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Abstract: There is an increase in the awareness of the importance of spatial data in epidemiology
and exposure assessment (EA) studies. Most studies use governmental and ordnance surveys,
which are often expensive and sparsely updated, while in most developing countries, there are
often no official geo-spatial data sources. OpenStreetMap (OSM) is an open source Volunteered
Geographic Information (VGI) mapping project. Yet very few environmental epidemiological and
EA studies have used OSM as a source for road data. Since VGI data is either noncommercial or
governmental, the validity of OSM is often questioned. We investigate the robustness and validity of
OSM data for use in epidemiological and EA studies. We compared OSM and Governmental Major
Road Data (GRD) in three different regions: Massachusetts, USA; Bern, Switzerland; and Beer-Sheva,
South Israel. The comparison was done by calculating data completeness, positional accuracy, and EA
using traditional exposure methods. We found that OSM data is fairly complete and accurate in all
regions. The results in all regions were robust, with Massachusetts showing the best fits (R2 0.93).
Results in Bern (R2 0.78) and Beer-Sheva (R2 0.77) were only slightly lower. We conclude by suggesting
that OSM data can be used reliably in environmental assessment studies.

Keywords: OpenStreetMap; exposure assessment; completeness; positional accuracy;
public health; epidemiology

1. Introduction

For the past 30 years, there is increasing awareness of the importance of spatial data in
epidemiological studies [1]. Understanding the spatial distribution of hazards (i.e., air pollution
measurements, transport networks, land cover, wind speed, etc.) and population data
(location, socioeconomic status, education, etc.) is critical for exposure assessment studies.
The Geographical Information System (GIS) allows combining all the necessary data for exposure
assessment studies [2,3]. GIS data used in those studies are usually from known trusted sources, such as
government or ordnance surveys, which are usually expensive and, in some locations, sparsely updated.
In addition, in most developing countries, there are no official GIS data sources, making it more difficult
to conduct exposure assessment studies [4]. In contrast, Volunteered Geographic Information (VGI) [5,6],
i.e., OpenStreetMap, Google maps etc., are usually free of charge and frequently updated by users
around the world [5].

OpenStreetMap (OSM) is an open source and open content license VGI mapping project that
aims to create and provide free worldwide geographic data. Since it was founded in 2004, millions of
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users around the world have contributed voluntarily to the creation of global street maps using GPS,
digitizing from free aerial images or other non-copyrights sources [7]. The number of people using
and producing VGI is constantly increasing [8,9], since VGI data is usually the cheapest source of
geographic data (data from OSM is free and open). As the number of contributors grow, the quality of
OSM data improves, since users can update the data more frequently [10,11]. Moreover, people who
contribute to VGI usually focus on areas most familiar to them. This local knowledge is one of the
greatest benefits of VGI [12,13].

Although OSM has a large number of contributors, most of them do not have a professional
background in GIS, and do not use professional equipment [5,10,12,14]. In addition, it has been
shown that the number of users per area improves the overall quality of OSM, but not in a linear
way [11]. Therefore, there are concerns about the quality and reliability of VGI as an information source,
which have led many studies to assess the quality of OSM data [15]. Some recent studies focusing on
this issue found that although most VGI users do not have GIS experience, the difference in mapping
between expert and non-expert users was minor [16]. In addition, many studies assessed the quality of
OSM data by comparing it to more reliable reference data, such as governmental data or ordnance
surveys (OS), and calculated data completeness [11,17–23], positional accuracy (PA) [10,17,18,21,24,25],
and thematic accuracy [11,22,26,27]. The studies found that completeness and positional accuracy
improves over time, but vary in space; urban areas are more complete and accurate compared to rural
areas [17–19,24,25]. In addition, there was a difference in the thematic accuracy of roads. For example,
when comparing OSM and governmental data in France, major road classification showed a thematic
accuracy of 100%, while for secondary roads, the thematic accuracy was 49% [11]. An important study
by Mocnik and colleagues [28] discussed data quality measures for VGI at length. They present concepts
of data quality measures by the source of information to which the data is compared to assess their quality.
They use several examples of VGI, which also applies to other geographical data and data in general.
They summarize by showing how this used information provides an alternative grounding of the data,
which potentially refers to the environment in a different way than the original grounding. This also
sheds light on the quality of the data evaluated in the context of OSM data. This grounding-based
ontology can improve the understanding of how different data quality measures correlate, and how
they can mutually complement each other. Another important part of VGI is the coordinated effort to
create and maintain the data. The interpretation and analysis of VGI data is often only possible when
considering the social process that leads to their creation. A holistic understanding of the OSM data
and its creation process can only be gained by examining several datasets. Thus, a more complete
understanding of which factors influence the emergence of the data is often still missing [29].

Although many studies have focused on OSM quality, studies from different fields focused on the
use of OSM data for different purposes, such as: Urban planning [30,31], routing and navigation [32–41],
transportation [42–45], mobility and accessibility [46–48], mapping and geocoding [49–51], and its use
in disaster events [52,53]. Mobasheri and colleagues [40] presented a modified methodology based
on data mining techniques for constructing sidewalk geometries using multiple GPS traces collected
by wheelchair users during an urban travel experiment. They applied their methods to a case study
in Heidelberg, Germany. The constructed sidewalk geometries were compared to the official dataset.
They showed that the constructed sidewalk network overlays with 96% of the official reference dataset.
In terms of positional accuracy, they present very accurate Root mean square error (RMSE) values of
0.93 m. Another study by Mobasheri and colleagues [41] looked at the assessment of sidewalk data
in OSM. They present results of “awareness raising” using tools for tagging accessibility data into
OSM database for enriching the sidewalk data completeness. They carried out several experiments in
different European cities. They conclude that awareness raising and public engagement have a direct
effect on the enrichment of data completeness, especially for those kinds of information that target
special needs (e.g., sidewalk information).
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Some studies concluded that data from OSM is fairly complete and accurate in most regions and
its quality is constantly improving [17,18,21,24]. Furthermore, studies have shown that OSM data can
be used for urban planning and environmental noise pollution [49–51].

Despite these findings, very few environmental epidemiological and exposure assessment studies
have used OSM as a source for road and spatial data (Table 1). Most of these studies [54–61] used
original OSM data, without making any changes to the OSM data. A few studies, however, found that
misclassification in the OSM road type affected the exposure assessment results, which they corrected
by modifying the classification based on local knowledge [62,63]. Others found OSM encoding of
road network data was not uniform, and they needed to use governmental road network instead
of OSM [64]. Also, in several studies, OSM roads were divided into different categories, but no
consistency was found in categories’ affiliation: For example, in the UK, motorway, primary, and trunk
roads were classified as major roads [54]. In Greece, however, motorways were classified as a separate
category [57].

Due to the scarce number of studies using OSM data in environmental epidemiology studies,
there is a real need to investigate the robustness and validity of OSM data to be used in such
studies. Therefore, the aim of this research is to test the viability of OSM data as a reliable and
robust source for exposure assessment data used in environmental epidemiology studies. To assess
this, we compared traffic-related air pollution exposure assessment results, calculated using both OSM
and governmental/commercial road data, in three different regions of the world: North America
(Eastern Massachusetts, USA), Europe (Bern Region, Switzerland), and the Middle East (south region,
Israel). Firstly, we checked the validity of OSM versus governmental or commercial data in our study
regions. Next, we evaluated the application of the data by comparing the use of both road datasets
in exposure assessment studies in the different regions. To the best of our knowledge, we evaluate
for the first-time the viability of using OSM data as a free, global, and readily available data source in
environmental exposure assessment studies comparing both OSM and GRD data in the process.
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Table 1. Environmental assessment and epidemiological studies using OpenStreetMap (OSM) data as source information.

Reference Study Area Aim of the Study OSM Data Type Changes Made in OSM Data
by the Researches Results

54 UK

Predicted annual average daily traffic
(AADT) at a national scale in minor
roads, and validated the model using
traffic counts and noise measurement.

Roads

No changes were made. They divide
the roads into two types: Major roads
(including motorway, primary,
and trunk roads) and minor roads
(secondary, tertiary, residential,
or unclassified).

Although they found road
misclassification in several areas,
their methods improve noise
prediction (from 0.42 to 0.72),
compared to models that do not
consider minor roads’ variability.

55 Israel Estimated NO2 concentration using
GPS-transceivers installed in vehicles.

Roads and
Polygons

No changes were made. They divide
the roads into five classes, and used
highway segments for the analysis
(motorway and trunk). Polygons
data used to classify land use.

Traffic volumes were successfully
used as a proxy for NO2. The
model performed better in high
traffic hours than in low
traffic hours.

56 Netherlands

Estimated the spatial distribution of
exposure to Q-Fever due to Coxiella
burnetii spreading from goat farms. The
location of a resident (based on observed
outbreak data) was used as a proxy for
exposure.

Buildings
No changes were made. They
calculated building density as a
proxy for population density.

The assessed location of the
highest exposure was close to the
animal market, which was the
source that caused the outbreak.

57 Zurich,
Switzerland

Created a high-resolution urban air
pollution map, using mobile sensor
measurements, installed on top of public
transportation.

Roads

No changes were made. They used
the pollution maps to calculate cost
function to each road in Zurich to
compute health–optimal routes.

They created the most accurate
and timely assessment of air
quality in urban areas.

58 Mexico City

Used the new data from the MAIAC
AOD satellite to estimate PM2.5 in
Mexico City using Land Use Regression
(LUR) combined with the mixed effect
model.

Roads No changes were made. They
calculated road density.

They developed the first high
spatial and temporal model for
the PM2.5 exposure model using
satellite measurements.

59 Réunion Island,
France

Studied the effect of the population’s
mobility on Chikungunya (a
vector-borne disease) epidemic in
2005–2006 on the Réunion Island in
France.

Roads
No changes were made. They
calculated road density as a proxy for
population density.

Results identify human mobility
as a key parameter in the spread
of the epidemic. Results were
validated against real
epidemic data.

60 Montreal,
Canada

Created a web-based route planning tool
to reduce cyclists’ exposures to traffic
pollution.

Roads

No changes were made. They
segmented the roads on the
intersection, and calculated length
and average concentration of NO2 to
each segment.

On average, the difference in
exposure to NO2 between the
shortest and alternative routes
suggested in their web-tool was
modest (~5%) and alone may not
present a meaningful public
health benefit.
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Table 1. Cont.

Reference Study Area Aim of the Study OSM Data Type Changes Made in OSM Data
by the Researches Results

61 Ulaanbaatar,
Mongolia

Assessed the feasibly of LUR exposure
assessment techniques, and estimated
the mortality attributable to air pollution
of NO2 and SO2.

Roads

Minor modifications were made
based on local knowledge and
location of features in the images.
Roads were divided into two
categories: Peace Avenue and
major roads.

LUR model results of NO2 were
between the ranges of previous
studies. LUR results for SO2 were
better than previous studies. They
estimated that about 10% of deaths in
2009 were attributable to
air pollution.

62 Greece
Particulate matter exposure assessment
in urban areas in Greece during
2001–2010.

Roads

Data were gap filled and modified
according to recent changes in road
types. In addition, data was classified
into four categories: Motorways,
major, minor, and pedestrian.

Particular matter concentration has
dropped significantly in the period of
2001–2010.

63 Portugal

Assessed the relationship between
asthma hospital admission and
environmental variables, including: Near
surface air temperature, relative
humidity, vegetation density, NO2, and
PM10. They used the Land-Use
Regression (LUR) model for the
assessment.

Roads

The encoding of OSM road network
was not uniform, so they also used
the road network provided by the
Portuguese Street Authority.

Asthma hospital admissions were
associated with high temperatures,
low vegetation density, and high
levels of NO2.
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2. Materials and Methods

2.1. Research Area

The research focused on three districts in developed countries: North America
(Eastern Massachusetts, USA), Europe (Bern region, Switzerland), and the Middle East
(south region, Israel) (Figure 1).

Figure 1. Research Area.

The Eastern Massachusetts study region, approximately 5000 km2 in size, is located in the north
eastern United States. The region’s main city, Boston, is the economic and cultural hub of New England,
and has over 617,000 residents [64].

The Bern region is located in East Switzerland with an approximate area of 6000 km2 and a
population of 1,009,400 residents (about 168 people per square kilometer). Bern is the capital city of
Switzerland, with approximately 125,000 inhabitants [65].

The southern region of Israel is about 14,500 km2, with its main city, Beer-Sheva, located in the
north. The region has a population of 1,192,300 million distributed sparsely, with a low population
density (84 people per square kilometer); in comparison, the average population density of Israel is
376 people per square kilometer [66].

2.2. Data Collection and Preparation

OSM road data was downloaded from the GeoFabrik Company, which specializes in working
with OpenStreetMap. The data is updated daily and can be downloaded freely from their website [67].
Road data for the study areas were downloaded 8 November 2015.

Massachusetts governmental road and building data is accessible through the Massachusetts
Office of Geographic Information [68] website. The road data is up-to-date until 31 December 2013.
The data were released by MassGIS on 13 June 2014. The building data is updated to March 2016.

Swisstopo is the Federal Office of Topography in Switzerland, which produces GIS databases.
VECTOR25 is one of their products that include road network data and building data. The latest
version was released in 2008; this version was used in this research.
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For southern Israel, we used the GIS vector layers from the 2011 road network from a survey
company [69], and building data from Beer-Sheva municipality, updated August 2015.

OSM uses the World Geodetic 1984 (WGS84) System, while each country uses different projections
to ensure a better representation of their topography, i.e., Survey of Israel (MAPA) uses Israel Transverse
Mercator (ITM) projection. To compare between the different layers, each OSM layer was re-projected
to the original projection of the governmental/survey layer.

Exposure assessment research traditionally uses density of and/or distance to major roads to assess
the exposure to traffic related pollutants [70,71]. We thus compared the quality and exposure assessment
results between OSM and GRD using major roads only. Major roads were defined as motorways, main
roads of major importance, and other main roads, a commonly used road classification [72].

2.3. Assessing Data Quality

OSM road data quality was assessed by comparing it to the governmental (or survey) road data
(GRD), calculating the completeness and positional accuracy in each area using the Haklay’s [17]
method, also used in previous studies. A grid of 1 × 1 km2 covering the three study areas was created
using the “Fishnet” tool in ArcGIS 10.3.1. The lengths of both road datasets were calculated in each cell
using the “Sum Line Length” tool in QGIS version 2.16.2 to calculate OSM completeness percentage
using the following calculation:

OSM Completeness (%) =
OSM major road length (m)

major GRD length (m)
× 100

The methodology used to evaluate the positional accuracy of OSM data is based on Hunter
and Goodchild [73]. Roads are represented as lines in GIS while in the real-world, roads have area.
To calculate if the position of the ‘untrusted’ data source (i.e., OSM) is in the same position as the
‘trusted’ data source (i.e., GRD), we used buffers to determine which percentage of the area from OSM
was inside the area of GRD. To measure this accuracy, we created buffers of 15 m and 20 m around the
GRD data, and a 1m buffer around the OSM road data. If the OSM 1m buffer was inside the 15–20 m
GRD buffer in the same grid—the positional accuracy of OSM would be 100% in this grid. In each cell
of the grid, the total intersection area between the two buffers was divided by the total OSM buffer
area inside the grid to measure the positional accuracy percentage:

OSM Positional Accuracy (%) =
Intersected area between OSM buffer and GRD buffer

(
m2)

OSM buffer area (m2)
× 100

2.4. Exposure Assessment Comparison

To evaluate OSM road data for exposure assessment research, we used commonly used exposure
assessment methods metrics for characterizing exposure to traffic-related air pollutants as commonly
performed in previous studies [70,71]. These metrics include: 1. The proximity (distance) to major
roads- important since concentrations of traffic-related air pollutants rapidly decrease with distance
from major roads; and 2. traffic (road) density-an important metric for all road air pollution
density within study participants’ home addresses. We compared exposure assessment results
from both commercial and OSM sources using a random sample of 10% of the buildings in each
region (using the QGIS “Random Sampling” tool), representing a 10% random sample of the
representative study population. A centroid was generated from each selected building polygon
using the “Polygon Centroid” tool in Quantum Geographic Information System (QGIS).

2.4.1. Distance to Nearest Major Road

Distance from the building centroid to the closest major road was calculated using the
“arcpy.GenerateNearTable” Analysis. Using R version 3.3.0, a linear model was calculated to compare
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the OSM and GRD results. Adjusted R2 results of the linear regression allowed us to measure the
percent of the difference/similarity between the results.

2.4.2. Road Density

Road density was calculated using different sized buffers (50, 100, 200, 500, and 1000 m) from the
building centroid, created using the Buffer tool in QGIS. In each buffer, the road length was calculated
for major roads only, using the “Sum Line Length” tool in QGIS. Road density was calculated in R
using the following calculation:

Road Density in x meters buffer i (the different sized buffers) =
total major road length inside the buffer (m)

buffer area (m2)

A linear model was performed to compare between OSM and GRD results in the different buffers.
Adjusted R2 results of the linear regression will again allow us to measure the percentage of the
difference/similarity between the results.

3. Results

3.1. Descriptive Statistics

Descriptive statistics are shown in Table 2. Although the areas of the southern region in Israel
(~14,500 km2) and Bern (~6000 km2) are bigger compared to the area of Eastern Massachusetts
(~4900 km2), total road length is higher in Eastern Massachusetts, both for OSM and GRD.

Table 2. Descriptive statistics.

Eastern
Massachusetts,

USA

Boston, Eastern
Massachusetts

Bern Region,
Switzerland

Bern city,
Switzerland

South
Region,
Israel

Beer-Sheva
City, Israel

Total Area (km2) 4909.63 129.91 5970 236.86 14,511.36 117.49

Number of grids
(1 km2) 5326 220 5841 308 14,950 149

Number of grids
with road data 3604 172 1608 155 2209 58

spatial references
system

NAD 1983 State Plane
Massachusetts Mainland FIPS 2001

CH1903 LV03 Hotine Oblique
Mercator Azimuth Center ITM Grid

Major road GRD
types Types 1–4 1 Klass, Autobahn, Autostr Highway, National highway,

Regional road, Local road

Major road GRD
length (km) 6592.90 809.47 1616.97 233.59 1927.08 61.41

OSM major road
type

Motorway, Trunk, Primary,
Secondary

Motorway, Trunk, Primary,
Secondary Motorway, Trunk, Primary *

OSM major road
length (km) 5911.68 675.39 1812.69 260.19 1995.03 99.91

* Note: In Israel, secondary roads were not selected because they are not defined locally as major roads.

3.2. Data Quality

3.2.1. Completeness

OSM completeness results vary across the different study areas (Table 3). In Eastern Massachusetts,
average completeness is ~90%, while in Bern and the south region of Israel, OSM completeness is
above 100%. Although the average completeness over all grid cells is very high, OSM completeness
varies over space as shown in Figures 2–4. As shown in Figures 2 and 3, completeness percentages
in Eastern Massachusetts and Bern are generally very high. In Israel’s southern region (Figure 4),
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completeness varies over space, and is low around the border regions and several areas in the center
of the map (Figure 3A).

Table 3. OSM completeness.

Eastern
Massachusetts,

USA

Boston City,
Massachusetts,

USA

Bern Region,
Switzerland

Bern City,
Switzerland

South
Region,
Israel

Beer-Sheva
City, Israel

Major GRD length
(km) 6592.90 809.47 1616.97 233.59 1940.02 61.41

OSM major road
length (km) 5911.68 675.39 1812.69 260.19 2005.93 99.91

Completeness (%) 89.67 83.45 112.1 111.39 103.34 162.69

Figure 2. Eastern Massachusetts’ completeness (%).
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Figure 3. Bern region’s completeness (%).

Figure 4. Israel’s south region’s completeness (%).
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To compare completeness between rural areas and populated areas, we calculated the
completeness for Boston, Bern city, and Beer-Sheva Metropolis city separately. We found that the
completeness in Boston was ~6% lower compared to Eastern Massachusetts, and Bern city ~1%
lower compared to Bern Region, but completeness in Beer-Sheva was ~62% higher than in the region.
The areas colored in red are areas with a completeness of 0%, meaning GRD only. To understand
whether the lower results are due to a lack of OSM roads or due to misclassification, we compared
the original road data gathered from GeoFabrik, before filtering major roads only. We found that the
lower result in Beer-Sheva city (Figure 3B) was not due to a lack of OSM data, but was caused by the
difference in road class definitions; the same road was classified as a minor road in OSM (which was
not included in the study area), while in GRD, it was defined as a regional highway. The slightly lower
completeness results in Bern City (Figure 2) were also due to OSM misclassification; instead of primary
or trunk classification, roads were classified as track, path, and residential roads, all of which were not
included in major roads selection.

3.2.2. Positional Accuracy

The positional accuracy (PA) analysis results show the current precision of OSM, and is calculated
only in areas where OSM data exists. OSM PA varies in the different study areas (Table 4). In Eastern
Massachusetts, PA is over 98%; in Israel’s southern region, PA is 94%; while in Bern, we found the lowest
PA results (~88%). Results improved when the buffer size was increased in all study areas. Figures 5–7
shows the results per study area. OSM PA varies over space, while in Eastern Massachusetts (Figure 5)
and the south of Israel (Figure 7), PA is generally high; in Bern (Figure 6), the PA percent is very high in
several areas (colored blue), but there are also several areas where PA is very low (colored red).

Table 4. OSM Positional Accuracy (PA) percent.

Eastern
Massachusetts,

USA
Boston Bern Region,

Switzerland
Bern City,

Switzerland
South Region,

Israel
Beer-Sheva,

Israel

OSM 1 m buffer
area (km2) 11.79 1.09 3.62 0.52 4.01 0.16

GRD 15 m
buffer intersect

area (km2)
11.65 1.08 3.17 0.45 3.77 0.15

GRD 20 m
buffer intersect

area (km2)
11.66 1.08 3.19 0.46 3.84 0.15

Positional
accuracy (%) 15

m buffer
98.81 99.08 87.57 86.54 94.01 93.75

Positional
accuracy (%) 20

m buffer
98.9 99.08 88.12 88.46 96 93.75
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Figure 5. Eastern Massachusetts’ PA (%): 15 m (left) and 20 m (right) buffer.
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Figure 6. Bern region’s PA (%): 15 m (left) and 20 m (right) buffer.
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Figure 7. Israel’s south region’s PA (%): 15 m (left) and 20 m (right) buffer.
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We also calculated the PA for Boston, Bern city, and Beer-Sheva Metropolis city separately (Table 4)
to compare the total PA in rural areas with the PA in populated areas. We found that, compared to the
whole region, PA in Boston was higher, while in Beer-Sheva, the results were lower compared to the
whole region. In Bern, however, PA results were lower in the 15 m buffer and higher in the 20 m buffer.
PA was only calculated in areas where OSM data exists and this could explain why some areas have a
low PA; either the PA of OSM is actually low, or GRD is missing in those grid cells.

3.3. Exposure Assessment Comparison

The total number of buildings used and major roads selected can be found in Table 5. The number
of buildings and major roads used in Eastern Massachusetts is higher than in the Bern region and
Beer-Sheva city, since the total area of Eastern Massachusetts is significantly bigger (Table 2). There is a
difference in major roads’ lengths between OSM and GRD in all study areas. There are three probable
reasons for this difference: (1) The classification of major roads in OSM is affected by the user’s
definition, thus it is possible that misclassification of roads affected the number of roads selected;
(2) major roads are missing in OSM or GRD databases; and (3) a combination of the two previous
points. This difference in major roads’ lengths between OSM and GRD can affect the results of the
exposure assessment model. If the OSM data has less/more major roads compared to the GRD data,
model results will be lower in both cases, since the fitting of the model will be affected.

Table 5. Data used to calculate the exposure assessment.

Eastern
Massachusetts, USA

Bern Region,
Switzerland Beer-Sheva, Israel

Number of buildings used for the
analysis (10% from building layer) 116,063 27,247 2278

GRD major roads selected Types 1–4 1 Klass, Autobahn,
Autostr

Highway, national
highway, regional road,

local road

OSM major roads selected Motorway, Trunk,
Primary, Secondary

Motorway, Trunk,
Primary, Secondary

Motorway, Trunk,
Primary

GRD major road total length (km) 6592.90 1616.97 52.70

OSM major road total length (km) 5911.68 1812.69 81.57

Difference between road length (The
absolute difference between OSM

and GRD length divided by the sum
of OSM and GRD length)

0.054 0.057 0.22

3.3.1. Road Density

Table 6 presents results of the linear model of major road density based on OSM and GRD using
different buffer sizes. As shown in the results, linear model fitting results vary in the different study areas;
best fits were observed in Eastern Massachusetts (R2 0.92–0.94), while both Beer-Sheva (R2 0.69–0.77)
and Bern (R2 0.80–0.89) resulted in slightly lower fits. In addition, when comparing the results in the
different buffer sizes of each study area, the R2 does not change much for the different buffer sizes in each
study area.

Road density considers the sum of road length from both datasets inside each buffer, hence it should
be affected by major road completeness. We expected to find a match between completeness (%) results
(Table 3) and the road density linear model result—lower results in Eastern Massachusetts and higher
results in Beer-Sheva. The results we found were affected by the difference between OSM and GRD road
length. We found that high differences between OSM and GRD length (Table 5), lowered road density
linear model results (Table 6). In Beer-Sheva, we found the highest difference and the lowest result in the
road density linear model, while in Eastern Massachusetts, we found the lowest difference between the
OSM and GRD road length, and a highest result in the road density linear model.
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Table 6. Road density exposure assessment linear model results. β = Beta, CI = Confidence interval, ** p < 0.01; *** p < 0.001; NS = not significant.

Buffer Size 50 m 100 m 200 m 500 m 1000 m

β β β β β

(CI) sig (CI) sig (CI) sig (CI) sig (CI) sig

Eastern Massachusetts, USA

(Intercept) 0 0 0 0 0
(0–0) *** (0–0) *** (0–0) *** (0–0) *** (0–0) ***

GRD
0.94 0.91 0.87 0.82 0.80

(0.94–0.94) *** (0.91–0.91) *** (0.87–0.87) *** (0.81–0.82) *** (0.80–0.80) ***

Observations 116,063 116,063 116,063 116,063 116,063

R2 0.94 0.93 0.92 0.92 0.94

Bern Region, Switzerland

(Intercept) 0 0 0 0 0
(0–0) *** (0–0) *** (0–0) *** (0–0) *** (0–0) ***

GRD
0.94 0.95 0.96 1 1.05

(0.93–0.94) *** (0.94–0.95) *** (0.95–0.96) *** (0.99–1) *** (1.05–1.06) ***

Observations 27,247 27,247 27,247 27,247 27,247

R2 0.80 0.80 0.81 0.83 0.89

Beer-Sheva, Israel

(Intercept) 0 0 0 0 0
(0–0) NS (0–0) NS (0–0) ** (0–0) *** (0–0) ***

GRD
1.39 1.44 1.32 1.2 1.24

(1.35–1.43) *** (1.40–1.47) *** (1.39–1.35) *** (1.17–1.23) *** (1.21–1.27) ***

Observations 2278 2278 2278 2278 2278

R2 0.69 0.75 0.77 0.74 0.74
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3.3.2. Distance to Nearest Major Road

In Table 7, we present results of the exposure assessment analysis for the distance to major
roads using both OSM and GRD. Higher models’ fits were found in Eastern Massachusetts (R2 0.96)
compared to lower fits in the Bern region (R2 0.66) and Beer Sheva region (R2 0.84).

The distance to the nearest major road linear model considers the PA of roads, since we measured
the distance from the building centroid to the nearest major road; if OSM roads are not as accurate
as GRD, lower correlations will be found in the linear model. Hence, we expected to find a match
between the distance from the nearest road linear model results (Table 7) and PA results (Table 4).
We found a higher result for PA in Eastern Massachusetts (~99% completeness) and the highest linear
model result of the distance to nearest roads (R2 0.96). In Bern, we found PA results (~88%) and fits
(R2 0.66), while in Beer-Sheva the PA result was 89% with a R2 0.84.

Low fitting results in the linear model could also be caused by misclassification of roads; for
example, if a major road was misclassified as a minor road in OSM, the distance from the OSM major
road could be higher than the distance from GRD and can lower the linear model result.

Table 7. Distance from the roads exposure assessment linear model results. β = Beta, CI = Confidence
interval, *** p < 0.001, GRD = Governmental Major Road Data, Intercept = Model intercept.

β (CI) sig

Eastern Massachusetts, USA

(Intercept) 8.63 (8.05–9.22) ***
GRD 0.98 (0.98–0.98) ***

Observations 116,063
R2 0.96

Bern Region, Switzerland

(Intercept) 171.9 (161.68-182.12) ***
GRD 0.68 (0.68–0.69) ***

Observations 27,247
R2 0.66

Beer-Sheva, Israel

(Intercept) 43.36 (25.99–60.73) ***
GRD 1.05 (1.03–1.07) ***

Observations 2278
R2 0.84

4. Discussion

In this study, to the best of our knowledge, we present for the first-time environmental exposure
assessment results that compare OSM and GRD. Our findings suggest that OSM road data is fairly
complete and accurate (83–112%) in all study areas of Massachusetts, Bern, and the southern region of
Israel. When comparing the three study areas, we found differences in the environmental assessment
results: In Eastern Massachusetts, the results of both major roads models were very high (R2 0.92–0.94).
Results in Bern (R2 0.66–0.89) and Beer-Sheva (R2 0.69–0.84) were also good, yet slightly lower. We believe
these results will still improve over time, since OSM data is constantly improving over time [17–19,24,25].

Previous studies found that completeness and positional accuracy is better in populated areas
when compared to rural areas [17,24,25]. Our findings were consistent with these studies. We also
found that in Bern city and Boston, the positional accuracy of OSM is higher than in rural areas,
but when calculating completeness, we found that in Boston and Bern cities, the completeness was
slightly lower (2%) compared to their corresponding region. In Beer-Sheva, we found that PA was
lower and completeness was much higher compared to the southern region of Israel. These high
differences between the southern region and Beer-Sheva could be due to a misclassification of the
road’s type: When a minor road was classified as a major road in OSM, it could create higher results in
completeness, and lower results in PA. Completeness considers the sum of road length; if more roads
are considered as major roads in OSM compared to GRD, than the completeness percent will be higher.
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Misclassification could also lower PA results; since PA is calculated in all grids with OSM data, if GRD
road is missing, than PA results in those grids will be lower.

Our study has some limitations. Although we compared exposure assessment using GRD and
OSM major roads, we did not analyze the thematic accuracy of the road classification. OSM users define
the type of the roads based on their knowledge or opinion [27], and thus road type misclassification
could affect our results. In addition, it was shown that the number of users per area improves the
quality and reliability of OSM data [11]. There is a clear difference in population density between
the study areas. Eastern Massachusetts is more populated [64] compared to the Bern region [65] and
southern Israel [66]. Although user data is hard to acquire, some open source tools exist that try to
quantify the number of users [74]. Based on Mapbox (which tries to quantify the number of users and
their edits per-country), we see that there are thousands of users in the USA (between 4000–5000) while
in Israel, the number of users is much lower (400–500 users). Hence, it is possible that the difference in
the number of users per area could affect our results. An additional future study should be carried out
to analyze the effect of misclassification and population density on our results.

5. Conclusions

In summary, this study compared environmental exposure assessment results of OSM versus
governmental or commercial data in three developed countries. Completeness and positional accuracy
of OSM was mostly high in all study areas. When comparing the environment exposure assessment
results, we saw that there is some heterogeneity in the different study areas, yet they are all relatively
robust. There is a need to investigate these findings in other areas of the world, especially in
undeveloped countries, where official GIS data is rare, and the dependence of VGI for exposure
assessment studies is high.
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