly,
blood samples were run across the remaining four chips
with the same blood control sample run on each chip.
Sample groups by chip and specific chip positions were
kept consistent across the blood and dura chips.

Real-time quantitative PCR
Differential expression of six genes was validated using
real-time quantitative PCR (RT-qPCR). Following the manu-
facturer’s protocol, the SuperScript III First-Strand Synthesis
System for RT-PCR (Invitrogen, Grand Island, NY) was
used to synthesize first strand cDNA from high quality
RNA. PCRs were performed using the Qiagen HotStarTaq
Plus kit (Valencia, CA) in order to confirm the conver-
sion of RNA to cDNA (β-actin primers provided in the
Invitrogen kit) and that no genomic DNA was present
(custom primers were used that targeted a non-coding
region of the genome). In order to identify appropriate
endogenous controls to use for RT-qPCR, Human Taqman
Endogenous Control Arrays (Applied Biosystems, Grand
Island, NY) were run using blood and dura cDNA sam-
ples. SASqPCR [17] was used to identify the most stable
endogenous control genes. Due to sample limitations, only
the top two most stable genes (lowest M value) were se-
lected from the blood and dura RT-qPCR results. Taqman
gene expression assays with TaqMan Gene Expression
Master Mix (Applied Biosystems, Grand Island, NY) were
used to assess the gene expression of three target genes in
dura (NOTCH4: Hs00965895_g1, ETS1: Hs00428293_m1,
ETS2: Hs01036305_m1), three target genes in blood
(PRPF38B: Hs00216242_m1, PSMA3: Hs00160558_m1,
RSL24D1: Hs00829770_g1), two endogenous control genes
in dura (PPIA: Hs99999904_m1, ACTB: Hs99999903_m1),
and two endogenous control genes in blood (HMBS:
Hs00609297_m1, PGK1: Hs99999906_m1). Due to RNA
availability, a limited number of samples were assessed. After
matching for important covariates (see Data analysis below),
ten cDNA samples from each blood class (Ntotal = 20)
and five cDNA samples from each dura class (Ntotal = 10)
were selected for the validation experiments. All reactions
were performed in triplicate (0.5 μl of 20X TaqMan Gene
Expression Assay, 5 μl of 2X TaqMan Gene Expression
Master Mix, 2 ng blood cDNA or 1.5 ng dura cDNA,
water to bring the reaction volume to 10 ul) and run on a
ViiA™ 7 Real-Time PCR System (Applied Biosystems,
Grand Island, NY); blood and dura samples were run on
separate 384 well plates.
Data analysis
Whole genome expression quality control and data
pre-processing
Initial quality assessment of the whole genome expression
data was performed using Illumina’s GenomeStudio
Gene Expression module (San Diego, CA) for the blood
and dura samples separately. Illumina system controls
were checked for consistency with expected performance.
Additional control metrics such as the number of detected
genes (based on Illumina’s detection p-value), signal
intensity measures, housekeeping gene intensity, and
several sample-independent system control metrics were
assessed for each sample to identify outliers as defined by
greater than 4 standard deviations away from the mean.
In addition, technical control replicates were assessed
for consistency.
Raw expression data were log2-transformed followed

by quantile normalization using the R package, lumi
[18]. The least variable probes as defined by the 75th per-
centile of the distribution of coefficient of variation (CV)
values were removed to reduce noise using R 2.15.0
(NProbesRemaining = 11804). In order to identify sample
outliers and assess sample relationships, principal compo-
nents analysis (PCA) was performed using prcomp in R
2.15.0 and samples were plotted using the first two PCs.
This was performed both with and without the inclusion
of control blood and dura technical replicates. Sex of
the samples was confirmed by assessing the Y chromo-
some gene expression probes and confirming that sam-
ples clustered on the basis of reported sex after running
PCA using prcomp in R 2.15.0.

Sparse k-means clustering
Prior to clustering analyses, studentized residuals were
calculated for each expression probe from linear regres-
sion models adjusting for age at surgery, sex, neurosurgeon,
and race using SAS 9.3 (Cary, NC) so that sample clas-
ses would not be identified solely based on these factors.
Completion of a preliminary clustering analysis led to
the observation that initial dura RNA quality assessed by
the RIN was associated with some of the identified classes
(data not shown). Thus, the dura gene expression data were
further adjusted by also including the RIN as a covariate
in the linear regression models. In order to exclude the
effects of age, sex, and race on MRI measurements, each
PF trait was regressed on age at MRI, race, and sex and
only the studentized residuals were considered for the
clustering analysis. In order to avoid missing values, left
and right herniation were removed from the analysis
(NRemainingPFtraits = 24).
Sparse k-means clustering [19] was used to identify

patient subtypes or classes from the blood whole genome
expression data, dura whole genome expression data,
and PF trait data separately. Standard k-means clustering
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groups objects into a pre-defined number of k classes
without feature selection such that the within sum of
squares is minimized. Sparse k-means clustering differs
from the standard approach in that it adaptively selects a
subset of features (e.g. gene expression probes or PF traits)
to cluster the objects (e.g. patients). Specifically, a weighted
between cluster sum of squares (BCSS) is maximized
conditional on feature weight restrictions. Note that when
all features are given equal weights sparse k-means clus-
tering reduces to standard k-means clustering. In sparse
k-means clustering each feature is given a non-negative
weight and depending on the magnitude of the tuning
parameter, a proportion of the features will be given a
weight of zero indicating that they do not contribute to
the clustering (i.e. sparsity was enforced). The optimal
tuning parameter and number of k classes are deter-
mined by identifying which combination produces the
largest gap statistic which assesses the overall strength
of the clustering compared to clustering of the data when
the objects are independently permuted within each feature
(null data) [19]. More specifically, the gap statistic rep-
resents the logarithm of the difference between the ob-
served BCSS and the expected BCSS. In general, sparse
clustering has a number of potential advantages including
increased interpretability of findings as a result of feature
specific weights and a reduction in noise leading to tighter
clusters due to the removal of features that do not con-
tribute to class discrimination.
Prior to the clustering analysis, arrays were first stan-

dardized (μ = 0, σ = 1). The R package, sparcl [20], was
then used to implement sparse k-means clustering
using the squared Euclidean distance as the dissimilar-
ity measure between objects, 20 random starts and a
maximum of 20 iterations of the k-means algorithm.
For each value of k tested (k = 2-5), 50 tuning parameter
values were assessed. The optimal k/tuning parameter
combination was determined based on the maximal gap
statistic (Npermutations = 25). Increasing the number of
permutations to 100 did not substantively alter the re-
sults. Assuming the gap statistic follows a standard normal
distribution, an approximate p-value (pnorm function in R
2.15.0) and a 95% confidence interval (CI) were generated
using R 2.15.0. In order to visualize the sample classes de-
termined from the sparse k-means clustering analysis, PCA
using prcomp in R 2.15.0 was performed using weighted
features as input; feature weights were determined from the
sparse k-means analysis.

Integrative sparse k-means clustering
The identification of patient subtypes or classes were
also determined from the following analyses integrating
multiple data types: 1) Dura gene expression and PF trait
data, 2) Blood gene expression and PF trait data, and 3)
Dura gene expression, blood gene expression, and PF trait
data. Sparse k-means clustering was performed as described
above, but with modifications to accommodate the het-
erogeneity of these datasets. The modifications for the
integrated analysis were as follows: 1) Before clustering,
each dataset was scaled to have the same total weighted
sum of squares (within cluster sum of squares plus between
cluster sum of squares). This ensures that the clustering
would not simply be driven by the larger dataset, 2) The
tuning parameter that controls the level of sparsity was
adjusted relative to the number of features in each dataset,
and 3) The gap statistic was used as described above,
except that objects were permuted within each dataset
rather than within each feature. The purpose of this
approach was to identify clusters that are significantly
expressed across multiple datasets, rather than multiple
features expressed in a single dataset. In other words,
integrative clustering relies on joint structure across
datasets, rather than individual dataset structure. To be
consistent with the sparse k-means clustering applied to
individual datasets, k values of 2 through 5 each with 50
tuning parameter values were assessed for each of the
integrated analyses. Inference for the gap statistic, as
well as the visualization of sample relationships and
class membership using weighted PCA was performed
as described above.
The R functions used to implement integrative sparse

k-means clustering are available upon request. In addition,
a more mathematically detailed description of the integra-
tive approach is provided (see Additional file 1).

Class characterization
Concordance across analyses with respect to class member-
ship was assessed using a Rand index (range is 0 to 1) and
an adjusted Rand index (range is −1 to 1) as implemented
in the R package, fossil [21], using R 2.15.0. These both
provide a measure of agreement between two clustering
outcomes or data partitions, while the adjusted Rand
index provides more sensitivity with its increased range
and also accounts for randomness in class assignment [22].
Analyses were restricted to those forty individuals present
in all datasets used for clustering.
Clinical characterization of classes was determined using

the clinical questionnaire provided to participants as well as
medical records in a few cases (presence of hydrocephalus
and syrinx). With the exception of a few continuous var-
iables in the questionnaire, all analyses were performed
using a Fisher’s exact test as implemented in SAS 9.3
(Cary, NC) to determine which clinical features were
associated with class membership. Continuous variables
were tested for association with class by using a t-test
assuming equal or unequal variance, when appropriate, or
ANOVA when the number of classes exceeded 2 (SAS 9.3,
Cary, NC). Prior to analysis, all continuous variables
were tested for normality using the SAS procedure, proc
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univariate (Shapiro-Wilk and Kolmogorov-Smirnov test). If
necessary, variables were transformed to approximate
a normal distribution.
Biological characterization of classes was based primarily

on the gene expression probe weights assigned from the
sparse k-means or integrative sparse k-means clustering
analysis. As no gene expression data were used to identify
classes solely dependent on PF traits, another approach
was necessary to biologically characterize these classes.
The R package, limma [23], was used to identify gene
expression probes in blood and dura that were differentially
expressed between the cranial (PF trait) classes. Log2-
transformed, quantile normalized expression data were
used as input and age at surgery, sex, race, and surgeon
were included as covariates in the model. For the dura
whole genome expression analysis, the RIN was also
included as a covariate in the model for reasons dis-
cussed above. Illumina HumanHT12 v4 probe annota-
tion data were pulled from the R annotation package,
illuminaHumanv4.db [24]. The top 100 ranked genes
from each of the 6 analyses based on either p-values
from limma (R package used to identify differentially
expressed gene expression probes) or feature weights from
sparse k-means or integrative sparse k-means clustering
were used as input into DAVID v6.7 [25,26] to identify en-
richment for KEGG biological pathways. The re-annotation
of Illumina probes was used to create a custom background
of genes for the pathway enrichment analysis. In order to
assess enrichment for specific biological pathways, DAVID
v6.7 [25,26] implements both a Fisher’s exact test and
a modified Fisher’s exact test (EASE score) which is
more conservative as the number of genes provided in
the user list that are also found in the pathway of interest
is reduced by one. In addition, Benjamini-Hochberg
corrected p-values are provided in order to account for
multiple testing.
Radiological characterization of classes was mostly based

on PF feature weights provided by sparse k-means or
integrative sparse k-means clustering. For the classes
determined based solely on dura gene expression or blood
gene expression data, a separate approach was necessary.
Association analyses were therefore carried out using lo-
gistic regression in SAS 9.3 (Cary, NC) with age at MRI,
sex, and race included as covariates in the models. For
each of the clustering analyses, the PF traits most associ-
ated with the identified classes will be reported.

Real-time quantitative PCR
SAS 9.3 (Cary, NC) was used to perform the RT-qPCR
analysis. Prior to analysis, sample outliers as defined by
greater than 4 standard deviations away from the mean
were first identified by gene (comparison to other samples
and comparison across technical replicates within a sample).
Standard RT-qPCR analyses were conducted [27]: 1) For
each sample-gene combination, the arithmetic mean CT

of the three technical replicates was calculated, 2) For each
sample, the geometric mean CT [28] of the two endogenous
control gene means was calculated, 3) For each sample-
target gene combination, the ΔCT was calculated by sub-
tracting the mean CT of the two endogenous control genes
from the mean CT of the target gene, and 4) For each target
gene, the ΔCT of class 1 was compared to class 2 using a
Wilcoxon rank-sum exact test (one-sided p-value).

Results
Whole genome expression sample quality assessment
Quality assessment of blood and dura whole genome ex-
pression data was performed separately using multiple
approaches as described under the Methods section. For
all data, Illumina system controls were first checked and
found to be consistent with expected performance. In
addition, several control metrics were assessed on an
individual sample basis to identify samples with poor over-
all quality. None of the blood RNA samples were identified
as outliers. One of the dura RNA samples was considered
an outlier for only 2 out of the 15 control metrics examined
(signal average and housekeeping gene intensity) and was
thus retained for analysis. In addition, technical control
replicates for both blood and dura were assessed for
concordance. As expected, the Pearson correlation coeffi-
cient was > 0.99 and > 0.98 for the dura and blood control
replicates, respectively. Furthermore, when sample relation-
ships were examined using either hierarchical clustering as
implemented in lumi [18] (R package used to implement
methods for Illumina gene expression data) or PCA, all
control replicates clustered with one another and away
from the remaining patient samples indicative of their
high degree of concordance. In order to further assess
sample relationships and detect possible outliers due to
technical reasons, PCA was performed using the patient
samples without the inclusion of technical control repli-
cates. No samples were removed from the analysis for the
following reasons: 1) The samples that clustered away from
the others were not considered severe outliers as defined by
greater than 4 standard deviations away from the mean PC
score, and 2) None of the samples that clustered away from
the larger group had obvious technical or quality issues
when further examined and may in fact represent some-
thing biologically interesting. Final quality assessment con-
sisted of sample sex checks performed as described above
in the Methods section. All samples were found to group
with other samples of the same reported sex.

Sparse k-means clustering
Sparse k-means clustering was performed using blood and
dura whole genome expression data separately, as well as
PF trait data. A summary of the results are shown in Table 2
and sample relationships can be visualized according to



Table 2 Sparse k-means clustering resultsa

Description Individual clustering

Dura Blood Cranial

Optimal k classesb 2 2 2

Class 1 (N) 24 25 21

Class 2 (N) 20 19 19

Optimal tuning
parameter

68.27 81.71 3.66

N non-zero weighted
features (%)c

Dura 11804 (100%) NA NA

Blood NA 11804 (100%) NA

Cranial NA NA 18 (75%)

Maximum weighted
feature (weight)

Dura MECOM (0.21) NA NA

Blood NA RPS7 (0.17) NA

Cranial NA NA BASTOREF
(0.72)

Gap statisticd 1.152 ± 0.013 1.834 ± 0.014 0.487 ± 0.136

95% Confidence
interval

1.126-1.178 1.807-1.860 0.222-0.753

P-value <1.0E-10 <1.0E-10 1.62E-04

Abbreviations: N: number, MECOM: MDS1 and EVI1 complex locus, RPS7:
ribosomal protein S7, BASTOREF: basion to reference line, NA: not applicable.
aClustering results presented using individual datasets (Dura: dura gene
expression data, Blood: blood gene expression data, Cranial: PF trait data).
b44 individuals were included for the dura and blood gene expression
individual clustering analyses; 40 individuals were included for all
other analyses.
c11804 gene expression probes and/or 24 posterior fossa traits (features) were
used as input.
dThe gap statistic ± standard error is presented. Gap statistics with an
approximate p-value less than 0.05 are shown in bold.
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class membership in the weighted PCA plots presented
in Figure 2. The optimal number of k classes as deter-
mined by the gap statistic was two for all three analyses
and generated fairly similar class sizes. For the blood
and dura whole genome expression clustering analysis,
no sparsity was enforced as indicated by the fact that all
11804 gene expression probes received non-zero feature
weights. Increased pre-filtering (restriction to the most
variable 5000 gene expression probes) did not enforce
sparsity either. Sparsity was enforced, however, for the PF
trait clustering analysis with 25% of the PF traits assigned
weights of zero. Under the assumption that the gap stat-
istic follows a standard normal distribution, approximate
p-values for all three analyses were nominally significant
(p < 0.05), with the blood and dura analysis resulting in
the most significant gap statistics (p < 1×10−10). This can
also be visualized by the extent of separation observed
between the classes based on PC1 from the weighted
PCA (Figure 2).
Integrative sparse k-means clustering
Integrative sparse k-means clustering was performed using
1) Dura gene expression and PF trait data (Dura-Cranial),
2) Blood gene expression and PF trait data (Blood-Cranial),
and 3) Blood gene expression, dura gene expression,
and PF trait data (Blood-Dura-Cranial). A summary of
the results are shown in Table 3 and sample relationships
can be visualized according to class membership in the
weighted PCA plots presented in Figure 3. The optimal
number of k classes as determined by the gap statistic was
two for all analyses, except for the Dura-Cranial analysis
which defined three classes as optimal. Unlike the results
from the individual sparse k-means method, the number of
features contributing to class discrimination was restricted
for all three integrative analyses (i.e. sparsity was enforced
and a proportion of features were assigned weights of zero),
with the Blood-Cranial clustering analysis having the
fewest number of contributing features. The Blood-Cranial
analysis resulted in the most significant gap statistic
(p = 2.0×10−5) out of the integrative clustering analyses,
followed by the Dura-Cranial (p = 7.4×10−5) and Blood-
Dura-Cranial analysis (p = 3.6×10−4).

Class characterization
In order to assess class membership concordance, individ-
uals were restricted to the forty present in all analyses and
both a Rand and an adjusted Rand index were computed,
results of which are summarized in Table 4 (see Additional
file 2 for class assignments for all samples for each analysis).
Of particular note, the Blood-Cranial and Blood-Dura-
Cranial integrative clustering analyses partitioned the
patients into the same two classes thus the addition of
the dura gene expression data did not alter the class
assignments. This would also be consistent with the
fact that the Dura with Blood-Cranial and Dura-Blood-
Cranial comparisons resulted in the lowest class agreement
(Adjusted Rand index = 0.01). With the exception of
the Blood-Cranial and Blood-Dura-Cranial comparison, the
remaining class membership comparisons showed some-
what limited concordance. The Cranial with Dura-Cranial
comparison resulted in the next highest class agreement
(Adjusted Rand index = 0.55), followed by Dura with
Dura-Cranial (Adjusted Rand index = 0.35).
The results generated from the blood and dura whole

genome expression individual sparse k-means clustering
analyses resulted in the most significant gap statistics
(p < 1×10−10) and are further described below. However,
complete characterization of the remaining classes is
provided (see Additional file 3). For each analysis, classes
were characterized biologically (KEGG pathway enrichment
analysis; the top 100 ranked genes from each analysis were
used as input into DAVID v6.7, see Methods section
for more details), clinically (clinical questionnaire data
and medical records; Fisher’s exact test was used for



Figure 2 Weighted PCA plots for individual sparse k-means clustering. Each point represents a patient and each class of patients is shown
in a different color (blue or red). (A) Dura (Proportion of variance explained by PC1 (0.26) and PC2 (0.07)), (B) Blood (Proportion of variance
explained by PC1 (0.46) and PC2 (0.09)), and (C) Cranial sparse k-means clustering analysis (Proportion of variance explained by PC1 (0.54) and
PC2 (0.18)). The “true” patient class is unknown and is based on the sparse k-means clustering assignment.
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categorical variables; t-test or ANOVA was used for
continuous variables), and radiologically (PF traits; for
dura and blood individual clustering analyses, logistic
regression was used; otherwise, the top ranked weighted
traits are listed); nominally significant findings are
presented in Table 5 (Blood and dura whole genome
expression data), as well as Additional file 3. Due to
the extent of missing data for the clinical questionnaire,
results from very few clinical traits are presented. Only
one of the questions was nominally significant with less
than 25 percent missing data (paternal age). This meant
that out of the 36 patients that had at least partially
completed the questionnaire, one additional individual
did not respond to the question concerning paternal age.
We recognize that this still represents a large proportion
of missing data therefore the results should be interpreted
with caution. However, we further investigated the pattern
of missing data for this question, and found that the miss-
ing data was not significantly associated with blood class
(Fisher’s exact test, p = 1).
For the dura clustering analysis (Table 5), enrichment

for two biological pathways was observed, dorso-ventral
axis formation and pathways in cancer; neither met adjust-
ment for multiple testing. Radiological characterization of



Table 3 Integrative sparse k-means clustering resultsa

Description Integrative clustering

Dura-Cranial Blood-Cranial Blood-Dura-Cranial

Optimal k classes 3 2 2

Class 1 (N) 19 27 27

Class 2 (N) 11 13 13

Class 3 (N) 10 NA NA

Optimal tuning parameter 0.52 0.24 0.35

N non-zero weighted features (%)b

Dura 6358 (53.9%) NA 3158 (26.8%)

Blood NA 1120 (9.5%) 2372 (20.1%)

Cranial 9 (37.5%) 2 (8.3%) 5 (20.8%)

Maximum weighted feature (weight)

Dura MUC4 (0.24) NA LGALS3 (0.34)

Blood NA RABGAP1 (0.33) RABGAP1 (0.26)

Cranial PFA_TOP (0.73) BASTOREF (0.99) BASTOREF (0.89)

Gap statisticc 0.128 ± 0.034 0.302 ± 0.073 0.266 ± 0.079

95% Confidence interval 0.062-0.194 0.158-0.446 0.112-0.420

P-value 7.41E-05 2.01E-05 3.59E-04

Abbreviations: N number, MUC4 mucin 4 cell surface associated, RABGAP1 RAB GTPase activating protein 1, LGALS3 lectin galactoside-binding soluble 3,
BASTOREF basion to reference line, PFA_TOP posterior fossa area above the reference line, NA not applicable.
aDura: dura gene expression data, Blood: blood gene expression data, Cranial: PF trait data.
b11804 gene expression probes and/or 24 posterior fossa traits (features) were used as input.
cThe gap statistic ± standard error is presented. Gap statistics with an approximate p-value less than 0.05 are shown in bold.
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the dura classes indicated that the lower right hand re-
gion of the PF appeared to be most different between
the identified classes (supraoccipital bone, opisthion to
reference, and area3). All of these PF traits were previously
found to be heritable in a collection of CMI families [14].
Interestingly, down-regulation of all three genes present
in the dorso-ventral axis formation pathway (ETS1 (v-ets
erythroblastosis virus E26 oncogene homolog 1 (avian)),
ETS2 (v-ets erythroblastosis virus E26 oncogene homolog
2 (avian)), NOTCH4 (notch 4)) was observed in class 2
where patients also exhibited a smaller supraoccipital
bone, opisthion to reference line, and area3.
For the blood clustering analysis (Table 5), which also

resulted in the most significant gap statistic, enrichment
for five biological pathways was detected including the
ribosome, spliceosome, proteasome, RNA degradation,
and oxidative phosphorylation pathways. Of particular
note, the only pathway that remained significant after a
Benjamini-Hochberg adjustment for multiple testing was
the ribosome pathway (Adjusted p-val = 2.1×10−6). Multiple
regions of the PF were associated with blood class, in-
cluding the Boogaard’s angle, tentorium, and the basion
to the reference line. Similar to the dura analysis, all of
these PF traits were previously found to be heritable in
a collection of CMI families [14]. The only clinical asso-
ciation observed with blood class was paternal age; limi-
tations of this analysis were described in detail above.
Interestingly, an increased paternal age and an overall
down-regulation of ribosome, spliceosome, and proteasome
pathways in class 2 compared to class 1 was observed;
a slight down-regulation of the RNA degradation path-
way was also detected in class 2.

Real-time quantitative PCR
For the dura RT-qPCR analysis, all three genes assessed
were down-regulated in class 2 versus class 1, consistent
with the Illumina HT-12 data (see Additional file 4).
Both ETS1 and ETS2 were significantly differentially
expressed across classes (p < 0.05), while NOTCH4 did not
quite meet statistical significance (p = 0.08). For the blood
analysis, PSMA3 and RSL24D1 were both significantly
down-regulated (p < 0.05) in class 2 versus class 1, consist-
ent with the Illumina HT-12 data (see Additional file 4).
However, we were unable to validate the PRPF38B finding.
Although not statistically significant, it was up-regulated
in class 2 versus class 1 which is the opposite of what was
found using the Illumina HT-12 data.

Discussion
We ascertained forty-four pediatric CMI patients in order
to establish disease subtypes using biological data consist-
ing of patient blood and dura whole genome expression
profiles, as well as radiological data comprised of PF traits.
Sparse k-means clustering analyses were performed using



Figure 3 Weighted PCA plots for integrative sparse k-means clustering. Each point represents a patient and each class of patients is shown
in a different color (blue, red, or green). (A) Dura-Cranial (Proportion of variance explained by PC1 (0.39) and PC2 (0.16)), (B) Blood-Cranial
(Proportion of variance explained by PC1 (0.62) and PC2 (0.24)), and (C) Blood-Dura-Cranial integrative sparse k-means clustering analysis
(Proportion of variance explained by PC1 (0.40) and PC2 (0.17)). The “true” patient class is unknown and is based on the sparse k-means
clustering assignment.
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the biological and radiological data both individually and
collectively. The latter analysis required us to extend the
original sparse k-means method to accommodate multiple
datasets from different sources. Identified subtypes
were compared across analyses for class membership
agreement. Subtypes were also fully characterized for
better interpretability, which included the identification of
enriched biological pathways, cranial base discriminating
features, and, to a more limited extent, correlated clinical
traits. All clustering analyses resulted in the identification
of significant patient classes, with the dura and blood indi-
vidual clustering analyses showing the strongest evidence.
Further characterization of these classes led to the identifi-
cation of several factors that may contribute to disease
heterogeneity within a pediatric CMI population.
Prior to focusing on our specific findings, we present a

general discussion surrounding the results obtained from
both the standard and integrative sparse k-means clustering



Table 4 Class membership comparisona

Class 1 Class 2 Adj rand index Rand index

Blood-Cranial Dura-Blood-Cranial 1.00 1.00

Cranial Dura-Cranial 0.55 0.59

Dura Dura-Cranial 0.35 0.62

Cranial Blood-Cranial 0.35 0.67

Cranial Dura-Blood-Cranial 0.35 0.67

Blood Dura-Cranial 0.33 0.49

Blood Blood-Cranial 0.29 0.64

Blood Dura-Blood-Cranial 0.29 0.64

Blood Cranial 0.10 0.55

Dura-Cranial Blood-Cranial 0.04 0.51

Dura-Cranial Dura-Blood-Cranial 0.04 0.51

Blood Dura 0.02 0.49

Dura Cranial 0.02 0.49

Dura Blood-Cranial 0.01 0.49

Dura Dura-Blood-Cranial 0.01 0.49
aComparisons were made by restricting the analysis to the 40 individuals
present in all datasets.
Abbreviations: Adj adjusted.
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methods. First, limited class membership concordance was
observed across most analyses. This was not particularly
surprising as the source of each dataset differed substan-
tially (blood vs. dura vs. PF trait). It does, however, suggest
that the use of more readily available patient data, such as
Table 5 Class characterization summarya

Analysis Characterization Description

Dura Biologicalb Dorso-ventral axis forma

Pathways in cancer

Radiologicalc Area3

Supraoccipital bone

Opisthion to referenc

Clinical NA

Blood Biologicalb Ribosome

Spliceosome

Proteosome

RNA degradation

Oxidative phosphorylat

Radiologicalc Boogaard’s angle

Basion to reference

Tentorium

Clinicald Paternal age
aOnly nominally significant results are shown. In addition, only the two most signifi
bThe top 100 ranked genes from each analysis were used as input into DAVID v6.7
Additional filtering was applied using DAVID's default settings: minimum of 2 gene
number of genes present in each pathway and whether they are down- or up-regu
cLogistic regression was carried out including age at MRI, sex, and race as covariate
dA t-test assuming equal variance was performed.
eThese are not adjusted for multiple testing.
PF traits, would not be sufficient to identify subtypes
established using biological data alone. In addition, the
class membership agreement between the dura and
blood clustering analyses was extremely low. While each
of these analyses identified biological classes, the features
that accounted for a large proportion of variation in the
data not only differed between the analyses but led to the
partitioning of patients into different classes. Specifically,
the biological relationships observed among the patients
were strongly dependent on the biological source used.
While this could be due to our limited sample size or the
particular clustering algorithm implemented, it could also
be due to the fact that one or both of these tissues were
not able to strongly identify true disease subtypes or that
each provided us with very distinct information only rele-
vant to the specific tissue assessed. Continued collection of
patient samples and further investigation of results would
be necessary to resolve these possibilities.
In addition to the individual dataset clustering, we

performed integrative clustering. The purpose of these
analyses was to place more weight on features within
each dataset that act collectively to discriminate patient
classes. For example, the Dura-Cranial analysis should
identify genes that are relevant to cranial base morphology
and able to, in combination with those PF traits, partition
patients into distinct subtypes. While this was an attractive
a priori approach, the findings did not provide significant
insight into disease heterogeneity. In general, the integrative
Class 1 Class 2 P-vale

tion 3/3 Up 3/3 Down 0.001

4/6 Up 4/6 Down 0.031

Larger Smaller 0.006

Larger Smaller 0.006

e Larger Smaller 0.046

NA NA NA

10/10 Up 10/10 Down 2.80E-09

5/6 Up 5/6 Down 0.005

3/3 Up 3/3 Down 0.007

2/3 Up 2/3 Down 0.014

ion 2/4 Up 2/4 Down 0.018

Smaller Larger 0.004

Larger Smaller 0.016

Smaller Larger 0.036

Younger Older 0.021

cant clustering analyses were included in the table.
for the pathway analysis. KEGG pathways with a Fisher exact p < 0.05 are listed.
s present in the pathway and an EASE score < 0.1. For each class, the total
lated with respect to the other class are noted.
s in the model.
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analyses were less significant than the individual cluster-
ing analyses. In addition, two out of the three analyses
(Blood-Cranial and Blood-Dura-Cranial) did not produce a
strong biological interpretation as evident from the lack of
enrichment observed for any biological pathway. We thus
focus our discussion on the individual clustering analyses,
particularly on our two most significant findings: the dura
and blood whole genome expression clustering results.
Sparse k-means clustering using blood whole genome

expression data alone resulted in our most significant
finding. Using the top 100 ranked genes, we identified
at least nominally significant enrichment for five biological
pathways, including the ribosome, spliceosome, prote-
asome, RNA degradation, and oxidative phosphorylation
pathways. Interestingly, we observed a down-regulation of
the ribosome (involved in protein synthesis), spliceosome
(involved in splicing of pre-mRNA), and proteasome
(involved in the degradation of proteins) pathways in
the group of patients that also had older fathers, a smaller
basion to reference line, a larger tentorium, and a flatter
cranial base as indicated by a larger Boogaard’s angle
(Figure 1). One potential link between paternal age and
the ribosome comes from a study which examined DNA
methylation in rat liver and germ cells and found that a
region of the ribosomal DNA (rDNA) locus was prefer-
entially hypermethylated with increased age in both the
sperm and liver [29]. Hypermethylation of the rDNA
may compromise function and affect protein synthesis
[29]. While this study did not directly examine whether
this age-dependent methylation change could be passed
on to and remain in offspring, aberrant methylation was
suggested as a potential mechanism contributing to pa-
ternal age related abnormalities in offspring [29]. In a
study examining whole genome expression profiles from
peripheral blood lymphocytes in children with ASD and
controls, decreased variance in the distribution of gene
expression levels in children with ASD as well as control
individuals with older fathers was reported [30]. This
decreased variance was suggested to be due to a global
down-regulation of transcriptional regulation [30]. Thus,
paternal age appears to be associated with global changes
in transcriptional regulation and protein synthesis, which
we may be detecting in our blood classes.
Sparse k-means clustering using dura whole genome

expression alone resulted in our second most significant
finding. Within class 2 we observed a reduction in area3,
the supraoccipital bone, and the opisthion to reference
line, as well as down-regulation of all genes identified in
the enriched dorso-ventral axis formation pathway and
over half of the genes identified in pathways in cancer.
While these pathways are very general and don’t appear
immediately relevant, several of the genes involved in
these pathways have multiple functions, some of which
are applicable to CMI biology.
Two of the genes identified within the dorso-ventral
axis formation pathway, ETS1 and ETS2, are involved
in osteoblast differentiation and the formation of bone
[31]. While some studies have suggested that overex-
pression of ETS2 is associated with the craniofacial ab-
normalities observed in Down syndrome patients [32],
Hill and colleagues found that, in general, trisomy 16 mice
(model for human trisomy 21, Down syndrome) with or
without an extra copy of ETS2 produced comparable
craniofacial abnormalities [33]. However, this study did
observe a more severely shortened occipital bone in trisomy
16 mice with only two (16% reduction) versus three copies
of ETS2 (4% reduction) when compared to euploid mice.
This suggests a more complex interplay among genes
present within the Down syndrome interval. Another
potential link between ETS1/2 and cranial abnormalities
comes from a recent report that found that reduced ex-
pression of Ets2 repressor factor (ERF) causes complex
craniosynostosis characterized by premature fusion of
multiple cranial sutures, craniofacial abnormalities,
language delay, and CMI [34]. Although not one of our
most significant findings, reduced expression of ERF
was also observed in class 2 (adjusted p = 0.04). The
third gene identified within the dorso-ventral axis forma-
tion pathway is NOTCH4. NOTCH4 does not appear to
have a known, major role in bone formation; however
other NOTCH genes are involved in the proliferation
and maturation of chondrocytes [35].
Extending our investigation of the biological differences

between these two dura classes, we examined genes outside
of these pathways and identified several genes that play
key roles in biological processes related to endochondral
ossification, which is the process by which bones in the cra-
nial base are formed. Although these genes were not within
our top 100 ranked genes identified from the clustering
analysis, they are still among some of the most significantly
differentially expressed genes between the two classes.
Examples of these include the runt-related transcription
factor 2 (RUNX2), runt-related transcription factor 3
(RUNX3), collagen, type II, alpha 1 (COL2A1), parathyroid
hormone 1 receptor (PTH1R), and notch 1 (NOTCH1)
[35]. With the exception of COL2A1, all of these genes
were down-regulated in class 2 compared to class 1.
Another strong biological candidate is transforming
growth factor, beta receptor II (TGFBR2) which was
expressed at significantly lower levels in class 2 patients. A
previous study generated mice with a conditional deletion
of TGFBR2 in COL2A1 expressing cells and found defects
in the cranial base and vertebrae [36]. Two additional stud-
ies in mice demonstrated that the conditional inactivation
of TGFBR2 specifically in mesoderm-derived cells results in
defects in the supraoccipital bone and C1 vertebra and
meningoencephalocele [37], whereas TGFBR2 inactivation
in neural crest cells leads to calvaria defects and cleft palate
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[38]. This report has particular relevance as a shortened
supraoccipital bone and reduced TGFBR2 expression was
observed in class 2 patients. Taken together, these findings
implicate several strong biological candidates pertinent to
endochondral ossification and suggest that the dura mater
may be a reasonable tissue to examine for CMI.
Although encouraged by our findings, there are several

important limitations to present. First, our relatively
small sample size resulted in limited power for the clus-
tering analysis and follow-up characterization. Obtaining
clinical tissue samples from CMI patients is extremely
challenging as they are not readily available thus greatly
inhibiting the collection of a large sample size. Despite
our limited power, we did identify significant underlying
structure within the datasets, some of which appeared to
be biologically relevant. However, many of the analyses
would not have withstood a correction for multiple test-
ing. As one of the primary purposes of this study was to
generate hypotheses, we feel it appropriate to examine
our results without such an adjustment noting that future
work and continued ascertainment would be needed to
validate any findings. Another limitation of our study
relates to the acquisition of disease relevant patient tissue
for gene expression analysis. Our study is not unique in its
challenges to ascertain appropriate biological samples
for a developmental disease, particularly with respect
to developmental stage. Thus, we cannot disregard the
implications of this when interpreting our findings.
However, we did identify several strong biological candi-
dates from the dura analysis providing additional support
for its potential relevance. Additionally, due to the small
size of the dura samples acquired and the fact that dura
is largely comprised of collagen bundles, low RNA yield
was obtained resulting in a limited number of samples with
RNA remaining for validation experiments. Moreover, due
to the unique nature of this study, we are currently unable
to replicate our findings using an independent study
population. While further validation and replication of
our results is vital, our goal by reporting these initial
findings is to encourage additional research in this under-
studied field and the generation of similar datasets to be
used for replication and further investigation into the
underlying disease biology. Finally, as the underlying bio-
logic mechanism for CMI is currently unknown, it is un-
clear which tissue at this stage in development would be
most biologically relevant. Thus, future studies using other
tissue types, including bone and/or the pia-arachnoid layer
may further elucidate the biology of CMI and perhaps
correlate better with CMI symptoms or structure.

Conclusions
This study is unique as it represents the first study of its
kind for CMI where multiple biological and radiological
datasets exist across the same set of patients thereby
motivating the extension of the original sparse k-means
clustering method to accommodate multiple datasets from
different sources. By applying both clustering methods to
our data, we were able to establish patient classes based
solely on biological or radiological data, as well as through
the integration of these datasets. Although further val-
idation and replication is needed, examination of the
genes differentially expressed between the dura classes
implicated several strong biological candidates for future
investigation. Biological characterization of the blood clas-
ses identified a gene expression profile that corresponded
to a global down-regulation in protein synthesis.
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