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SUMMARY
Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally
advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an
interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy im-
ages, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested
iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discrimina-
tive ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver
operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and
pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate addi-
tional benefits for capturing morphological features through supervised contrastive learning. Specifically,
pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflam-
matory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is
elevated in responders. The developed interpretable model at the molecular pathology level accurately pre-
dicts chemotherapy efficacy.
INTRODUCTION

Despite substantial efforts to improve treatment for gastric can-

cer via complete tumor resection and adjacent lymph node

removal,1,2 the overall patient prognosis remains dismal.3,4 Neo-
Cell Reports Medicine 5, 101848, Decem
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adjuvant chemotherapy has been used for patients with locally

advanced gastric cancer to reduce tumor size prior to curative

resectioning.5,6 However, outcomes vary substantially among

patients with locally advanced gastric cancer receiving neoadju-

vant chemotherapy,7–9 thereby leading to potential adverse
ber 17, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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effects and increased expenses for non-responders.10 There-

fore, identifying patient response to neoadjuvant chemotherapy

is crucial for optimizing therapeutic decision-making.

Currently, there is no global consensus concerning optimal

selection criteria.11–14 National Comprehensive Cancer Network

(NCCN) guidelines recommend neoadjuvant chemotherapy

followed by surgery for patients with resectable diseases

RcT2.11 Meanwhile, the Japanese Gastric Cancer Association

recommends this approach for cases of bulky lymph node

metastasis.14 Significant discrepancies among different guide-

lines highlight the current clinical challenges in accurately pre-

dicting patients who would benefit from the treatment.

The application of artificial intelligence (AI) for extracting infor-

mation and identifying new patterns in multi-modal biomedical

data is increasing, particularly through machine learning and

deep learning.15–18 Deep learning-based radiology and pathol-

ogy models have demonstrated promise in predicting neoadju-

vant chemotherapy responses and survival prognosis for pa-

tients with locally advanced gastric cancer.19–22 However,

major image-based studies exhibit limited accuracy and lack

prospective validation using single-image modality data. The

exploration of multi-modal feature representation, such as align-

ing microscopic whole-slide images (WSIs) with macroscopic

computed tomography (CT), to facilitate clinical decision-mak-

ing, remains insufficient. Additionally, studies on deep learning

methods aimed at analyzing cell components in WSI to interpret

variations in chemotherapy response among patients with locally

advanced gastric cancer are rare.

In this study, we developed an interpretable AI framework to

predict the response to neoadjuvant chemotherapy in patients

with locally advanced gastric cancer. Supervised contrastive

learning was employed to integrate features from pretreatment

contrast-enhanced CT scans and hematoxylin and eosin

(H&E)-stained biopsy slides. The AI-enabled model was devel-

oped to interpret how underlying cellular level features influence

the extraction of CT features for predicting chemotherapy
2 Cell Reports Medicine 5, 101848, December 17, 2024
response. Top-ranked pathology tiles enriched from diverse

geographic locations were analyzed to identify cellular differ-

ences. These aforementioned findings were further validated

using RNA sequencing (RNA-seq) and immunohistochem-

istry (IHC).

RESULTS

Overview
The overall study design is illustrated in Figure 1. First, pretreat-

ment CT scans and gastric endoscopic biopsy pathological WSI

were collected from patients with locally advanced gastric can-

cer, and regions of interest (ROIs) were manually annotated. A

supervised contrastive learning model (SCLM) was proposed

by incorporating CT and histopathological features extracted

from these ROIs. The interpretability of the model was evaluated

across multiple levels, including CT, pathology, cellular, and mo-

lecular dimensions. Notably, we evaluated changes in attention

patterns after employing our training strategy to map CT and

pathological features and further investigated the contribution

of cellular and molecular information within the focus areas to

the model’s predictions. Finally, the performance of the model

to guide neoadjuvant chemotherapy selection for improving sur-

vival outcomes in patients with locally advanced gastric cancer

was evaluated.

After applying inclusion and exclusion criteria, 2,003 patients

from Eastern and Northern China, sourced from the First Hospi-

tal of China Medical University, Liaoning Cancer Hospital and

Institute, Tianjin Medical University Cancer Institute and Hospi-

tal, Second Hospital of Dalian Medical University, Shengjing

Hospital of China Medical University, and People’s Hospital of

Liaoning Province, were enrolled in the development cohort

(n = 1,208) and incremental cohort (n = 795) for model construc-

tion. Two independent cohorts were used for external testing;

external test cohort 1 comprised 162 patients from the First Affil-

iated Hospital of Zhengzhou University in Central China, and
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Figure 1. Workflow of the study

(A) Feature extraction and model development. Lcon, the supervised contrastive learning loss; Lcel, the cross-entropy loss.

(B) External validation and patient risk stratification.

(C) Biological interpretation and molecular verification of the model. iRM, incremental radiology model; iPM, incremental pathology model; iSCLM, incremental

supervised contrastive learning model.
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external test cohort 2 comprised 222 patients from the Sixth Affil-

iated Hospital of Sun Yat-sen University in Southern China, Xijing

Hospital, and Daping Hospital in Western China. In addition, a

prospective cohort (132 eligible patients; ChiCTR2300068917)

from the First Hospital of China Medical University and Tianjin

Medical University Cancer Institute and Hospital (treated be-

tween March 1, 2023, and February 29, 2024) was enrolled

and used to assess the applicability of the model (Figure S1).

The clinicopathological characteristics of the enrolled patients

are detailed in Table 1. Response rates to chemotherapy were

63.3% in the development cohort (765/1,208), 57.4% in external

test cohort 1 (93/162), 73.0% in external test cohort 2 (162/222),

and 45.3% in the incremental cohort (360/795). Among the pro-

spectively enrolled patients, 67.4% (89/132 individuals) re-

sponded to neoadjuvant chemotherapy. In the development

cohort, we observed significant differences in the distribution

proportions of cT (p = 0.011) and cN (p = 0.001) categories be-

tween responders and non-responders.

Integration of multi-modal features in a SCLM improves
predictive performance
A deep residual neural network (ResNet-34)23 to extract CT fea-

tures of the primary lesion and lymph nodes was used to predict
the response to neoadjuvant chemotherapy. We concatenated

the features and used a fully connected layer with 256 neurons.

Moreover, inspired by the spatial capability of tumor slides, we

converted WSIs into spatially connected graph representations,

where each image tile represented a graph node. Pretrained

ResNet-18 was used to extract node features as input, and the

graph attention network (GAT)24 was subsequently employed

to learn the attention score of each edge by aggregating neigh-

borhood features to differentiate node weights. A SCLM was

then proposed for effective learning of feature representations

from both CT and pathological images, facilitating cross-modal

understanding.

We developed six robust SCLM variants using different loss

combinations. Among these models, the SCLM-d variant ex-

hibited the best performance, achieving an area under the

receiver operating characteristic curve (AUROC) of 0.880 (95%

confidence interval [95% CI] 0.778–0.982; Table S1) during vali-

dation. Accordingly, SCLM-d was used for further development,

yielding AUROC values of 0.817 (95%CI 0.752–0.882) in external

test cohort 1 and 0.847 (95% CI 0.783–0.910) in external test

cohort 2.

To enhance the training of feature extractors, an incremental

learning25 strategy integrated data frompatients with unresected
Cell Reports Medicine 5, 101848, December 17, 2024 3



Table 1. Characteristics of patients

Development cohort (n = 1,208) Incremental cohort (n = 795)a External test cohort 1 (n = 162) External test cohort 2 (n = 222) Prospective test cohort (n = 132)

Non-

responder Responder p value

Non-

responder Responder p value

Non-

responder Responder p value

Non-

responder Responder p value

Non-

responder Responder p value

Sex – – 0.320 – – 0.844 – – 0.049 – – 0.238 – – 0.081

Male 324 539 – 309 258 – 49 78 – 47 114 – 38 67 –

Female 119 226 – 126 102 – 20 15 – 13 48 – 5 22 –

Age – – 0.974 – – 0.334 – – 0.691 – – 0.379 – – 0.381

<60 206 355 – 163 123 – 29 42 – 22 70 – 14 36 –

R60 237 410 – 272 237 – 40 51 – 38 92 – 29 53 –

cT – – 0.011 – – 0.973 – – 0.215 – – 0.162 – – 0.729

T2 12 18 – 6 5 – 2 4 – 2 15 – 1 2 –

T3 122 275 – 77 66 – 27 48 – 29 87 – 20 35 –

T4 309 472 – 352 289 – 40 41 – 29 60 – 22 52 –

cN – – 0.001 – – <0.001 – – 0.097 – – 0.063 – – 0.061

N0 32 97 – 35 13 – 4 17 – 2 15 – 2 5 –

N1 101 193 – 95 58 – 33 40 – 14 56 – 8 29 –

N2 176 305 – 171 132 – 26 32 – 31 55 – 17 40 –

N3 134 170 – 134 157 – 6 4 – 13 36 – 16 15 –

CA19-9

(U/mL)

11.54

(6.12–

37.67)

13.64

(6.77–

38.14)

0.128 18.73

(7.91–

126.10)

18.29

(7.88–

120.00)

0.737 10.44

(5.84–

36.92)

10.30

(3.76–

22.05)

0.255 8.83

(4.08–

27.09)

10.17

(4.14–

35.81)

0.616 12.41

(6.22–

47.39)

13.24

(6.68–

41.17)

0.830

CEA

(ng/mL)

2.68

(1.43–

6.87)

2.64

(1.43–

5.76)

0.525 3.81

(1.80–

12.21)

5.06

(2.23–

23.52)

0.001 2.64

(1.39–

5.07)

2.77

(1.59–

13.20)

0.307 2.62

(1.73–

4.61)

3.13

(1.73–

8.43)

0.306 2.67

(1.52–

5.23)

3.25

(1.33–

6.70)

0.990

Data are represented as n or median (IQR). cT, clinical primary tumor category; cN, clinical regional lymph node category; IQR, interquartile range.
aThe incremental cohort included 211 responders and 235 non-responders with cM1.
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Table 2. Prediction performance of iSCLM compared with other models

Model External test cohort 1 p value External test cohort 2 p value Prospective test cohort p value

iSCLM

AUROC 0.866 (0.804–0.927) reference 0.876 (0.820–0.933) reference 0.846 (0.780–0.911) reference

Accuracy 0.802 (0.734–0.856) reference 0.847 (0.794–0.888) reference 0.788 (0.711–0.849) reference

Sensitivity 0.946 (0.880–0.977) – 0.901 (0.846–0.938) – 0.775 (0.678–0.850) –

Specificity 0.609 (0.491–0.715) – 0.700 (0.575–0.801) – 0.814 (0.674–0.903) –

PPV 0.765 (0.680–0.833) – 0.890 (0.833–0.929) – 0.896 (0.808–0.946) –

NPV 0.894 (0.774–0.954) – 0.724 (0.598–0.822) – 0.636 (0.504–0.751) –

iRM

AUROC 0.802 (0.734–0.870) 0.005 0.822 (0.759–0.885) 0.007 0.781 (0.700–0.861) 0.007

Accuracy 0.722 (0.649–0.785) 0.117 0.631 (0.565–0.691) <0.001 0.674 (0.590–0.748) 0.052

Sensitivity 0.624 (0.522–0.715) – 0.525 (0.448–0.600) – 0.607 (0.503–0.702) –

Specificity 0.855 (0.753–0.919) – 0.917 (0.819–0.964) – 0.814 (0.674–0.903) –

PPV 0.853 (0.750–0.918) – 0.944 (0.876–0.976) – 0.871 (0.766–0.933) –

NPV 0.628 (0.527–0.719) – 0.417 (0.336–0.502) – 0.500 (0.386–0.614) –

iPM

AUROC 0.550 (0.459–0.641) <0.001 0.596 (0.511–0.682) <0.001 0.546 (0.441–0.650) <0.001

Accuracy 0.531 (0.454–0.606) <0.001 0.631 (0.565–0.691) <0.001 0.538 (0.453–0.621) <0.001

Sensitivity 0.495 (0.395–0.594) – 0.698 (0.623–0.763) – 0.584 (0.480–0.681) –

Specificity 0.580 (0.462–0.689) – 0.450 (0.331–0.575) – 0.442 (0.304–0.589) –

PPV 0.613 (0.500–0.715) – 0.774 (0.700–0.834) – 0.684 (0.573–0.778) –

NPV 0.460 (0.359–0.564) – 0.355 (0.257–0.467) – 0.339 (0.229–0.470) –

iRPM

AUROC 0.784 (0.714–0.855) 0.002 0.833 (0.772–0.894) 0.082 0.698 (0.603–0.794) <0.001

Accuracy 0.722 (0.649–0.785) 0.117 0.725 (0.663–0.780) 0.003 0.659 (0.575–0.734) 0.028

Sensitivity 0.785 (0.691–0.856) – 0.691 (0.616–0.757) – 0.663 (0.560–0.753) –

Specificity 0.638 (0.520–0.741) – 0.817 (0.701–0.894) – 0.651 (0.502–0.776) –

PPV 0.745 (0.650–0.821) – 0.911 (0.847–0.949) – 0.797 (0.692–0.873) –

NPV 0.688 (0.566–0.788) – 0.495 (0.399–0.592) – 0.483 (0.359–0.608) –

Data are metric value (95% CI). AUROC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predic-

tive value; iRM, incremental radiology model; iPM, incremental pathologymodel; iRPM, model constructed by direct concatenation of radiological and

pathological features with incremental learning; iSCLM, incremental supervised contrastive learning model.
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tumors based on the incremental cohort. The performance of the

incremental SCLM (iSCLM) was enhanced, resulting in AUROC

scores of 0.866 (95% CI 0.804–0.927) in external test cohort 1

and 0.876 (95%CI 0.820–0.933) in external test cohort 2 (Table 2;

Figures 2A and 2B). Moreover, the results of stratified analysis

based on various histological types, chemotherapy regimens,

and tumor locations also demonstrated consistent performance

across two external test datasets (Figure S2).

iSCLM outperformed unimodal models and the model con-

structed by directly concatenating features. Notably, the incre-

mental radiology-based model (iRM), focusing on single-CT

image modality, exhibited moderately lower performance

compared with iSCLM, with AUROC values of 0.802 (95% CI

0.734–0.870) in external test cohort 1 (p = 0.005) and 0.822

(95% CI 0.759–0.885) in external test cohort 2 (p = 0.007). Simi-

larly, the incremental pathology model (iPM) demonstrated a

substantially lower AUROC compared with iSCLM in both the

external test cohorts, with values of 0.550 (95% CI 0.459–

0.641) in external test cohort 1 (p < 0.001) and 0.596 (95% CI

0.511–0.682) in external test cohort 2 (p < 0.001). Themodel con-
structed by direct concatenation of radiological and pathological

features (iRPM) showed no significant improvement over single

modality, with AUROC values of 0.784 (95% CI 0.714–0.855) in

external test cohort 1 and 0.833 (95%CI 0.772–0.894) in external

test cohort 2. Furthermore, iSCLM demonstrated superior per-

formance in the prospective cohort, with an AUROC of 0.846

(95% CI 0.780–0.911, Figure 2C), which was better than that of

iRM (p = 0.007), iPM (p < 0.001), and iRPM (p < 0.001).

To evaluate the reproducibility of iSCLM, a trainee resident

with 2 years of experience in oncology, blinded to both patholog-

ical results and previous ROIs, was asked to reannotate tumor

regions and retest the results of the external test set. iSCLM ex-

hibited stable performance, with AUROC values of 0.834 (95%

CI 0.764–0.904) in external test cohort 1 and 0.851 (95% CI

0.789–0.912) in external test cohort 2 (both p > 0.05). Corre-

sponding intraclass correlation coefficient values were 0.890

and 0.848, respectively (both p < 0.001).

Additionally, we evaluated the enhancement in iSCLM perfor-

mance using the Shapley additive explanations (SHAP)26 tech-

nique. We observed substantial changes attributable to
Cell Reports Medicine 5, 101848, December 17, 2024 5



Figure 2. Prediction performance in the external and prospective test cohorts

Receiver operating characteristic curve (ROC) of iSCLM, iRM, iRPMand iPM for predicting tumor response to neoadjuvant chemotherapy. (A) External test cohort

1, (B) external test cohort 2, (C) prospective test cohort. iSCLM, incremental supervised contrastive learning model; iRM, incremental radiology model; iRPM,

model constructed by direct concatenation of radiological and pathological features with incremental learning; iPM, incremental pathology model.
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supervised contrastive learning in the feature representation of

CT images (Figure S3) based on Moran’s Index (p < 0.001).

The SHAP values illustrated on the CT scans, represented as

blue (negative) regions and red (positive) regions on neoadjuvant

chemotherapy response prediction, demonstrated that super-

vised contrastive learning utilization enhanced the model’s abil-

ity to identify critical features in these regions. As shown in Fig-

ure S3, the SHAP values for tumor regions in the CT scans of

patients A and B shifted from negative in iRM predictions to pos-

itive in iSCLM predictions following supervised contrastive

learning application.

iSCLM focuses on the tumor-invasive border and
inflammatory cell proportions
We examined the top-ranked tiles identified by the GAT cluster

from the tumor-invasive border with supervised contrastive

learning (Figure 3A). As shown in Table S2, the top iSCLM re-

gions in the tumor side exhibited significantly shorter distances

to the tumor-invasive border relative to the average distances

of all tiles. Although the top 5 tiles from the iPM exhibited atten-

tion to the tumor-invasive border (p = 0.013), iSCLM consistently

focused more on the tumor-invasive border across the top 5 to

top 20 tiles (p < 0.05). Furthermore, iSCLM exhibited greater

attention compared with iPM among the top 5 tiles (p < 0.001).

To further explore the biological variances in pathology images

within the tumor-invasive border between responder and non-

responder groups, we employed the HoVer-Net27–29 model to

identify the cellular content of tiles (Figure 3B). Following stan-

dardization of these contents based on the amount of neoplastic

epithelial cells (NEPs), we observed significant differences in the

ratio of inflammatory cells/NEP (p = 0.007, Figure 3C), connec-

tive tissue cells/NEP (p = 0.013), and necrotic cells/NEP (p =

0.027) from the top 10 ranked tiles by iSCLM between patient

subgroups. Meanwhile, no significant distinctions were found

in the ratio of non-neoplastic epithelial cells/NEP (p = 0.300,

Table S3). A validation experiment aimed at evaluating the repro-

ducibility of the HoVer-Net results suggested strong consistency
6 Cell Reports Medicine 5, 101848, December 17, 2024
with that of manual counting and another automatic cell classifi-

cation method (TSFD-Net)30 (NEP: HoVer-Net vs. manual r =

0.753; HoVer-Net vs. TSFD-Net r = 0.713; inflammatory cells:

HoVer-Net vs. manual r = 0.749; HoVer-Net vs. TSFD-Net r =

0.660; Figure S4). Moreover, HoVer-Net demonstrated greater

consistency with manual annotations than TSFD-Net (Figure S4).

To validate cell differences identified by iSCLM associated

with the response to neoadjuvant chemotherapy, we analyzed

35 RNA-seq samples from 23 responders and 12 non-re-

sponders, using single-sample gene set enrichment analysis

(ssGSEA) to assess cell type contents. The findings indicated

increased dendritic cell infiltration (p = 0.005, Figures 4A and

4D; Table S4). The results of gene set variation analysis (GSVA)

based on Gene Ontology showed significant activation of

dendritic cell-related pathways (Figure 4B). To enhance inter-

pretability, we compared the expression levels of inflammatory

cell-related biomarkers and observed elevated CD11c expres-

sion in responders (p = 0.040, Figures 4C, 4E, and S5). Addition-

ally, IHC for seven biomarkers of inflammatory cells (i.e.,

CD4, CD8, CD11c, CD20, CD56, CD68, and CD163) from

50 endoscopic biopsy samples (from 28 responders and 22

non-responders) who underwent neoadjuvant chemotherapy

(Figures 4F and S6) revealed significantly increased CD11c

expression (p = 3.49e�03, Figure 4G) and decreased CD163

expression (p = 0.031, Figure 4H) in responders; these are the

primary markers for dendritic cells and M2 macrophages,

respectively. Specifically, in the tumor-invasive border (Fig-

ure S6B), the differences in CD11c expression were pronounced

(p = 4.72e�04, Figures 4G and S6C). Multiplex IHC corroborated

these observations through the verification of CD4, CD8, CD11c,

andCD163 staining patterns in the prospective cohort (Figures 4I

and 4J).

iSCLM correctsmisclassifications made by iRM and iPM
in the prospective cohort
In the prospective cohort, iSCLM corrected the predictions

made by iRM and iPM, improving performance of neoadjuvant
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chemotherapy response prediction (both p < 0.05, Table 2). As

illustrated in Figure 5A for patient 1, the prominent CT features

of the tumor region included significant gastric wall thickening

and an irregular mucosal surface. However, the iRM incorrectly

classified this patient as a non-responder. As shown on the

attention map of iRM, when not reinforced by pathological WSI

features, it failed to accurately identify regions that positively

contribute to predicting the patient’s response to neoadjuvant

chemotherapy (blue regions on the attention map). The use of

iSCLM corrected the prediction, accurately identifying the pa-

tient as a responder. After incorporating pathological knowledge

of the tumor-invasive border and differences in inflammatory

cells, the model highlighted abnormal regions of the gastric

wall in red on the attentionmap, whichmay explain the corrected

prediction and improved model performance. Similarly, in Fig-

ure 5B, patient 2 was initially incorrectly misclassified as a

non-responder by iPM. The use of iSCLM corrected the predic-

tion. iSCLM identified lesion characteristics on CT (indicated by

red regions on the attention map of iSCLM), and the average dis-

tance between the top 10 ranked pathology tiles and the tumor-

invasive border was significantly reduced (from 756 pixels using

iPM to 597 pixels using iSCLM).

Prognostic value of iSCLM and subsequent real-world
impact
Next, we assessed the prognostic value of the iSCLM for patient

treatment outcomes. Univariate and multivariate analyses indi-

cated that patients predicted as responders to neoadjuvant

chemotherapy based on iSCLM demonstrated improved overall

survival compared with those predicted as non-responders

(p < 0.001, Figure S7B; Table S5).

To simulate the real-world impact of model adoption on sur-

vival, an evaluation dataset was compiled including an additional

394 patients withRcT2 locally advanced gastric cancer recom-

mended for neoadjuvant chemotherapy based on NCCN guide-

lines, who had proceeded directly to surgery without receiving

neoadjuvant chemotherapy treatment (untreated group). iSCLM

was used to perform simulated predictions for the untreated

group. Along with the patients who had received neoadjuvant

chemotherapy in the present study (treated group), all

patients were grouped into four categories: patients with locally

advanced gastric cancer who were predicted to respond

favorably to neoadjuvant chemotherapy and subsequently

received neoadjuvant chemotherapy (predicted responder-

treated group), patients who were predicted to benefit from

neoadjuvant chemotherapy but did not receive it (predicted

responder-untreated group), patients who were predicted to

be non-responsive to neoadjuvant chemotherapy and did not

receive the treatment (predicted non-responder-untreated

group), and patients who were predicted to be non-responsive

to neoadjuvant chemotherapy but received the treatment (pre-
Figure 3. Spatial analysis of model attention and cell component analy

(A) Original whole-slide image (WSI), manually annotated tumor-invasive border,

(B) Manual annotation (left), cell classification generated by HoVer-Net (middle), a

responder and one non-responder. Examples of the cell components in the tum

(C) Inflam/NEP ratio of the top-10 tiles (left) and the whole tiles (right) in respond

interquartile range to display its distribution and variability. Inflam, inflammatory
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dicted non-responder-treated group). Owing to differences in

baseline characteristics between patients who received neoad-

juvant chemotherapy and those who did not, propensity score

matching was performed to adjust for potential biases. Matching

variables included patient age, T stage, and N stage. After pro-

pensity score matching, the predicted responder-treated group

demonstrated the most favorable outcome (5-year survival rate:

53.6%, Figure S7C). The predicted non-responder-treated

group exhibited worse outcomes (5-year survival rate: 25.9%

vs. 43.4%, p = 0.027 compared with the predicted non-

responder-untreated group, Figure S7C).

Subsequently, we evaluated survival differences between pa-

tients who chose whether to undergo neoadjuvant chemo-

therapy based on the model’s recommendation and those who

made this decisionwithout themodel’s guidance. The aforemen-

tioned four groups were further stratified into two distinct cate-

gories: those who adhered to the iSCLM-recommended neoad-

juvant chemotherapy (including the predicted responder-treated

and predicted non-responder-untreated groups) and those who

did not follow the iSCLM-recommended neoadjuvant chemo-

therapy (including the predicted responder-untreated and pre-

dicted non-responder-treated groups). Accepting the treatment

decisions based on iSCLM recommendations demonstrated

improved overall survival (5-year survival rate for those accept-

ing vs. those rejecting iSCLM recommendations: 48.6% vs.

35.5%, p = 0.005, Figure S7D). Results of the stratified survival

analysis by clinical stage are presented in Figures S7E and S7F.

DISCUSSION

Developing interpretable AI-enabled predictions for neoadjuvant

chemotherapy in patients with locally advanced gastric cancer is

crucial for enhancing clinical decision-making concerning pa-

tients. In this study, we developed a multi-modal approach to

predict neoadjuvant chemotherapy responses and survival out-

comes based on a large-scale comprehensive dataset in China.

Employing a multi-modal iSCLM strategy mutually reinforced

feature representation of CT and pathology images. Specifically,

top-ranked pathology tiles used to determine responses to neo-

adjuvant chemotherapy were more enriched at the tumor-inva-

sive border. Moreover, biological interpretations of these

borders revealed significant differences in inflammatory cell

components, especially in dendritic cells, among patients with

distinct neoadjuvant chemotherapy responses.

Although CT images have been reported to be useful in pre-

dicting neoadjuvant chemotherapy responses in locally

advanced gastric cancer, with AUROCs ranging from 0.679

to 0.860 in external test cohorts,19–21 a persistent need for

improved accuracy and validation in prospective cohorts re-

mains. Similarly, while previous pathology image prediction

models have shown promise,22 potential performance
sis

tiles rank heatmap (left), and distribution of top-ranked tiles (right).

nd pie chart of cell classification in each tile (right) for two typical patients, one

or region and invasive border are demonstrated (middle).

ers and non-responders. The boxplot summarizes data using the median and

cells; NEP, neoplastic epithelial cells.



Figure 4. RNA-seq and IHC results

(A) Heatmap plot presenting cell composition based on ssGSEA of RNA-seq.

(B) Heatmap plot presenting the activity of pathways identified using RNA-seq. The colors in the heatmap correspond to the activity scores of each pathway, as

quantified through gene set variation analysis.

(C) Heatmap plot depicting the expression levels of inflammatory cell-related biomarkers derived from RNA-seq.

(D) Raincloud plot illustrating the differential enrichment of dendritic cells between responders and non-responders as analyzed using ssGSEA of RNA-seq.

(E) Raincloud plot displaying the variation in CD11c expression between responders and non-responders, based on RNA-seq data.

(F) Heatmap plot illustrating variations in cell marker expression between responders and non-responders, evaluated using IHC.

(legend continued on next page)
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enhancements from integrating information frommultiplemodal-

ities remain underexplored. Therefore, we employed a super-

vised contrastive learning approach that integrated knowledge

from radiology and pathology to enhance image feature repre-

sentation. According to the validation procedures conducted

on retrospective and prospective multicenter cohorts across

research centers from various regions of China, our model

demonstrated significant performance improvements over sin-

gle-modality models and the model constructed by directly

concatenating features. In addition, compared with NCCN

guidelines,11 which recommend neoadjuvant chemotherapy fol-

lowed by surgery for patients with resectable diseases RcT2,

our model indicated a 13.1% divergence in 5-year survival rate

when accepting treatment decisions (higher than those who

did not comply with the treatment decisions) according to pre-

dictive results. These results imply that employing iSCLM-based

personalized guidance can potentially confer significant survival

benefits to patients.

Through the application of SCLMs that utilize multi-modal

images, our proposed approach synergistically integrated com-

plementary information from both radiology and pathology.

This collaborative strategy enhanced the extraction of features

related to the neoadjuvant chemotherapy response, thereby

improving accuracy. The distinct manifestations of macroscopic

and microscopic tumors in radiology and pathology, respec-

tively, highlight the inherent correlations between the twomodal-

ities. This integration ensures that radiology and pathology

mutually reinforce each other, enhancing feature extraction.

Hence, supervised contrastive learning can be used to align fea-

tures between modalities when extracting global representa-

tions and characterizing those associated with neoadjuvant

chemotherapy. With the assistance of supervised contrastive

learning, our results demonstrate a significant improvement in

the focus of the model on key pathological features with the

help of CT feature representations. Specifically, the GAT model

exhibited a propensity for top-ranked tiles to predominantly

focus on the tumor-invasive border, which is crucial for predict-

ing responses to neoadjuvant therapy.

Higher levels of inflammatory cell contents were observed

within the tumor-invasive border in patients who exhibited a bet-

ter response to neoadjuvant chemotherapy than in others, which

explains the underlying biological processes. Additional RNA-

seq and IHC analyses demonstrated that a significant difference

in the composition of immune cells, particularly in CD11c expres-

sion, was observed between patients with distinct responses to

neoadjuvant chemotherapy. These findings are consistent with

previously reported results showing that tumor-infiltrated im-

mune cells were significantly related to neoadjuvant chemo-

therapy responses in tumors (such as those in breast and colo-

rectal cancers).31–34 Specifically, in human colorectal cancer
(G) Raincloud plot indicating the proportion of CD11c-positive cells in responder

(H) Raincloud plot illustrating the proportion of CD163-positive cells in responders

of data distribution (the ‘‘cloud’’), with jittered raw data (the ‘‘rain’’). The boxplot

tribution and variability.

(I) Multiplex immunohistochemistry (mIHC) staining for CD4 (purple), CD8 (orang

(J) mIHC staining for CD4 (purple), CD8 (orange), CD163 (yellow), CD11c (green),

immunohistochemistry; ssGSEA, single-sample gene set enrichment analysis; D
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with liver metastases, cases with immune cell infiltration in the

invasive margin indicated better responses to neoadjuvant

chemotherapy.35 These findings are also corroborated by addi-

tional studies, which similarly indicated the distinct impact of

spatial distribution on the prognosis and chemotherapy out-

comes.36,37 Notably, Kim et al. observed alterations in CD11c+

dendritic cell populations before and after neoadjuvant chemo-

therapy in patients with gastric cancer.38 Moreover, Zhao et al.

reported that CD163+ macrophages decreased after neoadju-

vant chemotherapy in a responder group with gastric cancer.39

Our comparative experiments showed that the proposed model

exhibited reduced attention on the tumor-invasive border found

in pathology images without supervised contrastive learning.

The aforementioned findings showed that iSCLM can identify

human-interpretable differences in inflammatory cells at the tu-

mor-invasive border, potentially improving the accuracy of clin-

ical decision-making.

In conclusion, we developed an iSCLM to accurately predict

the efficacy of neoadjuvant chemotherapy, with the overarching

aim of improving survival outcomes. We discovered that CT and

pathology feature representations were mutually reinforced us-

ing the proposed supervised contrastive learning strategy, and

intrinsic pathological features contributing to improved model

prediction could be attributed to inflammatory cell contents at

the tumor-invasive border. Collectively, our findings potentially

contribute to the advancement of clinical practices in screening

patients with locally advanced gastric cancer for neoadjuvant

chemotherapy administration.

Limitations of the study
This study has several limitations: Firstly, while efforts were

made to elucidate the features associated with neoadjuvant

chemotherapy responses in this study, the clinical effectiveness

of tumor treatment is influenced by various factors, necessitating

futuremulti-omics analyses. Secondly, due to the lack of publicly

available datasets for validation, further validation across multi-

national populations is essential to assess the generalizability

of our findings and methodology. Thirdly, the study utilized

manual annotation instead of automatic segmentation strategies

due to current technical limitations that hinder the effectiveness

of automatic segmentation, thereby restricting clinical applica-

tions. As segmentation methods advance, we will attempt to

incorporate automated segmentation. Fourthly, due to the high

heterogeneity of biopsy samples, such as biopsy site, tissue

size, and staining procedures, the performance of the single-mo-

dality model of pathology should be improved in the future.

Lastly, emerging large language models have manifested poten-

tial for mining pathological features; thus, future studies should

consider combining such technologies to enhance performance

in future applications.
s versus non-responders, as determined using IHC.

and non-responders based on IHC. The raincloud plot combines an illustration

summarizes data using the median and interquartile range to display its dis-

e), CD163 (yellow), CD11c (green), and DAPI (blue) of a responder example.

and DAPI (blue) of a non-responder example. RNA-seq, RNA sequencing; IHC,

C, dendritic cell.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for reagents and resources should be

directed to and will be fulfilled by the lead contact, Dr. Zhenning Wang

(znwang@cmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The original CT images, H&E-stained WSIs, and clinical data that support the

findings of this article are available upon reasonable request from the lead con-

tact (Zhenning Wang: znwang@cmu.edu.cn). The sequencing data have been

deposited at Genome Sequence Archive for Human (GSA-Human) and are

publicly available as of the date of publication. Accession numbers are listed

in the key resources table. Owing to the presence of sensitive personal infor-

mation of patients within the dataset, the data will not be publicly available. Ap-

plications submitted by researchers will be reviewed by the corresponding

author, who will then convene with all authors to make a final decision. The

code is available at https://github.com/PengGao-cmu/iSCLM. Any additional

information required to reanalyze the data reported in this work paper is avail-

able from the lead contact upon request.
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Study design and participants
We retrospectively collected data from 4284 patients with gastric cancer between August 2012 and December 2022 at 10 med-

ical centers in the Southern, Northern, Western, Eastern, and Central regions of China (Figure S1; Table S6). Patients in retro-

spective cohorts received standard fluoropyrimidine-based chemotherapy regimens (e.g., XELOX, SOX, FOLFOX, and FLOT).

The patients were divided into four distinct cohorts: the development cohort, external test cohort 1, external test cohort 2,

and incremental cohort. Patients in the development and external test cohorts received neoadjuvant chemotherapy followed

by curative surgery. Inclusion criteria were as follows: (1) Confirmed gastric adenocarcinoma via gastroscopy and histopatho-

logical biopsy before treatment initiation; (2) underwent standardized baseline contrast-enhanced CT on portal venous phase

sequences before treatment initiation; and (3) locally advanced invasion beyond the submucosal layer and absence of distant

metastasis, as determined by pretreatment CT. Exclusion criteria were as follows: (1) Not receiving standard fluoropyrimidine-

based chemotherapy regimens; (2) poor CT image quality (e.g., inadequate gastric distension or artifacts) or blurry WSI; (3)

absence of tumor regression grade (TRG) of postoperative pathology; (4) underwent previous gastric surgery; (5) presence

of other malignancies before neoadjuvant therapy; or (6) receipt of anticancer therapy before baseline CT scans. The develop-

ment cohort included 1208 patients. Within the development cohort, a subset of 774 patients were exclusively characterized

based on CT images. These distinct subsets were systematically used for preliminary model pretraining. In addition, a subset

of 434 patients with comprehensive profiles encompassing both CT and pathology WSI was used to build a supervised contras-

tive learning framework.

The incremental cohort included patients who received chemotherapy and presented with unresected disease ineligible for

surgery, including conditions such as distant metastasis or locally unresected disease, in whom chemotherapy response

was also evaluated. The inclusion criteria were as follows: (1) histologically confirmed gastric adenocarcinoma via gastroscopy

before treatment initiation; (2) underwent standardized baseline contrast-enhanced CT before treatment initiation; and (3)

distant metastases or locally unresectable lesions, as determined by pretreatment CT. The exclusion criteria were as follows:

(1) not receiving standard fluoropyrimidine-based chemotherapy regimens; (2) poor CT image quality (e.g., inadequate gastric

distension or artifacts) or blurry WSIs; (3) absence of post-chemotherapy contrast-enhanced CT scans for Response Evaluation

Criteria in Solid Tumors (RECIST) evaluation; (4) underwent curative surgery after chemotherapy completion; (5) underwent pre-

vious gastric surgery; (6) presence of other malignancies before neoadjuvant therapy; or (7) receipt of anticancer therapy before

baseline CT scans.

Subsequently, we conducted a multicenter, prospective, real-world study on the prediction of neoadjuvant chemotherapy

response for locally advanced gastric cancer (Method S1). In total, 164 patients were recruited from the First Hospital of China

Medical University and Tianjin Medical University Cancer Institute and Hospital between March 1, 2023, and February 29,

2024. The registration number is ChiCTR2300068917. As this was a non-intervention study, there was no need for randomization.

All patients underwent CT imaging and pathological biopsy within 1 month before neoadjuvant chemotherapy administration. The

standard XELOX or SOX regimens were administered. The inclusion criteria for the prospective study were as follows: (1) provision

of informed consent; (2) age R18 years; (3) confirmed gastric adenocarcinoma via histopathological biopsy and available WSI; (4)

underwent standardized baseline contrast-enhanced CT; (5) locally advanced invasion beyond the submucosal layer and absence

of distant metastasis, as determined by pretreatment CT; (6) absence of previous gastric surgery; (7) absence of other malig-

nancies before neoadjuvant therapy; (8) absence of anticancer therapy before the baseline CT scans; and (9) absence of mental

conditions or impairment. The exclusion criteria for the prospective study were as follows: (1) receipt of neoadjuvant chemo-

therapy regimens other than XELOX and SOX; (2) failure of surgery after neoadjuvant chemotherapy; (3) absence of TRG of post-

operative pathology; (4) poor CT image quality (e.g., inadequate gastric distension or artifacts) or blurry WSIs; or (5) death during

the perioperative period.

Sample size calculations were performed before the prospective study. In clinical practice, no method has historically been

accepted based on various guidelines11–14 for predicting the response to neoadjuvant chemotherapy. A value of 0.750 is generally

considered to indicate a model with certain predictive ability. In our previous retrospective study, the AUROC of the iSCLM was be-

tween 0.866 and 0.876, whereas the response rate after neoadjuvant chemotherapy was 66.4%. A sample of 76 from the responder

group and 38 from the non-responder group demonstrated 80%power to detect a difference of 0.116 between the AUROC under the

null hypothesis of 0.750 and an AUROC under the alternative hypothesis of 0.866 using a two-sided z-test at a significance level of

0.050. The calculation was performed using PASS Version 15.0.5 with the Tests for One ROC Curve module.

The response to neoadjuvant therapy was generally evaluated according to the TRG, with evaluation criteria based on the eighth

edition of the American Joint Committee on Cancer (AJCC) Staging Manual.44 Briefly, TRG 0, defined as a complete response, refers

to the absence of viable cancer cells, including lymph nodes. TRG 1, defined as near-complete response, is characterized by the

presence of single cells or small groups of cancer cells. TRG 2, defined as partial response, is defined as the presence of residual

cancer cells, with evident tumor regression beyond single cells or small groups of cancer cells. Finally, TRG 3, defined as poor or

no response, refers to the presence of extensive residual cancer with no evident tumor regression (Figure S8A). Pathology experts

reconfirmed the TRG criteria during the study. The TRG was assessed by two pathologists (with 20 and 10 years of experience in

gastrointestinal pathology diagnosis, respectively) who were blinded to the study data. The results were examined by a pathologist

(with 25 years of experience in gastrointestinal pathology diagnosis). Patients with TRG 0–2 were considered responders, whereas

those with TRG 3 were defined as non-responders.
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For patients who were not initially eligible for surgery, the response to chemotherapy was evaluated after completing at least two

cycles of first-line chemotherapy within the initial 3 months of treatment initiation based on RECIST v.1.145 (Figure S8B). RECIST was

evaluated by a senior radiologist (with 8 years of experience in abdominal imaging) and an oncologist (with 15 years of experience in

abdominal imaging). If any discrepancies were found in the two researchers’ judgments, a third expert (with 15 years of experience in

abdominal imaging) re-evaluated the CT scan to make a final decision. Patients with complete response (CR) and partial response

(PR) were considered responders, whereas those with progressive disease (PD) and stable disease (SD) were considered non-

responders.

METHOD DETAILS

CT annotation
All patients underwent contrast-enhanced CT examinations within 1 month before starting chemotherapy. Patients enrolled at the 10

centers underwent contrast-enhanced CT scans with similar settings but using different systems and parameters (Table S7). To specify

the ROIs, three experts with 8–15 years of experiencemanually delineated the primary lesions and lymph nodes on the pretreatment CT

images of portal venous phases for all patients by using ITK-SNAP (www.itksnap.org, version 3.6, University of Pennsylvania, PA, USA).

Initially, a senior radiologist (with 8 years of experience in abdominal imaging) and an oncologist (with 15 years of experience in abdom-

inal imaging) reviewed all CT slices. TheROIsweremanually labeled along the border of the primary lesion on the center image slicewith

the largest tumor area. The largest short-axis slice was chosen for annotating the lymph node, and no delineation was performed if no

fociwere observed in lymph nodes. Figure S9Aprovides details onmanual segmentation. The experts were blinded to histopathological

results. If the lesions remained indeterminate after the initial evaluation or if discrepancies occurred in the two researchers’ judgments, a

third expert (with 15 years of experience in abdominal imaging) re-evaluated the CT scan tomake a final decision. To verify the model’s

reproducibility, another trainee resident (with 2 years of experience in oncology) used the same method to independently annotate the

CT scans of the external test set to assess the effects of interobserver bias.

Biopsy WSI annotation
Each patient underwent gastroscopy and gastric biopsy before chemotherapy. Formalin-fixed paraffin-embedded tissues from the

biopsies were used to prepare H&E-stained slides, which were subsequently digitized into WSIs. Pathologists assessed all digitized

slides to check their quality and appropriateness for analysis. Images containing blurry regions were rescanned, and the slides with

insufficient tumor tissue (<5 mm2) were excluded. To explore the spatial characteristics of the microenvironment, the tumor region

and tumor-related stroma region were annotated separately by two experienced pathologists (with 20 and 10 years of experience in

gastrointestinal pathology diagnosis, respectively) using Qupath v.0.4.3 (https://qupath.github.io/).43,46 The tumor regions were out-

lined independently with small, closed circles, whereas the surrounding areas of the tumor-related stromawere outlinedwith different

colors (Figure S9B). A third senior professor (with 25 years of experience in gastrointestinal pathology diagnosis) examined these

annotations to ensure accuracy.

Model development
Image data preprocessing

We utilized the ROIs of the primary lesion and lymph nodes in a CT scan of the portal venous phase after normalization with a soft

tissue window of 350 HU and a level of 50 HU. A rectangular frame was constructed based on the exact contour of the lesion and

enlarged in both height and width with an interval of 10 pixels. The rectangular frames were resized to 2243 224 pixels and normal-

ized to serve as the network input. To address the variation in image intensity, we adopted a data augmentation strategy (i.e., random

horizontal flip) during the training procedure.

Using annotations from the pathologists, the WSI was divided into tumor and stromal regions. At a magnification of 403 (0.25 mm/

pixel), the WSIs were segmented into nonoverlapping square tiles with an edge length of 448 3 448 pixels. Tiles with blank areas

exceeding 90% were excluded. All tiles underwent color normalization using Macenko’s47,48 technique to mitigate color bias and

streamline model training and assessment. Furthermore, tiles were resized to 2243 224 pixels to serve as the model input. All tumor

and stromal tiles from the WSI were used for tile-connected graph development.

SCLM construction

Our model was designed to predict patient responses to neoadjuvant chemotherapy by employing supervised contrastive learning

with features extracted from CT and pathology images. We employed a deep residual neural network (ResNet-3423) to extract 1000

CT features of the primary lesion and lymph nodes, respectively. The features were then concatenated, and a fully connected layer

with 256 neurons was used. Inspired by the spatial capability of tumor slides,49–52 we convertedWSIs into spatially connected graph

representations G (V, E), where each image tile represented a graph vertex set (V = fvi;i ˛Ng). Edges (E = feij;i;j ˛Ng) connecting
adjacent nodes were created based on Euclidean distances, and the GAT24 was subsequently employed to learn the attention score

of each edge by aggregating neighborhood features to differentiate node weights. Pretrained ResNet-1823 networks were used to

extract the pathological features as node features. A two-layer GATwith two attention heads (64 dimensions per head in the first layer

and 32 dimensions per head in the last layer) was used as the basic structure for tiles of all the patients. Using global average pooling

as the READout function, node and edge information were integrated to represent the entire graph, and 64 graph-wise pathological
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features were extracted as the GAT output. Subsequently, these features were input into fully connected layers comprising 256 neu-

rons. Constructing the graph in this waymakes it possible to analyze the spatial relationships between different tiles in theWSI, which

can be useful for identifying patterns and features associated with chemotherapy response.

For feature integration, we employed supervised contrastive learning41 to map domain knowledge from pathology to CT (Fig-

ure S10). A framework combining supervised contrastive loss and cross-entropy loss was used to effectively learn feature represen-

tations frombothCT and pathological images, achieving cross-modal understanding and reasoning capabilities. Contrastive learning

allows intraclass features (i.e., those extracted for patients in the same class) to be clustered together, whereas inter-class features

are pushed further away for patients from different classes. The aim of the model was to align the representations of radiological and

pathological features in the feature space, aiding the model in the effective acquisition of feature representations from the above two

image modals and serving as input to the fully connected layer for subsequent classification.

We delineated four distinct loss functions: LPR, LRP, LPP and LRR. In this context, LPR and LRP represent the domain knowledge

mapping between pathology WSI and CT scans. LPP signifies the knowledge mapping within the same category of pathology

WSI, and LRR indicates the knowledge mapping within the same category of CT scans. To provide a detailed description of the

four isoform loss functions, we defined the following functions:

LAB = fðA;BÞ =
X
i˛A

� 1

jgðB; iÞj
X

p˛gðB;iÞ
log

exp ðzi $zp
�
tÞP

a˛CðiÞ
expðzi$za=tÞ

Here, A and B are sets of samples, respectively; gðB; iÞ = {p ˛B(i): ~yp = ~yi}, B(i) h B \ {i}, gðB; iÞ is the set of samples within B that

share the same label as i, excluding i itself; C(i)hC \ {i}, C is the set of all multi-modal samples; zx represents features extracted based

on the encoder and sample x, the , symbol denotes the inner (dot) product, and t is a scalar temperature parameter (t = 0.1).

Utilizing the aforementioned formula, the loss function was computed as follows: LRP = fðR;PÞ, LPR = fðP;RÞ, LRR = fðR;RÞ,
LPP = fðP;PÞ. Here, CT imaging samples are denoted by R, and pathological samples are represented by P.

The loss function for SCL, Lcon, was defined based on different combinations of loss functions (LPR, LRP, LPP and LRR). Six SCLM

loss-combination variants were constructed accordingly. Three models were (SCLM-a to SCLM-c) built with radiology features ex-

tracted from only the primary lesion: SCLM-a (Lcon = LRP + LRP+ LRR + LPP), SCLM-b (Lcon = LRP + LPR), and SCLM-c (Lcon = LRP + LPR+

LRR). Three models (SCLM-d to SCLM-f) were built with radiology features extracted from both the primary lesion and LNs: SCLM-

d (Lcon = LRP + LPR+ LRR + LPP), SCLM-e (Lcon = LRP + LPR), and SCLM-f (Lcon = LRP + LPR+ LRR). Experimental comparisons were

conducted to evaluate the training performance of these variants.

CT image featureswere inputted into amultilayer perceptronwith cross-entropy loss. The extracted features were input into a clas-

sifier employed for the purpose of predictive classification. The cross-entropy loss was computed as loss function Lcel as follows:

Lcel = � 1

N

X
i
½yi $ lnðpiÞ + ð1 � yiÞ $ lnð1 � piÞ�

Here, yi represents the label of sample i, with a value of 1 denoting the positive class and 0 indicating the negative class. Concur-

rently, pi signifies the probability assigned to sample i being predicted as belonging to the positive class.

The supervised contrastive and cross-entropy losses were combined as the final loss of the proposed network. The loss function L

was computed as follows:

L = Lcon + Lcel
Incremental SCLM construction
To enhance training stability, incremental learning25 was employed to build the iSCLM, following SCLMestablishment, enhancing the

training of feature extractors for radiology (ResNet-34) and pathology (GAT). This approachwas aimed to achieve continuous learning

and adapt to new data while preserving previously learned knowledge.

In the first training, the model was trained to initialize use of the CT andWSIs of the incremental cohort. This was used to develop a

classificationmodel for predicting chemotherapy response in patientswith unresectable tumors. In the second training, datasets per-

taining to patients undergoing neoadjuvant chemotherapy were fed into the previously trained extractor. Themodel parameters were

updated, and the response probability of the neoadjuvant patients was the output.

The extractors were trained with the dual objective of improving their performance and robustness. The primary objective was to

enhance the predictive performance of the radiological or pathological extractors for neoadjuvant chemotherapy response. Lossa is

the cross-entropy loss for new tasks of predicting the response to neoadjuvant chemotherapy, and the loss encourages predictionsbyn to be consistent with the ground truth yn. Lossa was computed as follows:

Lossa = � 1

N

XN
n = 1

Xl

i = 1

yn$log byn

where l is the number of labels, yn denotes the one-hot ground truth label, and byn denotes the output probability of the network. The

second goal of the model is to ensure that the output probabilities for each image are close to the output from the original network of

the first training. This approach facilitates the retention of previously acquired knowledge within the model, thereby enhancing the
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robustness and performance of the model itself during subsequent training iterations. We refined the model’s predictions to align the

output closely with the preceding model and make the output probabilities of each neoadjuvant chemotherapy patient in the second

training close to the output from the first training. Lossb was computed as follows:

Lossb = � 1

N

XN
n = 1

Xl

i = 1

y
0
0

ðiÞ
log by 0 ðiÞ

0
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0 =
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where y
ðiÞ
0 and byðiÞ0 denote recorded and current probabilities, and y00

ðiÞ and by 0ðiÞ0 are the modified versions of recorded and current

probabilities y
ðiÞ
0 , byðiÞ0 (T = 2).

In the training of incremental mechanism, we defined the set of shared parameters of the extractor qs, task-specific parameters of

classifiers for previously learned tasks in the first training qo, and task-specific parameters of classifiers for new tasks in the second

training qn. We first trained qs and qo with samples from the incremental cohort. Then, we jointly trained all weights qs, qo, and qn until

convergence to build the model based on data from the patients in the development cohort. L(q) was optimized to train the radiology

and pathology extractors using incremental learning.

LðqÞ = Lossa + Lossb

The parameters qs, qo, and qn were determined as follows:

qs; qo; qn = argmin ðLðqÞÞ
We evaluated models built using a single modality: a radiological model (RM) based on CT, a pathology model (PM) based onWSI,

and a radiological and pathological model (RPM) constructed using a direct concatenation of radiological and pathological features

during validation. For the CT feature extractor, we compared the performance of radiomics and deep learning approaches. For the

pathology feature extractor, we compared several architectures, including GAT, graph isomorphism network (GIN),53 and graph con-

volutional network (GCN).54 The model demonstrating the best performance was selected as the feature extractor. Furthermore, to

integrate features from different modalities, we assessed six different SCLM loss-combination variants to determine the optimal

training strategy.

The development cohort was divided into training and validation groups at a 9:1 ratio. The model was trained over 200 epochs and

output a binary prediction of the neoadjuvant chemotherapy response. The batch size was set to 72 during each iteration, owing to

memory constraints. The Adam optimizer was used with a learning rate of 1e�4 to update the model parameters using gradient

descent. Specifically, the epoch with the highest AUROC (computed using the validation dataset) was selected for each model.

Finally, iSCLM based on incremental learning was constructed as described above. Similar to that used in the iSCLM, we employed

incremental learning to effectively train the RM, PM, and RPM. Below are the specific network frameworks for iRM, iPM, and iRPM

(Figure S11).

iRM:We employed a deep residual neural network (ResNet-34) to independently extract 1000 features from the primary lesion and

lymph nodes. The extracted features were then concatenated and subjected to dimensionality reduction via a fully connected layer,

resulting in a 256-dimensional feature vector. This vector was subsequently input into another fully connected layer, culminating in

the application of the softmax function to estimate the probability of response to neoadjuvant chemotherapy. Additionally, we con-

ducted training on data from patients who received chemotherapy with unresected tumors and then employed incremental learning

to improve the model’s performance.

iPM: We extracted 64 graph-wise pathological features using a GAT. The extracted features were then fed into fully connected

layers, resulting in a 256-dimensional feature vector. Subsequently, this vector was passed through an additional fully connected

layer, and the softmax function was used to map the probability of response to neoadjuvant chemotherapy. Additionally, we em-

ployed incremental learning to enhance model performance.

iRPM: We concatenated the 256-dimensional feature vectors derived from both iRM and iPM, creating a comprehensive feature

representation. This concatenated vector was then efficiently processed through fully connected layers, culminating in the applica-

tion of the softmax function to accurately estimate the probability of response to neoadjuvant chemotherapy.

Model evaluation
Then, the iSCLM was compared with each model (iRM, iPM, and iRPM) based on incremental learning in the external and pro-

spective test cohorts. The ground truth was defined as the actual pathological tumor response (patients with TRG 0–2 were

considered responders, whereas those with TRG 3 were defined as non-responders) reported by pathologists following surgical

excision. The AUROC was used to evaluate model performance. The optimal threshold for prediction in different cohorts was

determined using the Youden index in the development cohort. Additionally, we conducted a stratified analysis to investigate
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whether the conclusions drawn from the study were applicable to patients with different histological types, tumor locations, and

chemotherapy regimens.

Visualization of CT attention analysis
To visualize alterations among models with and without supervised contrastive learning, we used SHAP26 to illustrate the attention

map of ResNet-34 for chemotherapy response prediction on CT. Based on the ‘‘SHAP’’ package in Python, we obtained the impor-

tance of the features with interpretations on their contribution to the prediction. We used GradientExplainer to illustrate the model

output with respect to each block of the pretrained ResNet-34 network, using 300 evaluations to obtain explanations. To investigate

whether supervised contrastive learning influences the spatial autocorrelation of SHAP value matrix, we calculated the global Mor-

an’s index,55,56 which has been used to elucidate the level of clustering and dispersion within spatial data. We computed the global

Moran’s index for the last layer of the last block of the pretrained ResNet-34 network on the external test cohort in both iRM and

iSCLM.

Biological interpretations of iSCLM
To interpret the performance of iSCLM in predicting the neoadjuvant chemotherapy response in a biological context, we ranked the

significance of pathology tiles fromWSI for model output using global sort pooling42 before and after employing supervised contras-

tive learning. The ranked results were visualized to assess the contribution of the tiles and their positions within the WSI. The results

for each tile in the GAT of iPM and iSCLM are presented. The labels (stroma or tumor) of the adjacent tiles according to manual delin-

eation, situated at the top, bottom, left, and right, were examined individually by an iterative process to spatially locate each tumor

tile. If the central tile exhibited neighboring tiles containing stromal elements, it was defined as a tile within the tumor-invasive border

of the tumor. Subsequently, the Euclidean distance from each tile in the tumor and stromal regions to the corresponding tumor-inva-

sive border was calculated. For each tile, the minimum distance among these Euclidean distances was considered the distance from

the tile to the tumor-invasive border. The tiles in the tumor region are denoted as ti, those in the stromal region as sj, and those in the

tumor-invasive border region as bk. The distance from each tile in the tumor region to the tumor-invasive border can be expressed as

follows:

distance ðti;bkÞ = minikfkti � bkk g
The distance from each tile in the stromal region to the tumor-invasive border can be expressed as follows:

distance ðsj;bkÞ = minjkfksj � bkkg
The geographical distribution of the top-ranked tiles (i.e., model output by global sort pooling) was identified to measure its dis-

tance to tumor-invasive border.

Furthermore, we conducted a cell component analysis on the top-ranked tiles using HoVer-Net27 to explore biological character-

istics. We utilized HoVer-Net to classify various cellular components of all the tiles, including neoplastic epithelial cells, non-

neoplastic epithelial cells, inflammatory cells, connective tissue cells, and necrotic cells. The counts of individual cell types in

each tile were calculated. We then summarized the cellular composition of each slide and standardized it based on the content of

neoplastic epithelial cells. We compared the differences in cellular content before and after supervised contrastive learning.

To confirm the precision of HoVer-Net in quantifying diverse cellular elements within tissues, we evaluated the consistency of

HoVer-Net cell counts compared with manual counting and other automated cell classification tools. We randomly sampled 100 tiles

and submitted them to a certified pathologist with 20 years of experience in pathology for manual enumeration of neoplastic epithelial

cells and inflammatory cells, yielding more than 6486 categorized cells. In addition, we used TSFD-Net, a well-established deep-

learning cell classifier, to identify the five distinct cellular components within these 100 tiles. Subsequently, we performed Spearman

correlation analysis and inter-class correlation coefficient analysis to evaluate the agreement between the cell counts derived from

HoVer-Net and those derived from these two approaches.

Biological validation with RNA-seq
RNA purification, reverse transcription, library construction, and sequencing were performed at Sequanta Technologies Co., Ltd.

(Shanghai, China) according to the manufacturer’s instructions. The captured coding regions of the transcriptome from total RNA

were prepared using a TruSeq RNA Exome Library Preparation Kit (Illumina). Approximately 100 ng of total RNA (DV200 > 30%)

was used as total RNA input. The RNA was then fragmented into small pieces using divalent cations at elevated temperature.

cDNA was generated from the cleaved RNA fragments using random priming during first- and second-strand synthesis, and

sequencing adapters were ligated to the resulting double-stranded cDNA fragments. To create the final library, coding regions of

the transcriptome were captured using sequence-specific probes.

After library construction, a Qubit 3.0 fluorometer dsDNA HS Assay (Thermo Fisher Scientific) was used to quantify the concentra-

tion of the resulting sequencing libraries, and the size distribution was analyzed using an Agilent BioAnalyzer (Agilent). Sequencing

was performed using an Illumina NovaSeq 6000 following the Illumina-provided protocols for 23 150 paired-end sequencing at Se-

quanta Technologies Co., Ltd.
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Raw RNA-seq data were processed to filter out low-quality reads. Clean reads were obtained from each sample and used for sub-

sequent analyses. Read counts and transcripts per million values were calculated based on the pseudoalignment of RNA-seq reads

to reference transcripts downloaded from the GENCODE (v38) database, as implemented in the feature counts. Gene expression

levels were determined from the transcript levels.

The infiltration levels of immune cell types were quantified using single-sample gene set enrichment analysis (ssGSEA) in the R

package ‘‘GSVA’’.57 ssGSEA applies the gene signatures expressed by immune cell populations to individual cancer samples.

The approach used in our study included immune cells that are T cells, CD8 T cells, T helper cells, T helper 1 cells, T helper 2 cells,

T helper 17 cells, T follicular helper cells, central memory T cells, effector memory T cells, regulatory T cells, gamma delta T cells, B

cells, cytotoxic cells, natural killer cells, natural killer CD56bright cells, natural killer CD56dim cells, dendritic cells, activated dendritic

cells, immature dendritic cells, mast cells, neutrophils, eosinophils, andmacrophages. The ‘‘GSVA’’ package was also used for gene

set variation analysis (GSVA).

Biological validation with IHC
In addition, we validated the molecular features identified in the above analysis, which are associated with the response prediction of

neoadjuvant chemotherapy, using IHC. Formalin-fixed paraffin-embedded samples were cut into 4-mm-thick sections for IHC stain-

ing. The sections were dewaxed in xylene and rehydrated in descending concentration gradients of ethanol. Prior to staining, the

sections were subjected to endogenous peroxidase blocking in a 3% H2O2 solution diluted in methanol for 20 min and then heated

in a microwave for 30 min with 10 mmol/L citrate buffer (pH 6.0). Serum blocking was performed using 5% normal bovine serum for

1 h. The slides were incubated overnight at 4�C with antibodies targeting human immune cell biomarkers, including CD4 (1:500, Ab-

cam, ab133616), CD8 (1:400, Cell Signaling Technology, 85336), CD11c (1:500, Abcam, ab52632), CD20 (1:200, Cell Signaling Tech-

nology, 48750), CD56 (1:400, Cell Signaling Technology, 99746), CD68 (1:3000, Abcam, ab955), and CD163 (1:500, Abcam,

ab182422). The sections were then washed with 1%phosphate-buffered saline (PBS) and incubated with secondary antibodies (Ab-

sin, abs20040, and abs20039) for 1 h at room temperature. The slideswere thenwashedwith PBS. Biotinylated secondary antibodies

were incubated with an avidin–biotin complex staining kit (VECTOR, VECTASTAIN ELITE ABC Kits, PK6100, USA) for 30 min at room

temperature. The slides were washed again with PBS and stained with 3,3N-diaminobenzidine tetrahydrochloride (DAB, VECTOR,

SK-4105, USA) for approximately 1.5 min. The sections were counterstained with hematoxylin, dehydrated in ethanol, and sealed

with gum. For all assays, negative control slides without primary antibodies were included. Each staining run included a slide con-

taining a positive control. All slides were stained with DAB for the same duration for each antibody.

IHC slides were scanned at 203 magnification using a Zeiss Axioscan 7 digital slide scanner. The digital pathology images were

uploaded to the software Qupath. Two pathologists whowere blinded to the clinical data annotated the ROIs that covered the tumors

on theWSI.We chose a threshold of 300,000 mm2 for the ROI area and excluded data from two patients whose areas did not meet the

standard. For the tumor-invasive border, we shrank the ROI by 100 mm and acquired a ring area close to the stroma. A third pathol-

ogist was consulted to reach a consensuswhen different opinions arose between the two pathologists. For CD4, CD8, CD11c, CD20,

CD56, CD68, and CD163, all cells were calculated using default nuclear DAB optical density settings in tumor areas. Positive cells

were then detected using a Random Trees-based classifier, and finally the positive cell rate results were exported. The same pro-

cedures were performed on the tumor-invasive border to explore the differences between the tumor area and the tumor-invasive

border area.

Biological validation with multiplex IHC
The multiplex IHC assay was performed using multiplex IHC staining kits (Absin, abs50013) according to the manufacturer’s instruc-

tions. First, the sections (4 mm)were dewaxed and rehydrated before antigen retrieval. The slides were then subjected to endogenous

peroxidase blocking in a 3% H2O2 solution diluted in methanol for 20 min, followed by heating in a microwave for 30 min with

10 mmol/L citrate buffer (pH 6.0). Serum blocking was performed with 5% normal bovine serum for 1 h. The primary antibody incu-

bationwas carried out at 37�C for 1 h, followed by incubation with the secondary antibody (horseradish peroxidase) at 37�C for 10min

and visualization using tyramide signal amplification kits. This antibody incubation and visualization processwas repeated. The nuclei

were stained with 40,6-diamidino-2-phenylindole (DAPI) before sealing. Primary antibodies recognizing CD11c (1:800, Abcam,

ab52632), CD163 (1:800, Abcam, ab182422), CD4 (1:800, Abcam, ab133616), and CD8 (1:800, Cell Signaling Technology, 85336)

were used for the incubation. All sections were scanned using the Leica DMI8 THUNDER (Leica, Germany).

Survival analysis
We assessed the predictive capability of the proposed models for postoperative outcomes using overall survival, which was derived

from the diagnosis date to the last contact date––either death or the most recent follow-up. Follow-up visits were scheduled every

3 months; patients with a follow-up period <36 months and those who died within 1 month for various reasons were excluded from

the survival analysis.

To compare the overall survival difference between the groups predicted by the models with those of conventional pathological

evaluation, we performed Kaplan–Meier analysis and the log rank test on data from patients stratified according to pathological eval-

uation or model prediction. Additionally, we conducted univariate and multivariate analyses using the Cox proportional hazards

model for iSCLM, along with clinical features and cancer biomarkers.
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We employed propensity score matching58 to adjust for potential biases, utilizing a 1:1 matching protocol without replacement

(K nearest neighbor matching algorithm), with a caliper width equal to 0.2 times the standard deviation of the logit of the propensity

score. Matching variables included patient age, cT, and cN category.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R software (version 4.3.1). Patients were categorized as responders or non-responders ac-

cording to the TRG. For baseline statistics, the two groups were compared using the chi-squared test for categorical variables and

the Wilcoxon test for continuous variables. Quantitative data are presented as median (interquartile range).

For predictive validation, receiver operating characteristic curves were performedwith 95%CIs, and the AUROCwas used to eval-

uate model performance. Differences in AUROCs among the models were evaluated using the DeLong test. Additionally, to compre-

hensively quantify model performance, standard metrics of accuracy, sensitivity, specificity, positive predictive value, and negative

predictive value were computed. To determine reproducibility, the intraclass correlation coefficient was used to evaluate variations in

iSCLM-based response predictions per the manual annotations provided by the aforementioned radiologists. A paired t-test was

employed to assess the disparity of Moran’s index for the same patients between the iRM and iSCLM.

For biological interpretation, the distance between each tile and the defined tumor-invasive border was quantified. The distance of

top-ranked tiles was statistically compared with the average distance of all tiles, utilizing a paired Wilcoxon test. Differences in cell

components between responders and non-responders were analyzed using t-tests, and cell count comparisons identified by HoVer-

Net and those of manual counts were validated using Spearman’s rank correlation. All statistical analyses were two-sided with a sig-

nificance level of p < 0.05.

ADDITIONAL RESOURCES

Registration of the prospective trial on ChiCTR (ChiCTR2300068917): https://www.chictr.org.cn/showproj.html?proj=189882.
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