OPEN access

Crystal structures of N-tert-butyl-3-(4-fluorophenyl)-5-oxo-4-[2-(trifluoromethoxy)phenyl]-2,5dihydrofuran-2-carboxamide and 4-(2H-1,3-benzodioxol-5-vl)-N-cvclohexvl-5-oxo-3-[4-(trifluoromethyl)phenyl]-2,5-dihydrofuran-2-carboxamide

Sue A. Roberts,^a* Guillermo Martinez-Ariza^b and Christopher Hulme^b

^aChemistry and Biochemistry, University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA, and ^bDepartment of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA. *Correspondence e-mail: suer@email.arizona.edu

The title compounds, $C_{22}H_{19}F_4NO_4$, (I), and $C_{25}H_{22}F_3NO_5$, (II), each contain a central nearly planar dihydrofuranone ring. The r.m.s. deviation from planarity of these rings is 0.015 Å in (I) and 0.027 Å in (II). The molecules are T-shaped, with the major conformational difference being the O-C-C-O torsion angle $[-178.9 (1) \text{ in (I) and } 37.7 (2)^{\circ} \text{ in (II)}]$. In the crystal of (I), molecules are linked by N-H···O hydrogen bonds, forming chains along [001] while in (II) molecules are linked by $N-H \cdots O$ hydrogen bonds, forming chains along [010]. In (II), the trifluoromethyl substituent is disordered over two sets of sites, with refined occupancies of 0.751 (3) and 0.249 (3).

1. Chemical context

Butenolides, also known as furan-2(5H)-ones or furanones, are a recurrent moiety in more than 13,000 natural products (De Souza, 2005) and possess different assorted biological applications, exemplified by cytotoxic (Jung et al., 1990) and antibiotic (Sikorska et al., 2012) activities. Likewise, the butenolide derivative Vioxx^(R) is a potent NSAID (non-steroidal anti-inflammatory drug) used for the relief of pain and inflammation (Prasit et al., 1999) before it was withdrawn from the market in 2004. As a part of our scientific endeavors to access and mimic the complexity and diversity present in naturally occurring molecular scaffolds, the title compounds were synthesized using a Passerini/Knoevenagel sequence and the crystal structures are reported herein. Other multicomponent reaction-based approaches towards furanones have been reported, but they use limited starting materials. For example, they use unstable phosphonates (Beck et al., 2001), aliphatic substituents (Bossio et al., 1993, 1994; Marcaccini et al., 2000), or tricarbonyl inputs (Rossbach et al., 2014).

2. Structural commentary

The molecular structures of N-tert-butyl-3-(4-fluorophenyl)-5oxo-4-[2-(trifluoromethoxy)phenyl]-2,5-dihydrofuran-2-carboxamide (I) (Fig. 1) and 4-(2H-1,3-benzodioxol-5-yl)-Ncyclohexyl-5-oxo-3-[4-(trifluoromethyl)phenyl]-2,5-dihydrofuran-2-carboxamide (II) (Fig. 2) are similar. The molecules are T-shaped, with the major conformational difference being the O1-C-C-O2 torsion angle. In (I), this torsion angle is $-178.9 (1)^{\circ}$, whereas in (II), it is 37.7 (2)°.

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; pharmaceuticals;

butenolides; N-H···O hydrogen bonding

CCDC references: 1043839; 1043838

Supporting information: this article has supporting information at journals.iucr.org/e

CRYSTALLOGRAPHIC COMMUNICATIONS ISSN 2056-9890

CrossMark

In (II), the amide oxygen atom, O1, is tucked between O2 and H1A, with contact distances to O2 of 2.738 (1) Å and to H1A of 2.54 Å. The central, dihydrofuranone ring is nearly planar in both compounds. The r.m.s. deviation of these central rings is 0.015 Å in (I), and 0.027 Å in (II). In (I), the dihedral angle between the furan ring and the *p*-fluoro substituted benzene ring is 44.66 (4)° and with the trifluoromethoxy-substituted benzene ring it is 48.71 (3)°. In (II), the dihedral angle between the furan ring and the *p*-trifluoromethyl substituted benzene ring is 40.03 (5)° and the dihedral angle with the benzene ring of the benzo[1,3]dioxol-5-yl ring system is 43.06 (6)°. The cyclohexane ring of (II) is in a chair conformation.

The $-CF_3$ substituent of (II) is disordered over two sets of sites. In the major component [occupancy = 0.751 (3)], F2A has a close contact to atom O1 [2.772 (2) Å] of a neighbouring molecule, which is lengthened to 3.093 (6) Å in the alternate configuration *i.e.* the minor component. Two hydrogen atoms from symmetry-equivalent molecules flank F3B (H2A, 2.72 Å, and H23, 2.57 Å) and prevent rotational disorder from alleviating the close contact. In the minor component, the $-CF_3$ group deviates from the plane of the aromatic ring, with C25B displaced by 0.36 (1) Å from the mean plane of the aromatic ring.

Table 1				
Hydrogen-bond geometry	(Å,	°)	for	(I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O1^{i}$	0.845 (17)	2.209 (17)	3.0098 (14)	158.2 (15)
Symmetry code: (i)	$r - v + \frac{1}{2} - \frac{1}{2}$			

Table 2

Hydrogen-bond	geometry	(Å, ') for	(II)
---------------	----------	-------	-------	------

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O1^i$	0.821 (18)	2.061 (18)	2.8699 (16)	168.4 (16)
Symmetry code: (i)	$-x + \frac{3}{2}, y - \frac{1}{2}, z.$			

Figure 1

The molecular structure of (I). Anisotropically refined atoms are shown as 50% probability displacement ellipsoids.

Figure 2

The molecular structure of (II). The $-CF_3$ substituent is disordered and only the major component is shown. Anisotropically refined atoms are shown as 50% probability displacement ellipsoids.

3. Supramolecular features

In both crystals, $N-H\cdots O$ hydrogen bonds connect the molecules into chains which run, in (I) along the *c*-axis direction (Table 1), and in (II) along the *b*-axis direction (Table 2). The hydrogen-bonding graph set is C(4) in both (I) and (II). The partial packing plots of (I) (Fig. 3) and (II) (Fig. 4) illustrate the hydrogen-bonding motifs.

4. Database survey

The Cambridge Structural Database (CSD) contains few examples of 3,4,5-substituted furan-2(5H)-ones. A search (CSD Version 5.36, November 2014; Groom & Allen, 2014) found only one other structure with an amide attachment at

Figure 3

Part of the crystal structure of (I) viewed along [100]. The hydrogen bonds linking the molecules into chains along [001] are shown as dotted lines.

the position 5 carbon, TIFXIP (Beck *et. al*, 2001). For TIFXIP, the O1-C-C-O2 torsion angles for the two molecules in the asymmetric unit are -40.1 and 40.4° , similar to that found in (II), and the O1...O2 distances are 2.76 and 2.78 Å. When the search is expanded to include molecules with a second organic substituent on the furan 5-carbon, additional structures are found. In six structures, where only one of the substituents is an amide, the O1-C-C-O2 torsion angle is $180^{\circ} \pm 30^{\circ}$ (-150 to 150°); the value of -178.8 (1)° found for (I) falls in this range.

5. Synthesis and crystallization

Compound (I): 4-fluorophenylglyoxal (1 eq., 0.5 mmol), trifluoromethoxyphenylacetic acid (1 eq., 0.5 mmol) and *tert*butyl isocyanide (1eq., 0.5 mmol) were dissolved in DCM (2 mL) and stirred at room temperature for 1 h. After confirming the exclusive formation of the Passerini product (*via* TLC and LC/MS), the solvent was removed and the crude product was dissolved in DMF (2 mL). Diisopropylamine (DIPEA) (2 eq., 1 mmol, 140 μ L) was added and the reaction mixture was heated at 393 K using microwave irradiation for 20 minutes. After cooling and verifying reaction completion (TLC and LC/MS), the crude mixture was directly purified by flash chromatography (EtOAc/hexane 0–100%) using an ISCO TM flash chromatography system to afford *N-tert*-butyl-3-(4-fluorophenyl)-5-oxo-4-[2-(trifluoromethoxy)phenyl]-2,5dihydrofuran-2-carboxamide as a beige solid (67% yield).

Compound (II): 4-trifluoromethylphenylglyoxal (1 eq., 0.5 mmol), 3,4-methylenedioxyphenylacetic acid (1eq., 0.5 mmol) and cyclohexyl isocyanide (1eq., 0.5 mmol) were dissolved in DCM (2 mL) and stirred at room temperature for 1 h. After confirming the exclusive formation of the Passerini product (*via* TLC and LC/MS), the solvent was removed and the crude product was dissolved in DMF (2 mL). Diisopropylamine (DIPEA) (2 eq., 1 mmol, 140 μ L) was added and the reaction mixture was heated at 393 K using microwave irradiation for 20 minutes. After cooling and verifying reaction

completion (TLC and LC/MS), the crude mixture was directly purified by flash chromatography (EtOAc/hexane 0–100%) using an ISCO TM flash chromatography system to afford 4- (2*H*-1,3-benzodioxol-5-yl)-*N*-cyclohexyl-5-oxo-3-[4-(trifluoro-methyl)phenyl]-2,5-dihydrofuran-2-carboxamide as a yellow solid (61% yield).

For both compounds, crystals suitable for X-ray structure elucidation were obtained by slow evaporation of a solution of the compound in a mixture of ethyl acetate/hexanes (1:3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were visible in the difference Fourier maps for both structures. The hydrogen

Figure 4

A hydrogen-bonded chain of molecules of (II) propagating along [010]. The view is along the [100] direction. Hydrogen bonds are shown as dotted lines.

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{22}H_{19}F_4NO_4$	$C_{25}H_{22}F_{3}NO_{5}$
$M_{\rm r}$	437.38	473.43
Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, Pbca
Temperature (K)	100	100
a, b, c (Å)	8.0173 (8), 24.900 (2), 10.2186 (9)	19.2990 (7), 9.5345 (3), 24.2188 (7)
α, β, γ (°)	90, 96.738 (2), 90	90, 90, 90
$V(\dot{A}^3)$	2025.9 (3)	4456.4 (2)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.12	0.12
Crystal size (mm)	$0.3 \times 0.2 \times 0.2$	$0.35 \times 0.25 \times 0.2$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2012)
$T_{\min}, \overline{T}_{\max}$	0.589, 0.746	0.609, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16716, 4139, 3698	36729, 3939, 3383
R _{int}	0.022	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625	0.595
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.084, 1.03	0.035, 0.086, 1.05
No. of reflections	4139	3939
No. of parameters	287	324
No. of restraints	0	30
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.31, -0.32	0.27, -0.36

Computer programs: APEX2 and SAINT (Bruker, 2009, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and OLEX.SOLVE (Bourhis et al., 2015).

atoms bonded to nitrogen atoms which are involved in hydrogen bonding were placed at positions of the electron density peaks and freely refined. All other hydrogen atoms were placed at calculated positions and allowed to ride on their parent atoms: C-H = 0.98 Å for methyl H atoms and 0.95 Å for other H atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other atoms.

In (II), the trifluoromethyl substituent is disordered over two sets of sites with refined occupancies of 0.751 (3) and 0.249 (3). The disorder does not correspond to the expected rotational disorder of the $-CF_3$ group, but rather consists of a deviation, in the minor component, of the central carbon atom out of the plane of the aromatic ring.

Acknowledgements

The authors acknowledge financial support from the National Institute of Health (grant P41GM086190 to CH) and CONACyT/UA (doctoral fellowship 215981/311412 for GMA).

References

Beck, B., Magnin-Lachaux, M., Herdtweck, E. & Dömling, A. (2001). *Org. Lett.* **3**, 2875–2878.

- Bossio, R., Marcaccini, S. & Pepino, R. (1994). *Liebigs Ann. Chem.* **1994**, 527–528.
- Bossio, R., Marcaccini, S., Pepino, R. & Torroba, T. (1993). *Synthesis*, pp. 783–785.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2009). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Souza, M. V. N. (2005). Mini-Rev. Org. Chem. 2, 139-145.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Jung, J. H., Pummangura, S., Chaichantipyuth, C., Patarapanich, C., Fanwick, P. E., Chang, C.-J. & Mclaughlin, J. L. (1990). *Tetrahedron*, 46, 5043–5054.
- Marcaccini, S., Pepino, R., Marcos, C. F., Polo, C. & Torroba, T. (2000). J. Heterocycl. Chem. 37, 1501–1503.
- Prasit, P., et al. (1999). Bioorg. Med. Chem. Lett. 9, 1773-1778.
- Rossbach, J., Harms, K. & Koert, U. (2014). Eur. J. Org. Chem. pp. 993–1006.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sikorska, J., Parker-Nance, S., Davies-Coleman, M., Vining, O. B., Sikora, A. E. & McPhail, K. L. J. (2012). J. Nat. Prod. 75, 1824–1827

supporting information

Acta Cryst. (2015). E71, 199-202 [doi:10.1107/S2056989015000936]

Crystal structures of *N-tert*-butyl-3-(4-fluorophenyl)-5-oxo-4-[2-(trifluoromethoxy)phenyl]-2,5-dihydrofuran-2-carboxamide and 4-(2*H*-1,3-benzodioxol-5-yl)-*N*-cyclohexyl-5-oxo-3-[4-(trifluoromethyl)phenyl]-2,5-dihydrofuran-2carboxamide

Sue A. Roberts, Guillermo Martinez-Ariza and Christopher Hulme

Computing details

Data collection: *APEX2* (Bruker, 2009) for (I); *APEX2* (Bruker, 2012) for (II). Cell refinement: *SAINT* (Bruker, 2009) for (I); *SAINT* (Bruker, 2012) for (II). Data reduction: *SAINT* (Bruker, 2009) for (I); *SAINT* (Bruker, 2012) for (II). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for (I); OLEX.*SOLVE* (Bourhis *et al.*, 2015) for (II). For both compounds, program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

$(I) \ \textit{N-tert-Butyl-3-(4-fluorophenyl)-5-oxo-4-[2-(trifluoromethoxy)phenyl]-2, 5-dihydrofuran-2-carboxamide}$

Crystal data

 $C_{22}H_{19}F_4NO_4$ $M_r = 437.38$ Monoclinic, $P2_1/c$ a = 8.0173 (8) Å b = 24.900 (2) Å c = 10.2186 (9) Å $\beta = 96.738$ (2)° V = 2025.9 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.589, T_{\max} = 0.746$ F(000) = 904 $D_x = 1.434 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9193 reflections $\theta = 2.6-28.2^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 KPrism, clear colourless $0.3 \times 0.2 \times 0.2 \text{ mm}$

16716 measured reflections 4139 independent reflections 3698 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -9 \rightarrow 10$ $k = -31 \rightarrow 31$ $l = -12 \rightarrow 12$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
4139 reflections	and constrained refinement
287 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2 + 1.005P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Absorption correction: SADABS-2008/1 (Bruker, 2009) was used for absorption correction. wR2(int) was 0.0543 before and 0.0350 after correction. The Ratio of minimum to maximum transmission is 0.7899. The $\lambda/2$ correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.41272 (11)	0.45346 (3)	0.87343 (7)	0.0292 (2)
F2	-0.18072 (11)	0.38769 (4)	0.50333 (9)	0.0362 (2)
01	0.49555 (11)	0.26340 (4)	0.55486 (8)	0.01916 (19)
O3	0.17815 (11)	0.32454 (4)	0.06255 (8)	0.0216 (2)
O4	0.01276 (11)	0.43064 (4)	0.41800 (8)	0.0204 (2)
F3	-0.16303 (13)	0.37653 (4)	0.29712 (9)	0.0449 (3)
O2	0.23911 (11)	0.27391 (3)	0.24391 (8)	0.01759 (19)
F4	-0.25704 (12)	0.45026 (4)	0.36505 (14)	0.0611 (4)
N1	0.53587 (13)	0.23207 (4)	0.35123 (10)	0.0163 (2)
C7	0.27384 (14)	0.34306 (5)	0.39881 (12)	0.0153 (2)
C3	0.27935 (16)	0.38083 (5)	0.75683 (12)	0.0198 (3)
Н3	0.2340	0.3693	0.8339	0.024*
C1	0.31213 (15)	0.37069 (5)	0.52612 (11)	0.0153 (2)
C2	0.24707 (15)	0.35278 (5)	0.63949 (12)	0.0175 (3)
H2	0.1803	0.3212	0.6360	0.021*
C5	0.44905 (16)	0.44430 (5)	0.65007 (12)	0.0190 (3)
Н5	0.5197	0.4750	0.6555	0.023*
C18	0.45164 (15)	0.25822 (5)	0.43641 (12)	0.0151 (2)
C6	0.41299 (15)	0.41644 (5)	0.53279 (12)	0.0167 (2)
H6	0.4576	0.4287	0.4560	0.020*
C9	0.21170 (15)	0.32210 (5)	0.18045 (12)	0.0166 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.25614 (16)	0.44545 (5)	0.13706 (12)	0.0195 (3)
H12	0.3302	0.4254	0.0898	0.023*
C11	0.18971 (15)	0.42177 (5)	0.24354 (12)	0.0163 (2)
C8	0.28161 (15)	0.28284 (5)	0.38281 (11)	0.0156 (2)
H8	0.1925	0.2662	0.4304	0.019*
C10	0.22884 (15)	0.36535 (5)	0.28033 (12)	0.0159 (2)
C4	0.37925 (16)	0.42599 (5)	0.75857 (12)	0.0196 (3)
C13	0.21580 (17)	0.49790 (5)	0.09903 (13)	0.0221 (3)
H13	0.2616	0.5132	0.0260	0.027*
C16	0.08092 (15)	0.45302 (5)	0.30855 (12)	0.0171 (2)
C19	0.70069 (15)	0.20563 (5)	0.38884 (12)	0.0178 (3)
C21	0.68968 (18)	0.16575 (6)	0.50104 (13)	0.0257 (3)
H21A	0.6657	0.1851	0.5802	0.038*
H21B	0.7967	0.1466	0.5194	0.038*
H21C	0.5996	0.1399	0.4755	0.038*
C15	0.04164 (16)	0.50550 (5)	0.27394 (13)	0.0210 (3)
H15	-0.0303	0.5260	0.3222	0.025*
C20	0.83339 (17)	0.24854 (6)	0.42715 (15)	0.0275 (3)
H20A	0.8465	0.2711	0.3505	0.041*
H20B	0.9407	0.2312	0.4576	0.041*
H20C	0.7981	0.2708	0.4980	0.041*
C14	0.10909 (17)	0.52781 (5)	0.16737 (13)	0.0231 (3)
H14	0.0820	0.5637	0.1413	0.028*
C17	-0.14429 (17)	0.41192 (6)	0.39516 (14)	0.0269 (3)
C22	0.74529 (18)	0.17542 (6)	0.26798 (13)	0.0257 (3)
H22A	0.6615	0.1474	0.2442	0.039*
H22B	0.8564	0.1590	0.2878	0.039*
H22C	0.7467	0.2005	0.1942	0.039*
H1	0.496 (2)	0.2324 (6)	0.2709 (17)	0.025 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0373 (5)	0.0339 (5)	0.0166 (4)	-0.0029 (4)	0.0044 (3)	-0.0100 (3)
F2	0.0381 (5)	0.0359 (5)	0.0385 (5)	-0.0004 (4)	0.0206 (4)	0.0091 (4)
01	0.0201 (4)	0.0233 (5)	0.0138 (4)	0.0021 (4)	0.0008 (3)	-0.0012 (3)
O3	0.0243 (5)	0.0250 (5)	0.0144 (4)	0.0033 (4)	-0.0023 (4)	-0.0031 (4)
O4	0.0208 (5)	0.0241 (5)	0.0172 (4)	0.0033 (4)	0.0067 (3)	0.0007 (4)
F3	0.0480 (6)	0.0522 (6)	0.0339 (5)	-0.0246 (5)	0.0014 (4)	-0.0021 (4)
O2	0.0184 (4)	0.0176 (4)	0.0157 (4)	0.0014 (3)	-0.0022 (3)	-0.0030 (3)
F4	0.0230 (5)	0.0470 (6)	0.1169 (10)	0.0145 (4)	0.0228 (6)	0.0425 (6)
N1	0.0167 (5)	0.0192 (5)	0.0124 (5)	0.0032 (4)	-0.0008(4)	-0.0003 (4)
C7	0.0115 (5)	0.0179 (6)	0.0169 (6)	0.0009 (4)	0.0043 (4)	0.0000 (5)
C3	0.0215 (6)	0.0243 (6)	0.0143 (6)	0.0048 (5)	0.0055 (5)	0.0030 (5)
C1	0.0147 (6)	0.0173 (6)	0.0140 (6)	0.0045 (5)	0.0019 (4)	-0.0002 (4)
C2	0.0175 (6)	0.0174 (6)	0.0179 (6)	0.0019 (5)	0.0029 (5)	0.0025 (5)
C5	0.0187 (6)	0.0182 (6)	0.0198 (6)	0.0005 (5)	0.0009 (5)	-0.0015 (5)
C18	0.0151 (6)	0.0137 (5)	0.0162 (6)	-0.0018 (4)	0.0012 (4)	0.0007 (4)

C6	0.0167 (6)	0.0195 (6)	0.0142 (6)	0.0026 (5)	0.0028 (5)	0.0023 (5)	
C9	0.0117 (6)	0.0195 (6)	0.0183 (6)	0.0026 (4)	0.0004 (4)	-0.0014 (5)	
C12	0.0199 (6)	0.0233 (6)	0.0152 (6)	0.0002 (5)	0.0014 (5)	-0.0013 (5)	
C11	0.0161 (6)	0.0189 (6)	0.0131 (6)	0.0001 (5)	-0.0017 (4)	-0.0017 (4)	
C8	0.0145 (6)	0.0186 (6)	0.0135 (6)	-0.0008 (5)	0.0010 (4)	-0.0018 (5)	
C10	0.0128 (6)	0.0202 (6)	0.0150 (6)	0.0009 (5)	0.0030 (4)	-0.0023 (5)	
C4	0.0223 (6)	0.0233 (6)	0.0130 (6)	0.0051 (5)	0.0001 (5)	-0.0047 (5)	
C13	0.0252 (7)	0.0234 (7)	0.0174 (6)	-0.0043 (5)	0.0007 (5)	0.0023 (5)	
C16	0.0166 (6)	0.0211 (6)	0.0133 (6)	-0.0012 (5)	0.0002 (5)	-0.0009 (5)	
C19	0.0155 (6)	0.0203 (6)	0.0172 (6)	0.0040 (5)	0.0009 (5)	0.0008 (5)	
C21	0.0267 (7)	0.0273 (7)	0.0231 (7)	0.0074 (6)	0.0034 (5)	0.0070 (6)	
C15	0.0207 (6)	0.0199 (6)	0.0217 (6)	0.0027 (5)	0.0002 (5)	-0.0040 (5)	
C20	0.0171 (6)	0.0282 (7)	0.0370 (8)	0.0009 (5)	0.0020 (6)	-0.0023 (6)	
C14	0.0270 (7)	0.0169 (6)	0.0241 (7)	-0.0008(5)	-0.0025 (5)	0.0009 (5)	
C17	0.0234 (7)	0.0245 (7)	0.0338 (8)	0.0037 (5)	0.0074 (6)	0.0079 (6)	
C22	0.0255 (7)	0.0302 (7)	0.0214 (7)	0.0117 (6)	0.0030 (5)	-0.0008 (5)	

Geometric parameters (Å, °)

F1—C4	1.3578 (14)	С6—Н6	0.9500
F2—C17	1.3217 (16)	C9—C10	1.4791 (17)
O1—C18	1.2271 (15)	C12—H12	0.9500
О3—С9	1.2047 (15)	C12—C11	1.3968 (17)
O4—C16	1.4154 (14)	C12—C13	1.3900 (18)
O4—C17	1.3373 (17)	C11—C10	1.4784 (17)
F3—C17	1.3294 (18)	C11—C16	1.3942 (17)
О2—С9	1.3694 (15)	C8—H8	1.0000
O2—C8	1.4376 (14)	C13—H13	0.9500
F4—C17	1.3257 (17)	C13—C14	1.3836 (19)
N1-C18	1.3326 (15)	C16—C15	1.3804 (18)
N1-C19	1.4860 (16)	C19—C21	1.5272 (17)
N1—H1	0.845 (17)	C19—C20	1.5262 (19)
C7—C1	1.4720 (16)	C19—C22	1.5240 (17)
С7—С8	1.5104 (16)	C21—H21A	0.9800
C7—C10	1.3423 (17)	C21—H21B	0.9800
С3—Н3	0.9500	C21—H21C	0.9800
С3—С2	1.3855 (18)	C15—H15	0.9500
C3—C4	1.3795 (19)	C15—C14	1.3875 (19)
C1—C2	1.3982 (17)	C20—H20A	0.9800
C1—C6	1.3940 (17)	C20—H20B	0.9800
С2—Н2	0.9500	C20—H20C	0.9800
С5—Н5	0.9500	C14—H14	0.9500
C5—C6	1.3856 (17)	C22—H22A	0.9800
C5—C4	1.3768 (18)	C22—H22B	0.9800
C18—C8	1.5358 (17)	C22—H22C	0.9800
C17—O4—C16	116.25 (10)	F1—C4—C5	118.14 (12)
С9—О2—С8	109.78 (9)	C5—C4—C3	123.35 (12)

C18—N1—C19	123.44 (10)	C12—C13—H13	119.9
C18—N1—H1	118.0 (11)	C14—C13—C12	120.14 (12)
C19—N1—H1	118.4 (11)	C14—C13—H13	119.9
C1—C7—C8	123.57 (10)	C11—C16—O4	118.55 (11)
C10—C7—C1	127.58 (11)	C15—C16—O4	118.52 (11)
C10—C7—C8	108.85 (10)	C15—C16—C11	122.89 (11)
С2—С3—Н3	120.9	N1-C19-C21	110.75 (10)
С4—С3—Н3	120.9	N1-C19-C20	109.16 (10)
C4—C3—C2	118.12 (11)	N1—C19—C22	107.17 (10)
C2—C1—C7	121.58 (11)	C20—C19—C21	111.26 (11)
C6—C1—C7	119.01 (10)	C22—C19—C21	109.10 (11)
C6—C1—C2	119.40 (11)	C22—C19—C20	109.31 (11)
C3—C2—C1	120.41 (12)	C19—C21—H21A	109.5
С3—С2—Н2	119.8	C19—C21—H21B	109.5
С1—С2—Н2	119.8	C19—C21—H21C	109.5
С6—С5—Н5	121.1	H21A—C21—H21B	109.5
С4—С5—Н5	121.1	H21A—C21—H21C	109.5
C4—C5—C6	117.87 (12)	H21B—C21—H21C	109.5
O1-C18-N1	125.94 (11)	C16—C15—H15	120.6
O1—C18—C8	116.73 (10)	C16—C15—C14	118.81 (12)
N1-C18-C8	117.31 (10)	C14—C15—H15	120.6
С1—С6—Н6	119.6	C19—C20—H20A	109.5
C5—C6—C1	120.82 (11)	C19—C20—H20B	109.5
С5—С6—Н6	119.6	C19—C20—H20C	109.5
O3—C9—O2	121.49 (11)	H20A—C20—H20B	109.5
O3—C9—C10	130.18 (12)	H20A—C20—H20C	109.5
O2—C9—C10	108.33 (10)	H20B-C20-H20C	109.5
C11—C12—H12	119.4	C13—C14—C15	120.10 (12)
C13—C12—H12	119.4	C13—C14—H14	119.9
C13—C12—C11	121.13 (12)	C15—C14—H14	119.9
C12—C11—C10	120.68 (11)	F2—C17—O4	108.01 (12)
C16—C11—C12	116.91 (11)	F2—C17—F3	108.13 (12)
C16—C11—C10	122.36 (11)	F2—C17—F4	108.14 (12)
O2—C8—C7	104.62 (9)	F3—C17—O4	112.54 (11)
O2—C8—C18	112.83 (9)	F4—C17—O4	113.07 (12)
O2—C8—H8	108.5	F4—C17—F3	106.78 (13)
C7—C8—C18	113.81 (10)	C19—C22—H22A	109.5
С7—С8—Н8	108.5	C19—C22—H22B	109.5
C18—C8—H8	108.5	C19—C22—H22C	109.5
C7—C10—C9	108.34 (11)	H22A—C22—H22B	109.5
C7—C10—C11	130.46 (11)	H22A—C22—H22C	109.5
C11—C10—C9	121.11 (11)	H22B—C22—H22C	109.5
F1—C4—C3	118.51 (11)		
O1-C18-C8-O2	-178.85 (10)	C12—C13—C14—C15	-0.2 (2)
O1-C18-C8-C7	62.13 (14)	C11—C12—C13—C14	0.44 (19)
O3—C9—C10—C7	-177.73 (13)	C11-C16-C15-C14	1.98 (19)
O3—C9—C10—C11	5.3 (2)	C8—O2—C9—O3	178.20 (11)

O4—C16—C15—C14	179.50 (11)	C8—O2—C9—C10	-2.52 (12)
O2—C9—C10—C7	3.08 (13)	C8—C7—C1—C2	-46.08 (17)
O2—C9—C10—C11	-173.85 (10)	C8—C7—C1—C6	135.23 (12)
N1-C18-C8-O2	-0.55 (15)	C8—C7—C10—C9	-2.32 (13)
N1-C18-C8-C7	-119.57 (11)	C8—C7—C10—C11	174.22 (12)
C7—C1—C2—C3	-177.29 (11)	C10-C7-C1-C2	134.48 (13)
C7—C1—C6—C5	178.60 (11)	C10-C7-C1-C6	-44.22 (18)
C1—C7—C8—O2	-178.70 (10)	C10—C7—C8—O2	0.83 (12)
C1—C7—C8—C18	-55.10 (15)	C10-C7-C8-C18	124.44 (11)
C1—C7—C10—C9	177.19 (11)	C10-C11-C16-O4	3.38 (17)
C1—C7—C10—C11	-6.3 (2)	C10-C11-C16-C15	-179.09 (12)
C2-C3-C4-F1	-179.44 (11)	C4—C3—C2—C1	-1.13 (18)
C2—C3—C4—C5	-0.42 (19)	C4—C5—C6—C1	-1.35 (18)
C2-C1-C6-C5	-0.12 (18)	C13—C12—C11—C10	177.90 (11)
C18—N1—C19—C21	55.13 (15)	C13—C12—C11—C16	0.44 (18)
C18—N1—C19—C20	-67.70 (15)	C16—O4—C17—F2	173.52 (10)
C18—N1—C19—C22	174.03 (11)	C16—O4—C17—F3	54.24 (15)
C6—C1—C2—C3	1.39 (18)	C16—O4—C17—F4	-66.86 (15)
C6-C5-C4-F1	-179.33 (11)	C16—C11—C10—C7	-48.09 (19)
C6—C5—C4—C3	1.65 (19)	C16—C11—C10—C9	128.08 (13)
C9—O2—C8—C7	1.13 (12)	C16—C15—C14—C13	-1.01 (19)
C9—O2—C8—C18	-123.11 (10)	C19—N1—C18—O1	-1.11 (19)
C12-C11-C10-C7	134.59 (14)	C19—N1—C18—C8	-179.23 (10)
C12—C11—C10—C9	-49.24 (16)	C17—O4—C16—C11	-100.23 (13)
C12—C11—C16—O4	-179.20 (11)	C17—O4—C16—C15	82.14 (14)
C12-C11-C16-C15	-1.67 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.845 (17)	2.209 (17)	3.0098 (14)	158.2 (15)

Symmetry code: (i) x, -y+1/2, z-1/2.

(II) 4-(2*H*-1,3-Benzodioxol-5-yl)-*N*-cyclohexyl-5-oxo-3-[4-(trifluoromethyl)phenyl]-2,5-dihydrofuran-2-carboxamide

Crystal data

C₂₅H₂₂F₃NO₅ $M_r = 473.43$ Orthorhombic, *Pbca* a = 19.2990 (7) Å b = 9.5345 (3) Å c = 24.2188 (7) Å V = 4456.4 (2) Å³ Z = 8F(000) = 1968 $D_x = 1.411 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9996 reflections $\theta = 2.5-25.6^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 KPrism, clear colourless $0.35 \times 0.25 \times 0.2 \text{ mm}$ Data collection

Bruker APEXII CCD	36729 measured reflections
diffractometer	3939 independent reflections
Radiation source: sealed tube	3383 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
Detector resolution: 8 pixels mm ⁻¹	$\theta_{\max} = 25.0^{\circ}, \ \theta_{\min} = 1.7^{\circ}$
φ and ω scans	$h = -18 \rightarrow 22$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Bruker, 2012)	$l = -28 \rightarrow 28$
$T_{\min} = 0.609, \ T_{\max} = 0.745$	
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.035$	and constrained refinement
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 2.7716P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3939 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
324 parameters	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
30 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
Primary atom site location: iterative	

Special details

Experimental. SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0555 before and 0.0466 after correction. The Ratio of minimum to maximum transmission is 0.8167. The $\lambda/2$ correction factor is 0.0015. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.75295 (5)	0.55806 (10)	0.49296 (4)	0.0185 (2)	
O2	0.80402 (5)	0.43446 (10)	0.39940 (4)	0.0172 (2)	
03	0.81211 (6)	0.58478 (12)	0.32882 (4)	0.0255 (3)	
O4	0.51011 (6)	0.45837 (13)	0.21882 (5)	0.0367 (3)	
F3B	0.4051 (13)	0.082 (2)	0.4558 (11)	0.0458 (10)	0.249 (3)
05	0.52165 (7)	0.69044 (14)	0.19298 (5)	0.0384 (3)	
N1	0.72446 (7)	0.34318 (13)	0.52641 (5)	0.0165 (3)	
F1B	0.4084 (4)	0.2249 (7)	0.5233 (3)	0.0499 (6)	0.249 (3)
C7	0.74426 (7)	0.43101 (14)	0.48714 (6)	0.0140 (3)	
C19	0.61606 (7)	0.35359 (15)	0.41728 (5)	0.0144 (3)	
C8	0.74979 (7)	0.36625 (15)	0.42917 (5)	0.0145 (3)	
H8	0.7576	0.2627	0.4312	0.017*	
C9	0.68437 (7)	0.40034 (14)	0.39745 (6)	0.0144 (3)	
C24	0.60782 (8)	0.21905 (15)	0.43879 (6)	0.0173 (3)	
H24	0.6460	0.1561	0.4393	0.021*	
C11	0.77610 (8)	0.51128 (15)	0.35706 (6)	0.0175 (3)	
C20	0.55997 (8)	0.44519 (15)	0.41735 (6)	0.0199 (3)	
H20	0.5651	0.5371	0.4027	0.024*	
C12	0.65547 (8)	0.54436 (15)	0.31161 (6)	0.0173 (3)	

C10	0.70054 (7)	0.48558 (15)	0.35506 (6)	0.0156 (3)	
C17	0.56398 (8)	0.51889 (17)	0.24760 (6)	0.0244 (4)	
C15	0.57085 (9)	0.65775 (18)	0.23231 (6)	0.0268 (4)	
C23	0.54458 (8)	0.17701 (16)	0.45938 (6)	0.0217 (3)	
H23	0.5390	0.0847	0.4734	0.026*	
C14	0.61954 (9)	0.74357 (18)	0.25555 (7)	0.0295 (4)	
H14	0.6239	0.8392	0.2451	0.035*	
C22	0.48935 (8)	0.26896 (17)	0.45959 (7)	0.0261 (4)	
C13	0.66266 (8)	0.68364 (16)	0.29549 (6)	0.0230 (3)	
H13	0.6978	0.7394	0.3120	0.028*	
C1	0.69989 (8)	0.38852 (15)	0.58066 (6)	0.0198 (3)	
H1A	0.6828	0.4871	0.5770	0.024*	
C2	0.75650 (10)	0.38768 (19)	0.62406 (6)	0.0313 (4)	
H2A	0.7944	0.4515	0.6127	0.038*	
H2B	0.7759	0.2920	0.6276	0.038*	
C21	0.49677 (8)	0.40313 (17)	0.43866 (7)	0.0273 (4)	
H21	0.4586	0.4661	0.4389	0.033*	
C18	0.60503 (8)	0.45830 (16)	0.28706 (6)	0.0209 (3)	
H18	0.5997	0.3627	0.2973	0.025*	
C6	0.63867 (9)	0.29746 (18)	0.59757 (6)	0.0304 (4)	
H6A	0.6535	0.1981	0.5992	0.036*	
H6B	0.6016	0.3053	0.5695	0.036*	
C5	0.61007 (11)	0.3418 (2)	0.65399 (7)	0.0414 (5)	
H5A	0.5894	0.4366	0.6511	0.050*	
H5B	0.5731	0.2759	0.6654	0.050*	
C25B	0.4193 (8)	0.2164 (15)	0.4674 (5)	0.0359 (9)	0.249 (3)
C3	0.72705 (11)	0.4350 (2)	0.67971 (7)	0.0413 (5)	
H3A	0.7639	0.4307	0.7081	0.050*	
H3B	0.7113	0.5336	0.6768	0.050*	
C4	0.66675 (12)	0.3431 (2)	0.69726 (7)	0.0461 (5)	
H4A	0.6835	0.2462	0.7034	0.055*	
H4B	0.6476	0.3784	0.7326	0.055*	
C16	0.49374 (10)	0.5578 (2)	0.17675 (7)	0.0384 (5)	
H16A	0.4429	0.5649	0.1722	0.046*	
H16B	0.5141	0.5281	0.1411	0.046*	
F2B	0.3664 (3)	0.2895 (6)	0.4465 (4)	0.0671 (8)	0.249 (3)
C25A	0.4240 (2)	0.2222 (4)	0.48835 (13)	0.0359 (9)	0.751 (3)
F1A	0.43368 (11)	0.1921 (2)	0.54261 (8)	0.0499 (6)	0.751 (3)
F2A	0.37403 (9)	0.31660 (19)	0.48644 (14)	0.0671 (8)	0.751 (3)
F3A	0.4005 (4)	0.1032 (6)	0.4662 (3)	0.0458 (10)	0.751 (3)
H1	0.7263 (8)	0.2588 (19)	0.5199 (6)	0.016 (4)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0213 (6)	0.0130 (5)	0.0212 (5)	-0.0007 (4)	0.0009 (4)	-0.0008 (4)
O2	0.0135 (5)	0.0206 (5)	0.0175 (5)	-0.0016 (4)	0.0016 (4)	0.0006 (4)
03	0.0224 (6)	0.0336 (6)	0.0206 (6)	-0.0079 (5)	0.0041 (5)	0.0053 (5)

supporting information

04	0.0344(7)	0.0465 (8)	0 0202 (6)	-0.0087(6)	-0.0167(5)	0.0072 (6)
E3B	0.0344(7)	0.0403(0)	0.0292(0)	-0.0087(0)	0.0107(3)	0.0072(0)
05	0.0203(12) 0.0378(7)	0.034(2)	0.033(3)	0.0092(14)	-0.0141(6)	0.0100(14)
N1	0.0378(7)	0.0447(6)	0.0327(7)	0.0009(0)	-0.0005(5)	-0.0006(5)
	0.0240(7)	0.0100(0)	0.0149(0)	0.0013(3)	0.0003(3)	0.0000(3)
	0.0493(13)	0.0433(11)	0.0330(13)	0.0014(9)	0.0319(10)	0.0147(6)
C10	0.0101(7)	0.0137(7)	0.0102(7)	-0.0018(0)	-0.0030(0)	-0.0003(0) -0.0013(5)
C19 C8	0.0149(7)	0.0173(7)	0.0108(0)	-0.0009(0)	-0.0018(0)	-0.0013(3)
	0.0152(7)	0.0139(7)	0.0104(7)	-0.0011(6)	0.0023(0)	0.0003(0)
C9	0.0105(7)	0.0127(7)	0.0140(7)	0.0001 (6)	-0.0005(6)	-0.0041(6)
C24	0.0149(7)	0.01/8(7)	0.0191(7)	0.0017(6)	0.0001 (6)	0.0002 (6)
	0.0205 (8)	0.0181 (7)	0.0137(7)	-0.0008(6)	0.0021 (6)	-0.0024 (6)
C20	0.0198 (8)	0.01/2 (/)	0.0226 (8)	0.0012 (6)	0.0005 (6)	0.0042 (6)
CI2	0.0185 (8)	0.0209 (8)	0.0126 (7)	0.0003 (6)	0.0023 (6)	-0.0001 (6)
C10	0.0185 (8)	0.0151 (7)	0.0133 (7)	-0.0013(6)	0.0011 (6)	-0.0028 (6)
CI7	0.0214 (8)	0.0334 (9)	0.0185 (7)	-0.0024 (7)	-0.0018 (6)	-0.0002 (7)
C15	0.0261 (9)	0.0344 (9)	0.0201 (8)	0.0080 (7)	-0.0027 (7)	0.0059 (7)
C23	0.0209 (8)	0.0170 (8)	0.0273 (8)	-0.0013 (6)	0.0031 (7)	0.0030 (6)
C14	0.0353 (10)	0.0230 (8)	0.0303 (9)	0.0041 (7)	-0.0007 (8)	0.0073 (7)
C22	0.0163 (8)	0.0231 (8)	0.0388 (9)	-0.0007 (7)	0.0068 (7)	0.0018 (7)
C13	0.0271 (9)	0.0214 (8)	0.0204 (8)	-0.0020 (7)	-0.0011 (7)	-0.0003 (6)
C1	0.0297 (9)	0.0151 (7)	0.0144 (7)	0.0025 (6)	0.0009 (6)	0.0002 (6)
C2	0.0414 (11)	0.0311 (9)	0.0215 (8)	0.0004 (8)	-0.0080 (8)	0.0002 (7)
C21	0.0175 (8)	0.0232 (8)	0.0412 (10)	0.0052 (7)	0.0038 (7)	0.0036 (7)
C18	0.0241 (9)	0.0228 (8)	0.0157 (7)	-0.0019 (7)	-0.0003 (6)	0.0022 (6)
C6	0.0400 (10)	0.0301 (9)	0.0211 (8)	-0.0063 (8)	0.0055 (7)	-0.0023 (7)
C5	0.0561 (13)	0.0432 (11)	0.0248 (9)	-0.0085 (10)	0.0160 (9)	-0.0013 (8)
C25B	0.0282 (13)	0.0283 (11)	0.051 (3)	0.0034 (9)	0.023 (2)	0.008 (2)
C3	0.0624 (14)	0.0431 (11)	0.0183 (8)	0.0009 (10)	-0.0093 (8)	-0.0028 (8)
C4	0.0841 (16)	0.0385 (11)	0.0156 (8)	0.0002 (11)	0.0074 (9)	0.0039 (8)
C16	0.0328 (10)	0.0533 (12)	0.0290 (9)	0.0027 (9)	-0.0123 (8)	0.0072 (9)
F2B	0.0218 (7)	0.0383 (9)	0.141 (2)	0.0111 (7)	0.0384 (13)	0.0238 (13)
C25A	0.0282 (13)	0.0283 (11)	0.051 (3)	0.0034 (9)	0.023 (2)	0.008 (2)
F1A	0.0493 (13)	0.0453 (11)	0.0550 (13)	0.0014 (9)	0.0319 (10)	0.0147 (8)
F2A	0.0218 (7)	0.0383 (9)	0.141 (2)	0.0111 (7)	0.0384 (13)	0.0238 (13)
F3A	0.0203 (12)	0.034 (2)	0.083 (3)	-0.0092 (14)	0.0007 (16)	0.0106 (14)

Geometric parameters (Å, °)

01	1.2310 (16)	C23—C22	1.380 (2)
O2—C8	1.4276 (17)	C14—H14	0.9500
O2—C11	1.3704 (17)	C14—C13	1.398 (2)
O3—C11	1.2008 (18)	C22—C21	1.383 (2)
O4—C17	1.3784 (19)	C22—C25B	1.455 (16)
O4—C16	1.427 (2)	C22—C25A	1.507 (4)
F3B—C25B	1.342 (17)	C13—H13	0.9500
O5—C15	1.3807 (19)	C1—H1A	1.0000
O5—C16	1.429 (2)	C1—C2	1.516 (2)
N1—C7	1.3234 (18)	C1—C6	1.522 (2)

N1—C1	1.4624 (18)	C2—H2A	0.9900
N1—H1	0.821 (18)	C2—H2B	0.9900
F1B—C25B	1.371 (11)	C2—C3	1.531 (2)
C7—C8	1.5375 (19)	C21—H21	0.9500
С19—С9	1.472 (2)	C18—H18	0.9500
C19—C24	1.394 (2)	С6—Н6А	0.9900
C19—C20	1.391 (2)	С6—Н6В	0.9900
C8—H8	1.0000	C6—C5	1.533 (2)
C8—C9	1.5131 (19)	C5—H5A	0.9900
C9—C10	1.346 (2)	С5—Н5В	0.9900
C24—H24	0.9500	C5—C4	1.515 (3)
C24—C23	1.378 (2)	C25B—F2B	1.336 (14)
C11—C10	1.480 (2)	С3—НЗА	0.9900
C20—H20	0.9500	C3—H3B	0.9900
C20—C21	1.384 (2)	C3—C4	1.518 (3)
C12—C10	1.476 (2)	C4—H4A	0.9900
C12—C13	1.391 (2)	C4—H4B	0.9900
C12—C18	1.405 (2)	C16—H16A	0.9900
C17—C15	1 381 (2)	C16—H16B	0.9900
C17—C18	1 369 (2)	C^{25A} FIA	1 358 (4)
C15-C14	1 367 (2)	C25A = F2A	1.321 (4)
C23—H23	0.9500	C_{25A} F3A	1 335 (6)
023 1125	0.7200		1.555 (0)
C11—O2—C8	109.46 (11)	N1—C1—C6	108.95 (12)
C17—O4—C16	104.46 (13)	C2—C1—H1A	107.7
C15—O5—C16	104.43 (13)	C2—C1—C6	111.71 (13)
C7—N1—C1	123.52 (12)	C6—C1—H1A	107.7
C7—N1—H1	118.0 (11)	C1—C2—H2A	109.7
C1—N1—H1	118.5 (11)	C1—C2—H2B	109.7
O1—C7—N1	125.44 (13)	C1—C2—C3	109.95 (15)
O1—C7—C8	119.35 (12)	H2A—C2—H2B	108.2
N1—C7—C8	114.96 (12)	C3—C2—H2A	109.7
C24—C19—C9	120.19 (13)	С3—С2—Н2В	109.7
C20—C19—C9	120.48 (13)	C20—C21—H21	120.1
C20—C19—C24	119.25 (13)	C22—C21—C20	119.73 (14)
O2—C8—C7	109.22 (11)	C22—C21—H21	120.1
O2—C8—H8	111.3	C12—C18—H18	121.6
O2—C8—C9	104.91 (10)	C17—C18—C12	116.73 (14)
С7—С8—Н8	111.3	C17—C18—H18	121.6
C9—C8—C7	108.63 (11)	С1—С6—Н6А	109.4
С9—С8—Н8	111.3	C1—C6—H6B	109.4
С19—С9—С8	121.10 (12)	C1—C6—C5	111.21 (14)
C10—C9—C19	129.72 (13)	H6A—C6—H6B	108.0
C10—C9—C8	108.88 (12)	С5—С6—Н6А	109.4
C19—C24—H24	119.9	С5—С6—Н6В	109.4
C23—C24—C19	120.27 (14)	С6—С5—Н5А	109.4
C23—C24—H24	119.9	C6—C5—H5B	109.4
O2—C11—C10	108.87 (12)	H5A—C5—H5B	108.0

O3—C11—O2	120.71 (13)	C4—C5—C6	111.02 (17)
O3—C11—C10	130.42 (14)	C4—C5—H5A	109.4
C19—C20—H20	119.9	C4—C5—H5B	109.4
C21—C20—C19	120.30 (14)	F3B—C25B—F1B	103.5 (14)
C21—C20—H20	119.9	F3B—C25B—C22	119.5 (14)
C13—C12—C10	120.26 (13)	F1B-C25B-C22	104.5 (9)
C13—C12—C18	120.51 (14)	F2B—C25B—F3B	105.2 (16)
C18—C12—C10	119.23 (13)	F2B—C25B—F1B	103.1 (10)
C9—C10—C11	107.66 (13)	F2B-C25B-C22	118.8 (11)
C9—C10—C12	129.54 (14)	С2—С3—НЗА	109.4
C12—C10—C11	122.78 (13)	С2—С3—Н3В	109.4
O4—C17—C15	109.76 (14)	НЗА—СЗ—НЗВ	108.0
C18—C17—O4	127.80 (15)	C4—C3—C2	111.16 (15)
C18—C17—C15	122.41 (15)	С4—С3—Н3А	109.4
O5—C15—C17	109.59 (15)	C4—C3—H3B	109.4
C14—C15—O5	128.44 (15)	C5—C4—C3	111.39 (15)
C14—C15—C17	121.96 (15)	C5—C4—H4A	109.4
C24—C23—H23	120.0	C5—C4—H4B	109.4
C_{24} C_{23} C_{22}	120.04 (14)	C3—C4—H4A	109.4
C22—C23—H23	120.0	C3—C4—H4B	109.4
C15—C14—H14	121.6	H4A - C4 - H4B	108.0
C_{15} C_{14} C_{13}	116.70 (15)	04	107.95 (13)
C13—C14—H14	121.6	04—C16—H16A	110.1
C_{23} C_{22} C_{21}	120.41 (15)	04—C16—H16B	110.1
C_{23} C_{22} C_{25} C	120.0 (6)	05-C16-H16A	110.1
C_{23} C_{22} C_{25A}	117 36 (19)	05-C16-H16B	110.1
C_{21} C_{22} C_{25B}	117.6 (5)	H16A—C16—H16B	108.4
$C_{21} - C_{22} - C_{25A}$	121.96 (19)	F1A-C25A-C22	113.3 (3)
C12-C13-C14	121.67 (15)	F_2A — C_25A — C_22	113.2 (3)
C12—C13—H13	119.2	F2A— $C25A$ — $F1A$	106.1(3)
C14—C13—H13	119.2	F2A - C25A - F3A	108.4(5)
N1—C1—H1A	107.7	F_{3A} C_{25A} C_{22}	100.1(3) 110.5(4)
N1-C1-C2	112 81 (13)	F_{3A} C_{25A} F_{1A}	104.8(4)
	112.01 (15)		101.0(1)
01	37 65 (17)	C10-C12-C18-C17	179 02 (13)
01 - C7 - C8 - C9	-76.25(16)	C17 - 04 - C16 - 05	-19.09(18)
02-C8-C9-C19	-176.88(12)	C17 - C15 - C14 - C13	0.5 (2)
02 - C8 - C9 - C10	-2.55(15)	$C_{15} - C_{16} - C_{16} - C_{16}$	18.95(18)
02 - C11 - C10 - C9	2.98 (15)	C_{15} C_{17} C_{18} C_{12}	-0.3(2)
02 - C11 - C10 - C12	-17542(12)	C_{15} C_{14} C_{13} C_{12}	-1.3(2)
03-C11-C10-C9	-17673(15)	C_{23} C_{22} C_{21} C_{20}	0.0(3)
03-C11-C10-C12	49(2)	C_{23} C_{22} C_{21} C_{20}	-22.7(17)
04-C17-C15-05	-0.23(19)	C_{23} C_{22} C_{23} C_{25} C	92 3 (9)
04-C17-C15-C14	178 50 (15)	C_{23} C_{22} C_{23} C_{25} C	-1535(8)
04-C17-C18-C12	-178 10 (15)	$C_{23} = C_{22} = C_{23} = C$	59.2 (3)
05 C15 C14 C12	178.03 (16)	$C_{23} = C_{22} = C_{23} = C$	-1700(2)
$V_{1} = C_{1} = C_{1} = C_{1}$	-14774(12)	$C_{23} = C_{22} = C_{23} = C$	-581(5)
N1 = C7 = C0 = 02	177.77(12)	$C_{23} = C_{22} = C_{23} = C$	30.1(3)
NI-U/-U0-U9	70.30 (14)	U13-U12-U10-U9	137.71 (10)

N1—C1—C2—C3	-179.57 (14)	C13—C12—C10—C11	-44.3 (2)
N1—C1—C6—C5	-179.20 (14)	C13—C12—C18—C17	-0.6 (2)
C7—N1—C1—C2	-95.91 (17)	C1—N1—C7—O1	9.6 (2)
C7—N1—C1—C6	139.43 (14)	C1—N1—C7—C8	-164.62 (13)
C7—C8—C9—C19	-60.19 (16)	C1—C2—C3—C4	56.9 (2)
C7—C8—C9—C10	114.14 (13)	C1—C6—C5—C4	-54.2 (2)
C19—C9—C10—C11	173.54 (14)	C2-C1-C6-C5	55.50 (19)
C19—C9—C10—C12	-8.2 (2)	C2—C3—C4—C5	-56.8 (2)
C19—C24—C23—C22	-1.1 (2)	C21—C22—C25B—F3B	141.0 (15)
C19—C20—C21—C22	-0.5 (2)	C21—C22—C25B—F1B	-103.9 (8)
C8—O2—C11—O3	175.07 (13)	C21—C22—C25B—F2B	10.3 (12)
C8—O2—C11—C10	-4.67 (14)	C21—C22—C25A—F1A	-114.8 (3)
C8—C9—C10—C11	-0.15 (15)	C21—C22—C25A—F2A	6.1 (4)
C8—C9—C10—C12	178.09 (13)	C21—C22—C25A—F3A	127.9 (4)
C9—C19—C24—C23	177.42 (13)	C18—C12—C10—C9	-41.9 (2)
C9-C19-C20-C21	-176.65 (14)	C18—C12—C10—C11	136.14 (15)
C24—C19—C9—C8	-41.76 (19)	C18—C12—C13—C14	1.4 (2)
C24—C19—C9—C10	145.21 (15)	C18—C17—C15—O5	-178.43 (15)
C24—C19—C20—C21	0.1 (2)	C18—C17—C15—C14	0.3 (3)
C24—C23—C22—C21	0.7 (3)	C6—C1—C2—C3	-56.43 (18)
C24—C23—C22—C25B	164.0 (5)	C6—C5—C4—C3	55.1 (2)
C24—C23—C22—C25A	-173.4 (2)	C25B—C22—C21—C20	-163.6 (5)
C11—O2—C8—C7	-111.87 (12)	C16—O4—C17—C15	11.93 (18)
C11—O2—C8—C9	4.42 (14)	C16—O4—C17—C18	-170.00 (17)
C20—C19—C9—C8	134.97 (14)	C16—O5—C15—C17	-11.56 (18)
C20-C19-C9-C10	-38.1 (2)	C16—O5—C15—C14	169.81 (18)
C20—C19—C24—C23	0.6 (2)	C25A—C22—C21—C20	173.8 (2)
C10-C12-C13-C14	-178.21 (14)		

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	Н…А	D····A	D—H···A
N1—H1···O1 ⁱ	0.821 (18)	2.061 (18)	2.8699 (16)	168.4 (16)

Symmetry code: (i) -x+3/2, y-1/2, z.