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Artesunate treatment of severe pediatric malaria:  
A review of parasite clearance kinetics and  

clinical implications
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Severe malaria causes an estimated 1.24 million deaths every year, 
mostly in children in sub-Saharan Africa (1). Canadian pediatric 

infectious diseases practitioners may encounter life-threatening mal-
aria among children emigrating from or returning from travel to the 
tropics. There were 195 reported cases of severe malaria in Canada 
between 2001 and 2012 (2), and the recent death of a malaria-infected 
adult in Alberta provided a reminder of the potential severity of the 
disease. Two large, multicentre, randomized controlled trials conclu-
sively demonstrated a mortality benefit for the use of artesunate over 
quinine, the centuries-old standard, for children and adults with 
severe malaria (3,4). As a result, intravenous artesunate is now the 
treatment of choice for severe malaria, as reflected in guidelines from 
the WHO and the Canadian Committee to Advise on Tropical 
Medicine and Travel (5,6). 

Severe malaria in children most often manifests as either a single,  
or a combination of three clinical syndromes: severe malarial 
anemia, cerebral malaria and/or respiratory distress. In addition, 
patients with a high parasite density are at elevated risk for progres-
sion to severe disease and death. In travellers from low-transmission 
settings, such as Canada, the parasitemia threshold suggested for 
close monitoring, hospitalization and parenteral therapy is >2% (6). 
It should be emphasized that circulating parasites represent only a 
fraction of the sequestered parasite biomass in severe malaria, such 
that this threshold is imprecise.

Artesunate is a water-soluble, semi-synthetic derivative of arte-
misinin, the active antimalarial component of the herb Artemisia 
annua (qinghaosu). Its use in clinical practice is expanding in malaria-
endemic areas of Africa and Asia, replacing quinine as the mainstay of 
severe malaria treatment (7). It is available across Canada, 24 h per 
day, through the Canadian Malaria Network and Health Canada’s 
Special Access Program (8). If, despite national efforts to ensure its 
accessibility, artesunate cannot be obtained in a timely manner for a 
patient with severe malaria, alternative agents (eg, atovaquone-pro-
guanil or quinine) should be initiated pending arrival of artesunate. 

Although the weight of evidence and international consensus 
favour artesunate treatment, some countries continue to list quini-
dine or quinine for severe malaria as they await regulatory approval of 
artesunate (9,10). Clinicians consulting widely available online (9,11) 
or print (10,12) treatment guidelines for severe malaria may be puzzled 
by the United States (US) Centers for Disease Control and Prevention’s 
listing of quinidine as first-line therapy in the US, or quinine in the 
United Kingdom (Table 1). WHO-prequalified artesunate (Guilin 
Pharmaceutical, China) was used in major clinical trials with excel-
lent efficacy (3); however, it has not yet obtained Health Canada, US 
Food and Drug Administration or European Union regulatory approval, 
creating a gap between the preferred evidence-based regimen and the 

regimen approved by regulatory authorities. High-quality artesunate 
from the Walter Reed Army Institute of Research (Maryland, USA) 
is, nonetheless, widely used in Canada and the US, made available 
to Canadians through the Canadian Malaria Network (2) and to US 
hospitals through a Food and Drug Administration-approved investi-
gational new drug protocol (9).

In addition to reducing mortality in patients with severe malaria, 
artesunate treatment also results in remarkably rapid parasite clear-
ance. The kinetics of parasite elimination from the peripheral circu-
lation under artesunate treatment are summarized in Table 2. 
Parasite clearance kinetics link the three themes discussed in the 
present article: postartemisinin-delayed hemolysis (PADH), a newly 
recognized adverse event and consequence of rapid parasite clear-
ance; pharmacokinetics and dosing in young children who exhibit 
slower parasite clearance; and artesunate resistance, heralded by slow 
parasite clearance.

Postartemisinin-delayed hemolysis
The safety profile of parenteral artesunate in the largest randomized 
trials to date was excellent, with essentially no serious drug-related 
adverse effects reported. Compared with quinine, the incidence of 
post-treatment hypoglycemia and neurological progression (new seiz-
ures, development of coma) was lower (3,4). Artesunate is, therefore, 
preferred not only for its superior efficacy over quinine, but also its lack 
of acute toxicity. 

As artesunate use expanded to include nonimmune returning trav-
ellers with severe malaria, reports emerged of hemolytic anemia occur-
ring weeks after treatment (13). This late sequela of artesunate 
treatment was not reported in earlier studies because they only had a 
three-day median for follow-up of hemoglobin levels (14).

Anemia with malaria is multifactorial, and can be due to parasite 
and host factors, in addition to antimalarials. For example, severe 
anemia (hemoglobin <50 g/L) is the most common pediatric presenta-
tion of severe malaria (15), and severe acute intravascular hemolysis 
(‘blackwater fever’) occurs in the acute phase in both quinine- and 
artesunate-treated patients (3). During recovery, protracted anemia was 
observed in up to 7% of patients even before the introduction of 
artesunate (16), which may be caused by bone marrow suppression and/
or hemolysis due to autoimmune and nonimmune processes (17-19). 
Drug-induced hemolytic anemia related to glucose-6-phosphate 
dehydrogenase (G6PD) deficiency may also contribute to anemia. 

PADH has recently been recognized as a clinically and mechanistic-
ally distinct entity that only occurs in patients with severe malaria 
treated with artesunate. PADH occurs well after parasite clearance and 
resolution of clinical symptoms, and is not consistently associated with 
markers of autoimmune hemolysis (eg, positive direct antiglobulin test) 
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or erythrocyte susceptibility to oxidative stress (eg, G6PD deficiency) 
(20,21). Although artesunate may cause reversible bone marrow sup-
pression, this mechanism likely contributes minimally to postartesun-
ate anemia (22). Instead, PADH involves a distinct mechanism of 
hemolytic anemia, discussed below (22). 

Clinically, several patterns of anemia following artesunate treat-
ment of severe malaria are observed, including a ‘rising’ hemoglobin 
profile following early nadir, ‘persistent’ anemia and late-onset extra-
vascular hemolysis beyond day 8 (PADH pattern) (22). To distinguish 
PADH from the myriad causes of anemia in severe malaria, a specific 
case definition of PADH has been proposed, and includes: a nonrecur-
ring hemolytic episode occurring >7 days after initiation of treatment, 
with artesunate associated with a >10% decrease in hemoglobin level; 
haptoglobin <0.1 g/L; and either an increase in lactate dehydrogenase  
to >390 IU/L or a >10% rise (23).

The incidence of PADH is difficult to quantify with currently 
available data because of the variability in case definitions used in the 
literature since its relatively recent description. A systematic review of 
the literature up to 2014, revealed 37 cases of hemolysis and estimated 
an incidence rate of 13% among patients with severe malaria treated 
with artemisinin derivatives. However, this report did not use the 
optimized case definition of PADH; application of the more specific 
case definition would result in a lower incidence rate (22,24). The 
majority of these cases involved nonimmune adult returning travellers 
receiving intravenous artesunate. Reports of PADH from North 
America are surprisingly uncommon relative to Europe (24). The 
incidence among children with severe malaria in an endemic area has 
been estimated to be 7%; however, the reduction in hemoglobin in 
this report was <10 g/L in all but one patient (25). Again, applying the 
more specific definition of PADH would result in a lower incidence 
rate estimate.

The severity of anemia in reports of PADH is variable. In a sys-
tematic review of mostly adult cases, the median reduction in hemo-
globin level was 60 g/L, and 73% of patients required blood 
transfusions (24). One study involving children revealed a median 
reduction in hemoglobin of 8 g/L, although one patient was noted to 
have a decrease of 42 g/L (25). No fatal outcome has been reported 
in the literature to date.

The mechanism of PADH has been elucidated in recent studies. 
Malaria parasites killed by artesunate are removed from erythrocytes 
by the spleen, leaving behind once-infected erythrocytes (o-iE). 
These o-iEs have a ‘pitted’ appearance, remaining in circulation with 
a considerably decreased life span of seven to 21 days (26,27). This 
reduced life span correlates with the timing of the onset of PADH, 
and may account for the higher risk for PADH among patients with 
higher initial parasite densities in whom higher numbers of o-iEs 
were observed. Therefore, PADH is a predictable consequence related 

to the life-saving effect of artemisinins: patients with high parasite 
burden rapidly cleared with artesunate, who may otherwise have suc-
cumbed to the acute infection, are left with high numbers of residual 
short-lived pitted erythrocytes.

Pediatric pharmacokinetics and dosing
Inspection of artesunate-clearance half-life across clinical studies illus-
trated slower parasite clearance in children relative to adults (Table 2). 
Quantitative measures of parasite clearance are affected not only by 
parasite genetics and drug susceptibility (28,29), but also by host deter-
minants including patient age, organ function, drug metabolism and 
immunity. Therefore, lack of acquired partial immunity (premunition) 
in pediatric cohorts and/or age-dependent pharmacokinetic differen-
ces (30) may explain, at least in part, the slower parasite clearance in 
children relative to adults (31,32). Differences in pharmacokinetics, 
leading to lower exposure to the active metabolite dihydroartemisinin, 
has led to revised dosing recommendations in the 2015 WHO 
Guidelines for the Treatment of Malaria (6): children weighing <20 kg 
should receive 3.0 mg/kg/dose of artesunate, rather than the dose for 
larger children or adults of 2.4 mg/kg/dose (30,33).

Emerging artemisinin resistance
Artemisinin-resistant Plasmodium falciparum has recently emerged and 
spread in Southeast Asia, threatening the efficacy of first-line treat-
ment regimens for severe and uncomplicated malaria worldwide (34-
37). Resistance to artemisinins manifests as a slower parasite clearance 
rate in vivo (28,34,38). The parasite-clearance half-life, derived from 
the log-linear decline in parasite density during treatment, is now 
widely accepted as the best pharmacodynamic index of P falciparum 
sensitivity to artemisinins (39-43). Parasite clearance time and clear-
ance half-life are compared across studies in Table 2. Nonsynonymous 
single-nucleotide polymorphisms in the propeller domain of a kelch 
(K13) gene are generally accepted as the major genetic determinant of 
artemisinin resistance in P falciparum (35,40,43,44). The mechanism 
involves increased expression of unfolded protein response pathways 
(eg, chaperone complexes), as well as decreased expression of proteins 
involved in DNA replication among mutant parasites. These K13 
polymorphisms have emerged independently in multiple geographic 
locations in Southeast Asia, suggesting that selection pressure may 
drive the selection of resistant isolates as artemisinin treatment is dis-
tributed worldwide (44). To date, only limited numbers of infections 
with K13 mutants have been detected in Africa (45-47). One report 
has linked K13 mutations to delayed parasite clearance in African 
children treated with artesunate for severe malaria (48).

Artemisinin resistance has alarming implications for malaria con-
trol globally. Artemisisnin combination therapy is the first-line agent 
for uncomplicated falciparum malaria, and parenteral artesunate is the 

Table 1
Guideline confusion: summary of recommendations for treatment of severe malaria from several national guidelines
Country Source Statement
Global World Health Organization (6) Treat adults and children with severe malaria with parenteral artesunate.  

(Strong recommendation, high quality evidence)
Canada Canadian Committee to Advise on Tropical Medicine 

and Tropical Medicine and Travel (CATMAT) (2)
“Parenteral artesunate is recommended as first-line treatment for severe Plasmodium falci-

parum malaria, with parenteral quinine as an alternative.” (Good evidence from at least 
one properly randomized controlled trial)

United States United States Centers for Disease Control and 
Prevention (9)

“Since 1991, quinidine gluconate has been the only parenterally administered antimalarial 
drug available in the United States.”

“Artesunate is recommended by the World Health Organization in preference to  
quinidine for the treatment of severe malaria and has been used worldwide for many years.”

United Kingdom 
(UK)

Public Health England 
British Infection Association (11)

“In the UK, the treatment of choice for severe or complicated malaria is currently an infu-
sion of intravenous quinine.”

“Intravenous artesunate reduces high parasite loads more rapidly than quinine and is more 
effective in treating severe malaria in selected situations. It can also be used in patients 
with contraindications to quinine. Intravenous artesunate is unlicensed in the EU.”

EU European Union
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treatment of choice for severe malaria, highlighting our current reli-
ance on this drug class. Alternative effective and safe agents are lim-
ited, and artemisinins are believed to be have contributed to the 
decline in malaria deaths globally over the past decade. 

Nonetheless, clinicians managing patients with severe malaria 
acquired in Southeast Asia should continue to use artesunate for the 
time being. Safety advantages of artesunate over quinine favour its con-
tinued use in clinical practice. It should be emphasized that the pheno-
type of resistant P falciparum clones described to date is delayed parasite 
clearance, rather than nonresponse or increased mortality. Slow-clearing 
parasites may require longer courses of therapy or alternative antimal-
arial regimens. Serial quantitative determination of parasite density (eg, 
daily peripheral blood smear), which is the standard of care in P falci-
parum infection, will reflect parasite response to treatment. Note that 
the presence of gametocytes (sexual-stage parasites) alone in a periph-
eral smear does not imply treatment failure because this stage is less 
sensitive to artesunate and is not associated with symptoms or disease.

Conclusion
We have summarized three relevant or emerging practice points for 
pediatric infectious diseases clinicians managing children with severe 
malaria using artesunate. First, as an unintended consequence of rapid 
parasite killing, clinicians should monitor for delayed hemolysis, with 
hemoglobin measurement weekly, up to four weeks after treatment. 
Second, pediatricians should be aware of the need for a higher weight-
based dose in young children due to pharmacokinetic differences in 
artesunate metabolism, resulting in slower parasite clearance in young 
children. Third, artemisinin resistance associated with slow parasite 
clearance is emerging in Southeast Asia; nonetheless, clinicians 
should continue to use artesunate while monitoring for parasite clear-
ance with serial blood smears.
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