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Abstract

Forecasting the epidemics of the diseases is very valuable in planning and supplying resources
effectively. This study aims to estimate the epidemiological trends of the coronavirus disease
2019 (COVID-19) prevalence and mortality using the advanced α-Sutte Indicator, and its pre-
diction accuracy level was compared with the most frequently adopted autoregressive inte-
grated moving average (ARIMA) method. Time-series analysis was performed based on the
total confirmed cases and deaths of COVID-19 in the world, Brazil, Peru, Canada and
Chile between 27 February 2020 and 30 June 2020. By comparing the prediction reliability
indices, including the root mean square error, mean absolute error, mean error rate, mean
absolute percentage error and root mean square percentage error, the α-Sutte Indicator was
found to produce lower forecasting error rates than the ARIMA model in all data apart
from the prevalence testing set globally. The α-Sutte Indicator can be recommended as a use-
ful tool to nowcast and forecast the COVID-19 prevalence and mortality of these regions
except for the prevalence around the globe in the near future, which will help policymakers
to plan and prepare health resources effectively. Also, the findings of our study may have man-
agerial implications for the outbreak in other countries.

Introduction

Coronavirus disease 2019 (COVID-19) is an emerging respiratory infectious disease that
spreads rapidly from human to human and has presented a pandemic on the global scale
[1, 2]. As of 30 June 2020, this disease still continues to take its toll and has led to a major tra-
gedy with 10 185 374 confirmed cases and 503 862 deaths in more than 200 countries, areas or
territories [1]. The disease evolves rapidly and has a notable dynamic structure. World Health
Organization (WHO) estimated that COVID-19 may still show a rising trend with around 80
000 new notifications per day in the near future [1, 3]. Importantly, the confirmed cases and
deaths of this disease vary greatly owing to the differences in disease surveillance and detection
capacities among countries, thus causing an obvious underestimation in some countries
severely affected by the COVID-19 outbreak [4]. Regrettably, there is a current lack of the deter-
mined clinical treatment method and available vaccines for this serious disease [5]. Therefore it
is necessary to formulate effective planning for the health infrastructure and services under
dynamic demand in order to curb and harness the continued spreading of the COVID-19
pandemic. Accurate forecasting of the epidemiological trends of the COVID-19 prevalence
and mortality is essential to manage and instruct the demand to the health system [6–8].

Time-series analysis is of great value in developing hypotheses to understand the past and
current epidemic patterns of infectious diseases and to predict the dynamics in the upcoming
future [4, 6]. Model-based mathematics and statistics have emerged as useful tools to analyse
and estimate time series [9, 10]. For public health officials, such an estimate plays an important
role in allocating limited health resources rationally and in directing when and which health
interventions should be adopted to alleviate the disease outbreak [4, 6, 11, 12]. Recently, a great
number of mathematical and statistical techniques have been deemed as policy-supportive
tools to model the prevalence, morbidity and mortality of COVID-19 in different countries
[10, 13, 14]. For example, Saba et al. used an autoregressive integrated moving average
(ARIMA) model and a nonlinear autoregressive artificial neural networks (NARNN) to fore-
cast the prevalence of the COVID-19 outbreak in Egypt [11]. Ceylan et al. constructed several
suitable ARIMA models to estimate the COVID-19 prevalence in Italy, Spain and France [4].
Chen et al. built a Bats-Hosts-Reservoir-People transmission network method to model the
potential transmission processes of COVID-19 from bats to humans [7]. Sotgiu et al. proposed
a new third-degree polynomial curve to simulate the severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2)-related mortality in Italy, Germany, Spain and New York State
[8]. Sarkodie et al. developed five dynamic statistical techniques to assess the COVID-19
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prevalence across China [15]. Cássaro et al. constructed a simple
approach of growth to model the evolution of the COVID-19 out-
break in various countries [16]. Wan et al. used a susceptible
exposed infectious recovered (SEIR) method to analyse the epi-
demic dynamics and trends of COVID-19 in Wuhan [17].
Al-qaness et al. developed an optimisation method based on the
Adaptive NeuroFuzzy Inference System (ANFIS) to predict the
confirmed cases of COVID-19 in China [18]. Bekiros et al. built
a stereographic Brownian diffusion epidemiology model
(SBDiEM) to track the outbreak trends [19]. The epidemiological
trends of COVID-19 are driven by many various factors (such as
climate change [20], government interventions [21], virus vari-
ation [22] etc.), which intimated that the spreading mode of the
COVID-19 pandemic is characterised by secular tendencies and
irregular fluctuations. For this reason, the above-mentioned meth-
ods have a limited ability to consider the tendencies and random-
ness simultaneously due to their linear or nonlinear assumption,
which affects the extrapolation of the results [4].

More recently, a new technical indicator, α-Sutte Indicator, is
proposed by Ahmar [23], which was originally developed to ana-
lyse and estimate the stock movements by taking the opening
price, the closing price, the highest price, the lowest price
and the volume of transactions on the stock into consideration
[23–25]. The α-Sutte Indicator may have the potential to
accommodate the problems encountered in the above-mentioned
models as it has been demonstrated that the α-Sutte Indicator can
be employed to predict the trends in change of not only the stock
movements but also all-time series data [23, 26]. Furthermore, the
α-Sutte Indicator is relatively easy to evaluate and interpret in that
it does not involve complex mathematical or statistical theories.
Hence, the decision makers can have an idea of how the forecast-
ing indicator is constructed and can depend more on this predict-
ive tool during the decision-making process. Currently, some
countries in the Americas have been hit the hardest with the
COVID-19 outbreak and this disease still spreads rapidly, particu-
larly in Brazil, Peru, Canada and Chile [1]. Given the advantage of
α-Sutte Indicator and the current epidemic status of COVID-19 in
the mentioned countries, this study aims to describe the epidemic
situation of COVID-19 and to forecast the epidemiological trends
of the COVID-19 prevalence and mortality in the above-
mentioned countries and worldwide using this advanced
α-Sutte Indicator. In the meantime, the predictive ability of the
α-Sutte Indicator was also compared with that of the most
common use of ARIMA model in the COVID-19 outbreak
forecasting [4, 11, 14, 27–30].

Materials and methods

Data collection

The prevalence and mortality time-series data of COVID-19 used
in this study corresponded to the period between 27 February
2020 and 30 June 2020, all these data were collected from the
Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (https://github.com/CSSEGISandData/
COVID-19) and the WHO website (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019), and Microsoft
Office Excel 2007 was utilised to collate database. Typically, to
obtain a robust and effective model in practice, at least 50
observations and preferably 100 observations or more should be
used [31]. Consequently, during the model-development process,
the data samples from 27 February 2020 to 5 June 2020

(100 observations) were used for the training set, and the remain-
ing 25 samples were taken for the testing set.

The study protocol was approved by the research institutional
review board of the Xinxiang Medical University (No:
XYLL-2019072), and it was exempt from the institutional review
board assessment since all the data analysed in this study were
obtained in an anonymous format and any non-essential identi-
fying information were not accessed. In addition, this study
meets all the guidelines in the Declaration of Helsinki.

ARIMA model construction

Time-series prediction aims to use a statistical technique to nowcast
and forecast future unknown series by identifying the internal rules
between the past and current series. Often, time series displays cor-
relations between successive observations. The ARIMA model is
designed to make forecasts by taking correlations existing in the
time-series data into consideration [32]. ARIMA model types are
listed using the standard notation of ARIMA (p, d, q), herein, p sig-
nifies the order of autoregression (AR), d refers to the order of inte-
gration and q represents the order of moving average (MA). The
ARIMA method is defined for stationary time series. Hence, the sta-
tionary conditions of the targeted time series should first be judged
by inspecting the time-series plots and by performing the
Augmented Dickey–Fuller (ADF) statistic, if the time series displays
a trend in change over time and the ADF statistic shows no statistical
difference, indicating a non-stationary time series [33]. In this case,
the time series requires to be differenced until a stationary series is
obtained [34]. Afterward, the values of p and q can roughly be iden-
tified by examining the autocorrelation function (ACF) and partial
ACF (PACF) graphs of the differenced time series [34]. The
‘Expert Modeler’ in SPSS software and ‘auto.arima()’ in R software
have an ability to automatically identify the best-performing
ARIMA model by considering the goodness of fit measures such
as a larger value of R-squared (R2), a lower value of normalised
Bayesian information criterion (NBIC) and the appropriate ACF
and PACF graphs of the errors [35, 36]. In this study, both these
two tools were used to determine the best model. After that, statis-
tical tests were conducted for the resulting best ARIMA model.
The estimated key parameters of the AR and MA should be statistic-
ally significant under the t test [37, 38]. A Ljung-Box Q test was then
applied to the residual series produced by the best-fitting ARIMA
model, if this statistic provided a P-value greater than 0.05, suggest-
ing that the residuals behaved like a white-noise series [37, 38]. At
this time, the best ARIMA model passed all the required checking,
and then it can be used to implement out-of-sample forecasting.
The general forms of the AR process, the MA process and the
ARIMA process are given in Eqs. (1), (2), and (3), respectively, below

Yt = f1Yt−1 + f2Yt−2 + · · · + fpYt−p + 1t (1)

Yt = 1t − u11t−1 − u21t−2 − · · · − uq1t−q (2)

Yt = f1Yt−1 + f2Yt−2 + · · · + fpYt−p + 1t − u11t−1

− u21t−2 − · · · − uq1t−q (3)
where ϕ and θ represent the key parameters of AR and MA, respect-
ively, p and q correspond to the orders of AR and MA, respectively,
Yt refers to the observation at time t andεtis the residual series that is
assumed to be uncorrelated in the final ARIMA model.
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α-Sutte Indicator

α-Sutte Indicator is a novel technical analysis based on the Sutte
Indicator method that was initially proposed in 2017 by Ahmar
[26]. As known, the stock movements failed to be always consist-
ent, sometimes suddenly descended and sometimes suddenly
ascended, which caused less accuracy in the domain of stock fore-
casting using the common technical indicators such as simple
moving average (SMA), moving average convergence/divergence
(MACD), relative strength index (RSI), stochastic and Bolinger
Band [23, 26, 39]. Hence, the development of α-Sutte Indicator
is expected to overcome the weakness of the mentioned methods
in predicting the stock movements by considering five elements of
the stock movements, namely price at the time of opening, clos-
ing, highest and lowest, along with the volume of transactions
[24]. Paralleling the advance in methodology, the α-Sutte
Indicator is found to be not only limited to forecast the stock
movements but can to perform prediction for the time series of
data as it can track the dynamic dependence of certain data rea-
sonably well [26, 39, 40]. The formula of α-Sutte Indicator can be
in the form as below

at =a[Dx/((a+d)/2)]+b[Dy/((b+a)/2)]+g[Dz/((g+b)/2)]
3

(4)

where

d=at−4 (5)

a=at−3 (6)

b=at−2 (7)

g=at−1 (8)

Dx=a−d=at−3−at−4 (9)

Dy=b−a=at−2−at−3 (10)

Dz= g−b=at−1−at−2 (11)

where αt denotes the observed value at t time and αt−k signifies
the observed value at (t−k) time.

Measuring for the prediction reliability level

The forecasting reliability level between two models was assessed
by different measurement metrics, including the scale-dependent
measurement metrics (e.g. root mean square error (RMSE) and
mean absolute error (MAE)) and the measurement metrics
based on percentage errors (e.g. mean error rate (MER), mean
absolute percentage error (MAPE) and root mean square percent-
age error (RMSPE)). A smaller value of these measurement
metrics corresponded to the best model and this optimal model
was then constructed to produce the out-of-sample forecasting.

In the process of predicting data, the 95% confidence limits
(CL) of the out-of-sample forecasts were generated by forecasting
the in-sample counterparts.

RMSE =
������������������
1
N

∑N
i=1

(Yi − Ŷ i)
2

√√√√ (12)

MAE = 1
N

∑N
i=1

|Yi − Ŷ i| (13)

MER = (1/N)
∑N

i=1 |Yi − Ŷ i|
�Yi

(14)

MAPE = 1
N

∑N
i=1

|Yi − Ŷ i|
Yi

× 100 (15)

RMSPE =
��������������������
1
N

∑N
i=1

Yi − �Yi

Yi

( )2
√√√√ (16)

where Yi refers to the original observations, Ŷi is the prediction
values, denotes the average of the original observations and N sig-
nifies the number of original observations. In this research study,
we used SPSS software (version 17.0, IBM Corp, Armonk, NY)
and R software (version 4.0.0, R Development Core Team,
Vienna, Austria) to construct the ARIMA model and the α-Sutte
Indicator. The statistical significance level was set at P < 0.05.

Results

Statistical description

Between 27 February 2020 and 30 June 2020, the overall con-
firmed cases were 10 185 374, 1 344 143, 279 419, 103 250 and
275 999 with an average of 81 483, 107 53, 2235, 826 and 2208
case notifications per day in the world, Brazil, Peru, Canada
and Chile, respectively (Figs. 1A and 1B). Among them, the
reported deaths due to the COVID-19 outbreak have reached
503 862, 57 622, 9317, 8522 and 5575 cases with an average of
4031, 461, 75, 38 and 45 cases per day in the world, Brazil,
Peru, Canada and Chile, respectively (Figs. 1A and 1C).

Building the ARIMA model

By comparing the best models identified by running the ‘Expert
Modeler’ function in SPSS software and auto.ARIMA code in R
software, the ARIMA(0,2,(1,7)), ARIMA(0,2,4), ARIMA(0,2,2),
ARIMA(1,2,2) and ARIMA(1,2,1) models were considered as
the best specifications for forecasting the prevalence time series
in the world, Brazil, Peru, Canada and Chile, respectively, as
they provided a greater value of the stationary R2 and R2, as
well as a smaller value of the NBIC in all potential models.
Also, as evidenced by the augmented Dickey−Fuller (ADF) test
and the ACF and PACF plots for the differenced prevalence series
(Supplementary Table S1 and Figs. S1 and S2), it appeared that
these selected models are suitable. Further statistical checking
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suggested that the key parameters of these best models were indi-
cated to be statistically significant under the t test (Table 1), and
the residuals were indicated to behave like a white-noise series
because of a P-value greater than 0.05 at different lags under
the Box−Ljung Q test and the sample ACF and PACF lying inside
the estimated 95% uncertainty limits (Supplementary Table S2
and Fig. S3). These results demonstrated that the chosen best
ARIMA models are appropriate and adequate for simulating the
prevalence data in these regions. Similarly, we could determine
the best-fitting ARIMA models for the mortality time series in
these five regions according to the modelling steps, and the result-
ing results of the identified key parameters and the statistical tests
for the best ARIMA models are summarised in Table 2,
Supplementary Tables S1 and S3, Figs. S4 and S5. Subsequently,
these derived best ARIMA models can be employed to the testing
sets to produce out-of-sample projections (Fig. 2).

Developing the α-Sutte Indicator

Applying the α-Sutte Indicator to the prevalence and mortality
time series of COVID-19, the resulting forecasts for the testing
sets are provided in Figure 2.

Reliability test between models

To see the forecasting accuracy levels of the α-Sutte Indicator
method and the ARIMA model, then the comparison of the per-
formance measurement metrics of MAE, MAPE, RMSE, MER
and RMSPE from the resulting forecasting results on the testing
data using these two models was done. Looking at Table 3, the
values of the above-mentioned five indices from the α-Sutte
Indicator were smaller than the counterparts from the ARIMA
models in both the prevalence and mortality testing sets except
for that from the prevalence testing set globally, similar results
are also illustrated in Figure 2. In the sense that the reliability
level in forecasting, the α-Sutte Indicator is more appropriate
for estimating the epidemiological trends of the COVID-19 preva-
lence and mortality as compared with the ARIMA model in the
study regions with an exception of the prevalence around the
globe. Consequently, the next 20-day total confirmed cases and
deaths from 1 July 2020 to 20 July 2020 in the study regions
were predicted using the α-Sutte Indicator on the basis of the
data from 27 February 2020 to 30 June 2020 besides the total con-
firmed cases around the globe, which were done with the ARIMA
model (Supplementary Tables S4–S6). The forecasted future
20-day total confirmed cases and deaths may reach 14 153 625
(95% CL 13 293 010 to 15 014 240) and 588 441 (95% CL 587
779 to 589 102) around the globe, respectively, 2 117 890 (95%
CL 2 111 135 to 2 124 648) and 74 563 (95% CL 74 365 to 74
761) in Brazil, respectively, 352 946 (95% CL 352 615 to 353
281) and 13 238 (95% CL 13 230 to 13 246) in Peru, respectively,
107 612 (95% CL 107 578 to 107 646) and 8649 (95% CL 8639 to
8659) in Canada, respectively, together with 362 422 (95% CL
357 133 to 367 713) and 8463 (95% CL 8404 to 8532) in Chile,
respectively.

Discussion

The eruption of COVID-19 has left extensive and profound
impacts around the globe. In view of the current serious chal-
lenges raised by the COVID-19 outbreak worldwide, feasible
and effective countermeasures are required to prevent and control
the rapid increases in the numbers of confirmed cases and deaths.
Early nowcasting and forecasting the spreading dynamics of the
COVID-19 outbreak are significantly vital for defining strategic
choices not only in controlling the transmission of this disease,
but also in reducing the outbreak-related deaths, moreover, it ben-
efits for national economic development [4, 8, 41, 42]. As a result,
it is necessary to construct the mathematical and statistical models
with strong robustness and good reliability to estimate the dur-
ation and extent of the COVID-19 outbreak in the most affected
countries. Time-series analysis is considerably helpful in forming
hypotheses to analyse the epidemiological trends of different dis-
eases and to forecast the epidemic dynamics of the target disease,
and subsequently developing a quality control system based on
the modelling results [4, 6, 35, 43]. As far as we are aware, this
is the only study to perform time-series forecasting for the
ongoing trend and extent of the COVID-19 outbreak in the
world, Brazil, Peru, Canada and Chile using the advanced

Fig. 1. Time series plots displaying the prevalence and mortality cases of COVID-19.
(a) The total confirmed cases and deaths worldwide;(b) The total confirmed cases in
Brazil, Peru, Canada, and Chile; (c) The total deaths in Brazil, Peru, Canada, and
Chile. Worth noting that manycountries, areas or territories recently reconciliated
the reported prevalence and mortality data of the COVID-19 outbreak, and thus
the prevalenceand mortality data used to build the ARIMA and α-Sutte Indicator
models were retrospectively updated on the basis of the additional detailsprovided
by WHO, so that we can develop a reliable model for estimating the epidemiological
trends of the prevalence and mortality of the COVID-19 outbreak in the upcoming
days or weeks.
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Table 1. The identified best ARIMA models to forecast the epidemiological trend of COVID-19 prevalence in the five regions

Country Variable Estimate S.E. t P Stationary R2 R2 NBIC

Globally ARIMA(0,2,(1,7)) model

MA1 0.777 0.113 6.881 <0.001 0.293 0.987 24.841

MA7 −0.365 0.130 −2.806 0.006

Brazil ARIMA(0,2,(1,2,4)) model

MA1 −0.499 0.076 −6.566 <0.001 0.396 1.000 15.312

MA2 −0.928 0.090 −10.311 <0.001

MA4 0.836 0.079 10.582 <0.001

Peru ARIMA(1,2,2) model

MA1 1.594 0.079 20.096 <0.001 0.757 0.995 16.571

MA2 −0.681 0.084 −8.089 <0.001

Canada ARIMA(1,2,2) model

AR1 0.742 0.200 3.710 <0.001 0.449 1.000 11.988

MA1 1.606 0.169 9.523 <0.001

MA2 −0.712 0.123 −5.781 <0.001

Chile ARIMA(1,2,2) model

AR1 −0.473 0.140 −3.374 0.001

MA1 0.857 0.149 5.758 <0.001 0.750 0.999 13.550

MA2 −0.319 0.138 −2.319 0.023

ARIMA, autoregressive integrated moving average; AR1, autoregressive at lag one day; MA1, moving average at lag one day; MA2, moving average at lag two days; MA4, moving average at lag
four days; MA7, moving average at lag seven days; S.E., standard error; NBIC, normalised Bayesian information criterion.

Table 2. The identified best ARIMA models to forecast the epidemiological trend of COVID-19 mortality in the five regions

Country Variable Estimate S.E. t P Stationary R2 R2 NBIC

Globally ARIMA(0,2,(1,7)) model

MA1 0.680 0.178 3.819 <0.001 0.411 1.000 18.141

MA7 −0.438 0.141 −3.117 0.002

Brazil ARIMA(0,2,4) model

MA1 0.587 0.073 8.011 <0.001 0.422 1.000 9.687

MA2 0.482 0.088 5.477 <0.001

MA3 0.343 0.090 3.831 <0.001

MA4 −0.779 0.075 −10.401 <0.001

Peru ARIMA(0,2,2) model

MA1 1.696 0.071 24.024 <0.001 0.765 0.986 10.415

MA2 −0.746 0.072 −10.431 <0.001

Canada ARIMA(1,2,2) model

AR1 0.705 0.164 4.289 <0.001 0.463 1.000 6.989

MA1 1.613 0.133 12.145 <0.001

MA2 −0.751 0.099 −7.598 <0.001

Chile ARIMA(1,2,1) model

AR1 −0.633 0.100 −6.361 <0.001 0.625 0.999 4.690

MA1 0.350 0.125 2.793 0.006

ARIMA, autoregressive integrated moving average; AR1, autoregressive at lag one day; MA1, moving average at lag one day; MA2, moving average at lag two days; MA3, moving average at lag
three days; MA4, moving average at lag four days; MA7, moving average at lag seven days; S.E., standard error; NBIC, normalised Bayesian information criterion.
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Fig. 2. Time series plots displaying the resulting forecasts for the testing sets of COVID-19 prevalence and mortality in the five regions using the α-Sutte Indicator
and ARIMA models. (a) The resulting forecasts for the testing sets of the COVID-19 prevalence and mortality globally; (b) The resulting forecasts for the testing sets
of the COVID-19 prevalence and mortality in Brazil; (c) The resulting forecasts for the testing sets of the COVID-19 prevalence and mortality in Peru; (d) The resulting
forecasts for the testing sets of the COVID-19 prevalence and mortality in Canada; (e) The resulting forecasts for the testing sets of the COVID-19 prevalence and
mortality in Chile. Here the forecasts for testing data are plotted as gray shaded area. As seen above, it seemed that the forecasts for the testing sets of both the
prevalence and mortality from the α-Sutte Indicator yielded more sufficient prediction accuracy compared with that from the ARIMA model in the five regions
except for the result from the testing sets of the COVID-19 prevalence around the globe.
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Table 3. Comparison of accuracy levels measurement of forecasting for the COVID-19 prevalence and mortality between α-Sutte indicator and ARIMA methods in the five regions

Country Model

Accuracy level of forecasting for the prevalence Accuracy level of forecasting for the mortality

MAE MAPE RMSE MER RMSPE MAE MAPE RMSE MER RMSPE

Globally α-Sutte Indicator 176 339.1200 1.9308 237 304.6075 0.0212 0.0249 10 325.7040 2.2179 12 110.7594 0.0231 0.0254

ARIMA 30 581.6800 0.3588 37 997.2315 0.0037 0.0043 11 335.7600 2.3997 14 549.4620 0.0254 0.0302

Reduced percentages (%)

A vs. B −82.6575 −81.4170 −83.9880 −82.5472 −82.7309 9.7820 8.1969 20.1367 9.9567 18.8976

Brazil α-Sutte Indicator 12 521.7000 1.2969 15 750.682 0.0132 0.0159 709.3080 1.6634 786.0168 0.0155 0.0192

ARIMA 45 604.9418 4.2679 59 926.2936 0.0481 0.0506 1348.5200 2.7989 1522.5891 0.0295 0.0302

Reduced percentages (%)

A vs. B 72.5431 69.6127 73.7166 72.5572 68.5771 47.4010 40.5695 48.3763 47.4576 36.4238

Peru α-Sutte Indicator 7937.308 3.1026 10 762.4731 0.0339 0.0405 416.4634 5.2191 522.6770 0.0587 0.0630

ARIMA 12 804.0800 5.0966 15 679.8347 0.0547 0.0600 499.0800 6.2362 631.6537 0.0704 0.0758

Reduced percentages (%)

A vs. B 38.0095 39.1241 31.3611 38.0256 32.5000 16.5538 16.3096 17.2526 16.6193 16.8865

Canada α-Sutte Indicator 1429.3784 1.4216 1598.0927 0.0144 0.0158 616.0746 7.3669 753.5804 0.0753 0.0894

ARIMA 2481.6000 2.4564 2998.1281 0.0250 0.0294 666.4400 7.9823 794.5076 0.0815 0.0943

Reduced percentages (%)

A vs. B 42.4009 42.1267 46.6970 42.4000 46.2585 7.5574 7.7096 5.1513 7.6074 5.1962

Chile α-Sutte Indicator 20 468.0572 8.6147 26 308.0227 0.1007 0.1080 1064.5131 26.6207 1195.2883 0.2931 0.2843

ARIMA 25 302.8400 10.6400 32 155.0125 0.1245 0.1309 1116.6400 27.8566 1257.0084 0.3075 0.2975

Reduced percentages (%)

A vs. B 19.1077 19.0348 18.1838 19.1165 17.4943 4.6682 4.4367 4.9101 4.6829 4.4370

ARIMA, autoregressive integrated moving average method; MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, root mean squared error; MER, mean error rate; RMSPE, root mean square percentage error; A denotes the α-Sutte
Indicator; B represents the ARIMA model.
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α-Sutte Indicator, and its predictive performances on the different
prevalence and mortality datasets were compared with the
ARIMA model which was recommended as the most frequent
and powerful tool in the domain of time-series prediction
[37, 38]. Our experimental results indicated that α-Sutte
Indicator has priority over the ARIMA model for forecasting
the epidemiological trends of the prevalence and mortality of
the COVID-19 outbreak in the mentioned regions except for
the epidemiological trends of the COVID-19 prevalence around
the globe. Furthermore, the α-Sutte Indicator produced a highly
accurate prediction as a value less than 10% in all data was pre-
sented in the tested forecasting reliability measure of MAPE
that is often used to assess the predictive accuracy level [44]. In
summary, the satisfactory results from a series of comparative
investigations confirm that the α-Sutte Indicator has an ability
to track the dynamic structures of the prevalence and mortality
of the COIVD-19 outbreak, which can help policymakers to
determine which and when emergency macroeconomic strategies
to be formulated and how to allocate the limited medical and
health resources. Meanwhile, this prediction model can also be
beneficial in estimating when public health interventions take
effects in the study population. For example, the actual prevalence
and mortality are beginning to recede, whereas we estimated a
higher level using this model, implying that the measures are
playing a positive role. Otherwise, additional measures may be
required. Besides, given its simple structure, good flexibility and
excellent potential to evaluate the data of the α-Sutte Indicator,
it seems that this method may be transferable to make time-series
forecasting for the trends of the epidemiological indicators (such
as prevalence, morbidity and mortality) in other countries, terri-
tories or areas during the pandemic period or other types of data
(such as the data with notable seasonality and periodicity).
However, future studies on the additional topic are still required
to verify its suitability for the application of the α-Sutte Indicator.

The COVID-19 pandemic has been placing an intolerable bur-
den on the health system capacity worldwide [45, 46]. Currently,
there is a great concern on whether the countries severely affected
by the COVID-19 pandemic have an ability to provide the suffi-
cient number of materials and resources under dynamic demand
for the infected people, such as the increased intensive care unit
(ICU), the adequate medical supplies, the eventual vaccine and
the like [4, 8, 47]. In this study, the upcoming 20-day total cumu-
lative cases and deaths due to the COVID-19 outbreak were esti-
mated using the ARIMA and α-Sutte Indicator. The resulting
results show that the confirmed cases and deaths may still remain
high levels around the globe with a daily average of 181 313 and
4229 cases, respectively, in the next 20 days. Brazil, the
second-worst-hit country globally, may still witness an exponen-
tial trend with daily 38 687 estimated cases and 847 estimated
deaths in the future 20 days. The prior experiences from some
countries such as China, Republic of Korea, Italy and Germany
have demonstrated that, in the absence of vaccines available,
were there no strict control actions such as the lockdown and
social distancing measures that have been instituted at the
national levels, never would we make the outbreak under control
well. Thus, given the current outbreak patterns of COVID-19 in
Brazil, the government should continue to implement strict pre-
ventive and control strategies, and even more strict interventions,
such as continued lockdown, keeping social distancing, an opti-
misation of the current tools, increasing the numbers of the
mobile cabin hospitals, avoiding hospital-related infections,
increasing medical personnel, increasing ICU availability,

preparing isolation wards, enhancing the awareness of the general
public etc. [4, 30, 47–50]. Similar prophylactic measures are also
expected to be carried out in Peru and Chile because the daily
confirmed cases and deaths have still been noticeably rising in
these two countries with daily 3676 and 4321 confirmed cases,
coupled with daily 196 and 144 deaths, respectively, and seem-
ingly they required more days to reach the plateau. Contrary to
the ongoing trend of the outbreak in the above-mentioned coun-
tries, the confirmed cases and deaths are decreasing in Canada
with the next 20-day estimates of 218 cases and 6 deaths per
day. In all, facing the drastic threats of the COVID-19 pandemic,
only under the strict intervention strategies can we hope to tackle
such a wide-ranging issue.

Conclusion

Forecasting the epidemiological trends of the prevalence and mor-
tality of the diseases forms the basis for response to epidemics. In
this time-series analysis, we focused on exploring the potential of
the advanced α-Sutte Indicator and its suitability for the applica-
tion to the epidemiological trend forecasting of the COVID-19
prevalence and mortality through a series of experiments. Our
research suggests that this advanced model can get a more clear
perspective of the trends of the epidemiological indicators of
the COVID-19 outbreak in the five study regions except for the
prevalence data around the globe than the most frequently used
ARIMA model. The advanced α-Sutte Indicator can be recom-
mended as a useful tool to nowcast and forecast the prevalence
and mortality time series of COVID-19, which will be a useful
aid for policymakers to plan and prepare health resources effect-
ively, including medical personnel, medical protection facilities,
isolation wards and ICU in response to the epidemic patterns
of COVID-19 over the upcoming days or weeks. In addition,
under the current outbreak trends, feasible and effective strategies
are warranted to mitigate the continued spread of COVID-19.
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