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2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent
environmental contaminant that induces diverse biological
and toxic effects, including reprogramming intermediate
metabolism, mediated by the aryl hydrocarbon receptor.
However, the specific reprogramming effects of TCDD are
unclear. Here, we performed targeted LC-MS analysis of he-
patic extracts from mice gavaged with TCDD. We detected an
increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from
the spontaneous reaction between the cysteine sulfhydryl
group and highly reactive acrylyl-CoA, an intermediate in the
cobalamin (Cbl)-independent β–oxidation-like metabolism
of propionyl-CoA. TCDD repressed genes in both the ca-
nonical Cbl-dependent carboxylase and the alternate Cbl-
independent β–oxidation-like pathways as well as inhibited
methylmalonyl-CoA mutase (MUT) at lower doses. Moreover,
TCDD decreased serum Cbl levels and hepatic cobalt levels
while eliciting negligible effects on gene expression associated
with Cbl absorption, transport, trafficking, or derivatization to
50-deoxy-adenosylcobalamin (AdoCbl), the required MUT
cofactor. Additionally, TCDD induced the gene encoding
aconitate decarboxylase 1 (Acod1), the enzyme responsible for
decarboxylation of cis-aconitate to itaconate, and dose-
dependently increased itaconate levels in hepatic extracts.
Our results indicate MUT inhibition is consistent with itac-
onate activation to itaconyl-CoA, a MUT suicide inactivator
that forms an adduct with adenosylcobalamin. This adduct in
turn inhibits MUT activity and reduces Cbl levels. Collec-
tively, these results suggest the decrease in MUT activity is
due to Cbl depletion following TCDD treatment, which
redirects propionyl-CoA metabolism to the alternate Cbl-
independent β–oxidation-like pathway. The resulting
hepatic accumulation of acrylyl-CoA likely contributes to
TCDD-elicited hepatotoxicity and the multihit progression of
steatosis to steatohepatitis with fibrosis.
* For correspondence: Tim Zacharewski, tzachare@msu.edu.
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BY license (http://creativecommons.org/licenses/by/4.0/).
Adverse effects elicited by exposure to toxic substances are
not only influenced by the dose, route of administration, and
exposure duration but also genetic, epigenetic, and other sys-
temic factors. Cellular responses to xenobiotic insults are
essential to minimize damage and ensure survival. Adaptive
effects such as cytochrome P450 induction metabolize and
facilitate xenobiotic detoxification and excretion, while im-
mune cell infiltration expedites damaged cell removal with
metabolic reprogramming supporting increased glutathione
biosynthesis. This culminates in an array of apical responses
that may lead to inflammation, repair, proliferation, and/or
additional cytotoxicity. Xenobiotics may also trigger the dif-
ferential expression of genes and modulate enzyme activities
that have the potential to qualitatively and quantitatively alter
endogenous metabolite profiles with the possibility of miti-
gating or exacerbating the overall toxic burden (1). Elucidating
the role of endogenous metabolic plasticity in response to
foreign agents, whether drugs, environmental contaminants, or
natural products, is essential to the identification of susceptible
cell subtypes and to distinguish adverse from adaptive re-
sponses underlying toxic effects (2). In addition to discovering
potential strategies to reduce off-target toxicity, elucidating the
mechanisms involved may reveal novel vulnerabilities for
exploitation as innovative therapeutic approaches for the
treatment of adverse drug reactions and diseases with similar
pathologies (3).

The progression of simple, reversible hepatic fat accumu-
lation to steatohepatitis with fibrosis and hepatocyte
ballooning describes the typical clinicopathologic spectrum of
phenotypes associated with non-alcoholic fatty liver disease
(NAFLD). In NAFLD, >5% of the cytosolic space within he-
patocytes is occupied by lipid droplets in patients where little
to no alcohol was consumed and there was no secondary cause
involving viral hepatitis, medication, or lipodystrophy (4). The
‘two-hit’ hypothesis for NAFLD development has evolved into
a multiple hit etiology that disrupts several pathways (5).
NAFLD prevalence is projected to increase from �83 million
in 2015 to �101 million by 2030 in the US alone, while
increasing the risk for more complex disorders including
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Reprograming of propionyl-CoA metabolism by TCDD
Metabolic Syndrome, cardiovascular disease, diabetes,
cirrhosis, end-stage liver disease, and hepatocellular carcinoma
(HCC) (6, 7). Furthermore, progression of NAFLD to non-
alcoholic steatohepatitis is the leading indication for liver
transplantation and the third leading cause of HCC in the US
with limited treatment options (8–10).

Diet, lifestyle, and genetic background are known factors
that contribute to NAFLD development and progression.
Environmental contaminants also induce steatosis, suggesting
a possible role in disease etiology (11, 12). For example,
several pesticides, solvents, and their metabolites induce he-
patic fat accumulation with 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) and related compounds exhibiting the
greatest potency (13). In mice, TCDD dose-dependently
induced micro- and macro-steatosis with marked increases
in hepatic unsaturated fatty acids (FAs), triacylglycerols
(TAGs), phospholipids, and cholesterol esters (14–17). This
has been attributed to increased hepatic uptake of dietary and
mobilized peripheral fats, reduced very low density lipopro-
tein export, and the inhibition of hepatic FA oxidation (18,
19). In humans, TCDD and related compounds have been
associated with dyslipidemia and inflammation (20–23).
Epidemiological studies also report elevated serum choles-
terol and TAG levels in exposed workers (24–27), while in
utero TCDD exposure increased the risk for Metabolic Syn-
drome in male offspring (28).

TCDD is the prototypical member of a class of persistent
environmental contaminants that includes polychlorinated
dibenzodioxins (PCDDs), dibenzofurans (PCDFs), and bi-
phenyls (PCBs). Congeners with lateral chlorines induce a
plethora of species-, sex-, tissue-, and cell-specific responses
(29). TCDD and coplanar PCBs are classified as IARC group 1
human carcinogens, while evidence for the carcinogenicity of
other toxic PCDDs and PCDFs remains equivocal (30, 31).
TCDD and related compounds are nongenotoxic and most, if
not all, of their effects are mediated by the aryl hydrocarbon
receptor (AhR), a ligand-activated basic helix-loop-helix PER-
ARNT-SIM transcription factor. Although a number of
structurally diverse chemicals, endogenous metabolites, mi-
crobial products, and natural products activate the AhR, its
physiological ligand is unknown. Following ligand binding and
the dissociation of chaperone proteins, the activated AhR
translocates from the cytosol to the nucleus and dimerizes
with the AhR nuclear translocator. This heterodimer then
binds dioxin response elements (DREs; 50-GCGTG-30) as well
as nonconsensus sites throughout the genome recruiting
coactivator complexes to gene promoters to elicit differential
expression (32). AHR-mediated toxicity is generally believed to
be the result of dysregulated gene expression. However, the
consequences of AhR-mediated differential gene expression
and the associated effects on intermediate metabolism of
endogenous metabolites have not been explored.

The emergence of transcriptomics and metabolomics has
provided tools to comprehensively assess the time- and dose-
dependent impacts of drugs, chemicals, environmental con-
taminants, and natural products on gene expression and
intermediate metabolism as well as resulting pathologies.
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Several studies have reported the effects of PCDDs, PCDFs, or
PCBs on gene expression and/or endogenous metabolite levels
in diverse in vivo and in vitro models (14–17, 33–39). In this
study, we tested the hypothesis that the dose-dependent
disruption of propionyl-CoA metabolism produces toxic in-
termediates that contribute to TCDD hepatotoxicity and
progression of steatosis to steatohepatitis with fibrosis. Our
results suggest TCDD dose-dependently reduced cobalamin
(Cbl aka vitamin B12) levels compromising methylmalonyl-
CoA mutase (MUT) activity and limiting the metabolism
of propionyl-CoA to succinyl-CoA using the canonical
Cbl-dependent carboxylation pathway. Consequently, accu-
mulating propionyl-CoA was redirected to the alternate
Cbl-independent β–oxidation-like pathway resulting in the
dose-dependent accumulation of acrylyl-CoA, as indicated by
the increase in S-(2-carboxyethyl)-L-cysteine (SCEC), a con-
jugate produced following the spontaneous reaction between
the sulfhydryl group of cysteine and highly reactive acrylyl-
CoA.
Results

LC-MS/MS analysis

Untargeted metabolomics annotation suggested TCDD-
elicited dose-dependent changes in the level of intermediates
associated with the Cbl-independent β–oxidation-like meta-
bolism of propionyl-CoA. More specifically, this included the
presence of acrylyl-CoA and 3-hydroxypropionyl-CoA in he-
patic extracts following oral gavage with TCDD every 4 days
for 28 days (data available at NIH Metabolomics Workbench,
ST001379). However, the untargeted annotations were not
sufficient to conclude that propionyl-CoA was metabolized via
the Cbl-independent β–oxidation-like pathway. Targeted
analysis was unsuccessful in confirming the identity of acrylyl-
CoA due to its high reactivity. Alternatively, the presence of
acrylyl-CoA was confirmed following the detection of SCEC, a
conjugate formed following the spontaneous reaction between
acrylyl-CoA and the sulfhydryl group of cysteine (40). Hepatic
SCEC levels increased 15.6-fold following oral gavage of male
mice with 30 μg/kg TCDD every 4 days for 28 days (Table 1).
Urine cysteine/cysteamine conjugates with acrylyl-CoA are
routinely used to diagnose Leigh syndrome where the con-
version of acrylyl-CoA to 3-hydroxypropionyl-CoA is inhibited
due to a deficiency in the short chain enoyl-CoA hydratase
(ECHS1) activity (40). The increased levels of SCEC not only
confirmed acrylyl-CoA accumulation but also ECHS1 inhibi-
tion and that propionyl-CoA was metabolized via the alternate
Cbl-independent β–oxidation-like pathway as opposed to the
preferred Cbl-dependent carboxylation pathway (41).

Note that the dose range and treatment regimen used in this
study resulted in hepatic TCDD levels that approached steady
state while inducing full dose response curves for known AhR
target genes (Fig. 1) in the absence of (i) necrosis or apoptosis,
(ii) marked increases in serum alanine transaminase, (iii)
changes in food consumption, and (iv) body weight loss >15%
(35, 39). At 0.01 μg/kg, hepatic TCDD levels were comparable
to control levels and to background dioxin-like compound



Table 1
S-(2-carboxyethyl) cysteine fold changes in comparison to vehicle in liver extracts (n = 5, ± S.E.M.) assessed by targeted liquid
chromatography tandem mass spectrometry

Compound name Molecular mass Retention time (min)

Fold-change (TCDD versus vehicle)

0.3 μg/kg 1 μg/kg 3 μg/kg 10 μg/kg 30 μg/kg

S-(2-carboxyethyl) cysteine 194 2.6 1.10 ± 0.34 1.16 ± 0.12 1.16 ± 0.17 1.70 ± 0.42 15.62 ± 2.59*

Mice were orally gavaged every 4 days for 28 days with TCDD (or sesame oil vehicle). Asterisk (*) denotes significance (p ≤ 0.05) determined by one-way ANOVA with Dunnett’s
post-hoc testing.

Reprograming of propionyl-CoA metabolism by TCDD
levels reported in US, German, Spanish, and British serum
samples (42), while mid-range doses yielded levels comparable
to women from the Seveso Health Study (21). At 30 μg/kg
TCDD, mouse hepatic tissue levels were comparable to serum
levels reported in Viktor Yushchenko following intentional
poisoning (43). Consequently, the metabolomics and gene
expression effects elicited by TCDD, described below, cannot
be attributed to overt toxicity.
Propionyl-CoA metabolism gene expression effects

Figure 2 summarizes the temporal- and dose-dependent
effects of TCDD on gene expression associated with
propionyl-CoA metabolism. Note that �40% of all genes in the
mouse genome experience circadian-regulation in at least 1
tissue. Approximately, 11 to 16% of all detected hepatic tran-
scripts and �50% of hepatic metabolites exhibit oscillating
levels (44–46). Consequently, in addition to providing pDRE,
ChIP-seq at 2 h, time course and dose response RNA-seq data
collected between zeitgeber time (ZT) 0 to 3, complementary
Figure 1. Effects of TCDD on the expression of AhR target genes. A, the
binding 2 h after a single bolus dose of 30 μg/kg TCDD. B, hepatic expression o
3) were administered a single bolus dose of 30 μg/kg TCDD. Liver samples w
log2(fold change) for differential gene expression determined by RNA-Seq ana
treatment group. Low counts (<500 reads) are denoted in yellow with high co
mice (n = 3) following oral gavage with sesame oil vehicle or TCDD. Differential
triangle in the upper right tile corner. TCDD, 2,3,7,8-tetrachlorodibenzo-p-diox
data from a diurnal-regulated study was included in all heat-
maps to indicate the ZT for maximal differential gene
expression within the 24 h cycle (ZT0-12 lights on; ZT13-24
lights off). TCDD has been reported to dose-dependently
abolish oscillating hepatic gene expression and metabolite
levels in the liver that are under diurnal control (35). All re-
ported hepatic fold-changes discussed in the text of this study
were taken from the diurnal gene expression data set
(GSE119780) at the optimal gene expression ZT unless
otherwise indicated.

ChIP-seq analysis 2 h after a bolus oral gavage of 30 μg/kg
TCDD suggested AhR enrichment may be involved in the
repression of propionyl-CoA carboxylase (Pcca and Pccb
subunits, 2.7- and 2.9-fold, respectively), short chain enoyl-
CoA hydratase (Echs1, 1.5-fold), and alcohol dehydrogenase
iron containing 1 (Adhfe1, 2.2-fold) (Fig. 2, B and C). No AhR
enrichment was detected for aldehyde dehydrogenase 6 family
member A1 (Aldh6a1, 2.2-fold) despite repression by 30 μg/kg
TCDD (Fig. 2C). Moreover, the effects of TCDD on gene
expression associated with both pathways were negligible
presence of putative dioxin response elements (pDREs) and AhR genomic
f AhR target genes assessed in a time course study. Male C57BL/6 mice (n =
ere collected at the corresponding time point. Color scale represents the
lysis. Counts represent the maximum number of raw aligned reads for any
unts (>10,000) in pink. C, dose-dependent gene expression was assessed in
expression with a posterior probability (P1(t))> 0.80 is indicated with a black
in; AHR, aryl hydrocarbon receptor.
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Figure 2. Effects of TCDD on the expression of genes associated with propionyl-CoA metabolism. A, schematic pathway depicting enzymes and
metabolites associated with propionyl-CoA metabolism via the cobalamin (Cbl)-dependent carboxylation pathway or the Cbl-independent β-oxidation–like
pathway. B, heatmap for dioxin response element (DRE) presence, AhR enrichment, and expression of genes associated with the propionyl-CoA canonical
carboxylation pathway. C, heatmap for DRE presence, AhR enrichment, and expression of genes associated with the Cbl-independent propionyl-CoA
β-oxidation–like pathway. Hepatic expression of genes associated with propionyl-CoA was assessed in a time course–and dose-dependent manner. In time
course study, male C57BL/6 mice (n = 3) were administered a single bolus dose of 30 μg/kg TCDD, after which tissue was collected at the corresponding
time point, while in dose-dependent study, male C57BL/6 mice (n = 3) were orally gavaged with sesame oil vehicle or TCDD every 4 days for 28 days. The
presence of putative DREs (pDREs) and AhR binding to the intragenic region represents as green boxes. Color scale represents the log2(fold change) for
differential gene expression determined by RNA-Seq analysis. Counts represents the maximum raw number of aligned reads to each transcript, where a
lower level of expression (≤500 reads) is depicted in yellow and a higher level of expression (≥10,000) is depicted in pink. Genes that are diurnally regulated
are denoted by “Y”. Disruption of diurnal rhythmicity following oral gavage with 30 μg/kg TCDD every 4 days for 28 days is denoted by an orange ‘X’. The ZT
with maximum induction/repression is shown for each gene. Differential expression with a posterior probability (P1(t)) > 0.80 is indicated with a black
triangle in the upper right tile corner. TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; AHR, aryl hydrocarbon receptor; Cbl, cobalamin; ZT, zeitgeber time.

Reprograming of propionyl-CoA metabolism by TCDD
within the 168 h time course study. TCDD disrupted the
rhythmic expression of Pcca, Echs1, 3-hydroxyisobutyryl-CoA
hydrolase (Hibch), and Adhfe1, all of which exhibited oscil-
lating expression due to diurnal regulation. At 30 μg/kg,
TCDD repressed Pcca and Pccb of the Cbl-dependent
carboxylation pathway suggesting propionyl-CoA metabolism
was redirected to the alternative Cbl-independent β–oxida-
tion-like pathway. Although 30 μg/kg TCDD also repressed
genes associated with the alternative pathway, the expression
of short chain acyl-CoA dehydrogenase (Acads) was not
affected by treatment, allowing propionyl-CoA to be oxidized
to acrylyl-CoA. This suggested TCDD-elicited gene repression
may contribute to the redirection of propionyl-CoA meta-
bolism from the preferred Cbl-dependent carboxylation
pathway to the alternate Cbl-independent β–oxidation-like
pathway at the highest dose.

Effects on Cbl and cobalt levels

Elevated levels of acrylyl-CoA and 3-hydroxypropionate
(3-HP), as well as their derivatives, are not normally detected
at appreciable levels in healthy individuals (47). Acrylyl-CoA
and 3-HP typically accumulate following disruption of the
canonical Cbl-dependent propionate catabolism pathway due
to Cbl deficiency or mutations within propionyl-CoA
4 J. Biol. Chem. (2022) 298(9) 102301
carboxylase or MUT that affect enzyme activity (48). Since
MUT is only 1 of 2 mammalian enzymes known to be Cbl
dependent for activity, we examined the effects of TCDD on
the levels of Cbl and cobalt, the metal ion that occupies the
coordinate center of the corrin ring. TCDD dose-dependently
reduced total serum Cbl levels and cobalt levels in hepatic
extracts (Fig. 3). Therefore, reduced Cbl deficiency may be
responsible for lower MUT activity and affect propionyl-CoA
metabolism via the canonical Cbl-dependent carboxylation
pathway.

Effects on intestinal Cbl absorption and transport

We next examined the effects of TCDD on the expression
of genes associated with intestinal absorption and transport
of Cbl. Intrinsic factor (IF, Cblif), a glycoprotein required for
intestinal Cbl absorption, is secreted by parietal cells of the
gastric mucosa and therefore was not examined in this
study. Cubilin (CUBN) located on the brush border of
enterocytes facilitates the endocytic uptake of IF–Cbl
complexes. Appreciable levels of Cubn expression were
detected in duodenal, jejunal, ileal, and colonic intestinal
segments (Fig. 4). Cubn was dose-dependently repressed in
the duodenum, jejunum, proximal ileum, and colon (4.2-,
16.7-, 4.6-, and 2.0-fold, respectively) but induced 1.9-fold in



Figure 3. TCDD-elicited effects. A, on serum cobalamin. B, on hepatic cobalt levels. Male C57BL/6 mice were orally gavaged every 4 days with sesame oil
vehicle or TCDD for 28 days (n=4–5, ± SD). Serum cobalamin levels were determined by an ELISA assay. Cobalt levels in liver extracts were measured by
inductively coupled plasma mass spectrometry (ICP-MS). Asterisk (*) denotes p < 0.05 determined by one-way ANOVA with a Dunnett’s post-hoc test. TCDD,
2,3,7,8-tetrachlorodibenzo-p-dioxin.

Reprograming of propionyl-CoA metabolism by TCDD
the distal ileum. Cbl is then released into the portal circu-
lation in complex with transcobalamin II (TCN2). Repres-
sion of Cubn in the duodenum, jejunum, proximal ileum,
and colon segments suggests intestinal Cbl absorption may
be inhibited by TCDD. However, the distal ileum is
considered the intestinal segment with the greatest Cbl
uptake activity (49).
Figure 4. TCDD-elicited effects on gene expression associated with the
overview of enterocyte uptake and processing of Cbl. B, dose-dependent effect
expression associated with Cbl absorption and processing. Male C57BL/6 mice
28 days. Color scale represents the log2(fold change) for differential gene expre
number of aligned reads to each transcript where a lower level of expression (≤
depicted in pink. Differential expression with a posterior probability (P1(t)) >
2,3,7,8-tetrachlorodibenzo-p-dioxin; Cbl, cobalamin.
Cbl deficiency has also been reported following modulation
of de novo biosynthesis in the gut microbiome and alterna-
tively due to bacterial overgrowth (50, 51). Most gut micro-
biome taxa possess genes encoding Cbl metabolism–
associated enzymes. Previous studies have shown that TCDD
can alter the gut microbiome, induce bacterial overgrowth, and
reduce intestinal transit time (17). Metagenomic analyses of
intestinal absorption and processing of cobalamin (Cbl). A, schematic
s of TCDD on duodenal, jejunum, ileal (proximal and distal), and colonic gene
(n = 3) were orally gavaged with sesame oil vehicle or TCDD every 4 days for
ssion determined by RNA-Seq analysis. Counts represents the maximum raw
500 reads) is depicted in yellow and a higher level of expression (≥10,000) is
0.80 is indicated with a black triangle in the upper right tile corner. TCDD,
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Reprograming of propionyl-CoA metabolism by TCDD
cecal contents from this study were assessed to investigate
changes in Cbl metabolism by the gut microbiome (17). Gene
abundance associated with Cbl biosynthesis and utilization
appeared unaffected except for a modest 1.3-fold repression of
precorrin-3 methylase (EC 2.1.1.133), an intermediate step in
corrin ring biosynthesis, and a 3-fold increase in ABC cobalt
transporters (PFAM: PF09819) (Figs S1 and S2). Likewise,
TCDD had negligible effects on gut microbial propionate
metabolism (Table S4). Based on metagenomics analysis of
cecal contents, TCDD elicited negligible effects on microbial
Cbl and propionate metabolism.

Effects on hepatic Cbl uptake, metabolism, and trafficking

We also examined the effects of TCDD on gene expression
associated with hepatic Cbl uptake, metabolism, and traf-
ficking. In humans, circulating Cbl is associated with TCN2 or
haptocorrin (TCN1) and internalized by hepatocytes following
interaction with the receptor (CD320) or the asialoglycopro-
tein (ASGR1 and 2), respectively, for delivery to lysosomes
where TCN2 is degraded and Cbl is released (52). Tcn2 was
repressed 1.5-fold but only at 30 μg/kg TCDD. TCN1 is not
expressed in mice, and therefore the 2.4- and 3.9-fold
repression of Asgr1 and 2, respectively, is irrelevant in
regards to hepatic Cbl uptake (52, 53). Released Cbl is
exported from the lysosomes via the Lysosome Membrane
Chaperone 1 (LMBD1) (54) where it binds to methylmalonic
aciduria type C and homocystinuria (MMACHC) proteins (52)
and then shuttled to cytoplasmic methionine synthase (MTR)
and mitochondrial MUT (Fig. 5). Additional proteins including
methylmalonic aciduria type A (MMAA) and B (MMAB)
convert Cbl to the active adenosylcobalamin (AdoCbl) cofactor
required for MUT activity. Overall, TCDD elicited minimal
effects on gene expression suggesting hepatic uptake, meta-
bolism, and trafficking are not responsible for lower Cbl levels
except for Mmab which was repressed 2.4-fold at 30 μg/kg.

Cbl depletion and MUT inhibition

Targeted metabolomics analysis of hepatic extracts detected
a dose-dependent increase in itaconic acid, an immunomod-
ulatory and antimicrobial metabolite of aconitate produced by
aconitate decarboxylase 1 (ACOD1 aka IRG1) in macrophages
(55) (Fig. 6I). Furthermore, hepatic Acod1 exhibited time-
dependent induction following oral gavage with 30 μg/kg
TCDD in the absence of AhR genomic enrichment at 2 h
(Fig. 6B). The time-dependent induction of Acod1 coincided
not only with increased alanine transaminase levels (56) but
also the time-dependent infiltration of immune cells as indi-
cated by the increased expression of macrophages markers,
Adgre1, Cd5l, and Csfr1 (2.3-, 1.9-, and 1.9-fold, respectively)
after a single bolus oral gavage of TCDD (Fig. 6F). Adgre1 and
Cd5l did not exhibit AhR genomic enrichment at 2 h sug-
gesting increases were due to macrophages recruitment and/or
proliferation, while Csf1r induction may involve the AhR. The
low number of macrophages within control livers precludes
distinguishing Adgre1, Cd5l, and Csfr1 increases due to
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induction by TCDD from hepatic macrophage infiltration and/
or hepatic macrophages proliferation (57). TCDD also dose-
dependently induced Acod1 (Fig. 6B). Discrepancies in the
fold-changes between the time course, dose response, and
diurnal-controlled studies are consistent with the erratic
rhythmic expression of Acod1 over the 24 h time period
(Fig. 6C) (17). Itaconate can be activated to itaconyl-CoA
which can then interact with the 5-deoxyadenosyl moiety of
AdoCbl to form an uncharacterized adduct that disrupts
auxiliary repair protein interactions, inactivates AdoCbl, and
reduces Cbl levels that inhibit MUT activity (58, 59). These
finding are in agreement with the present study where
increased itaconic acid levels coincided with diminished Cbl
level and inhibited MUT activity (Fig. 6H). Collectively, the
data suggest itaconate was produced following Acod1 in
macrophages that were activated by TCDD and could factor in
the inhibition of MUT due the formation of the uncharac-
terized inactive itaconyl-CoA:AdoCbl adduct that would
reduce available AdoCbl required for MUT activity.
Discussion

In this study, metabolomics and gene expression datasets
were integrated to examine the increase in the levels of SCEC,
an acrylyl-CoA conjugate detected in hepatic extracts from
mice orally gavaged with TCDD every 4 days for 28 days.
Acrylyl-CoA is a highly reactive intermediate that spontane-
ously reacts with free sulfhydryl groups, including the sulfhy-
dryl group of cysteine to form the SCEC conjugate, an
indicator of acrylyl-CoA, a metabolite normally not detected in
healthy individuals at appreciable levels (40, 60). Acrylyl-CoA
and 3-HP are intermediates in the catabolism of propionyl-
CoA to acetyl-CoA and pyruvate via the Cbl-independent
β–oxidation-like pathway and used as biomarkers of inborn
metabolic disorders associated with propionic and methyl-
malonic acidemia (61, 62). The SCEC conjugate has also been
proposed as a biomarker for Leigh syndrome suggesting a
deficiency in ECHS1 activity due to acrylyl-CoA accumulation
(63). This led us to investigate TCDD-elicited metabolic
reprogramming that redirected propionate metabolism from
the canonical Cbl-dependent carboxylation pathway that
produces succinyl-CoA to the alternative Cbl-independent
β–oxidation-like pathway.

Propionyl-CoA is a byproduct of several reactions including
the oxidative metabolism of odd numbered carbon FAs as well
as the catabolism of several amino acids (i.e., methionine,
threonine, isoleucine, and valine). However, the most likely
source of hepatic propionyl-CoA following TCDD treatment is
the shortening of C27-bile acid intermediates to mature C24-
bile acids (64) since TCDD dose-dependently increased total
bile acids in the liver and serum (17). In addition, TCDD in-
hibits FA oxidation (18, 19, 65) and had negligible effects on
gene expression associated with propionate biosynthesis by the
gut microbiome. Acyl-CoA dehydrogenases have extremely
low activity toward propionyl-CoA as a substrate. Therefore,
propionyl-CoA is preferentially metabolized by the



Figure 5. TCDD-elicited effects on gene expression involved in hepatic uptake, metabolism, and trafficking of cobalamin (Cbl). A, overview of Cbl
uptake, metabolism, and trafficking in the mouse liver. B, the presence of putative dioxin response elements (pDREs) and AhR genomic binding 2 h after a
single bolus dose of 30 μg/kg TCDD. C, hepatic expression of genes associated with Cbl uptake, metabolism, and trafficking in a time course study. Male
C57BL/6 mice (n = 3) were administered a single bolus dose of 30 μg/kg TCDD. Liver samples were collected at the corresponding time point. Color scale
represents the log2(fold change) for differential gene expression determined by RNA-Seq analysis. Counts represent the maximum number of raw aligned
reads for any treatment group. Low counts (<500 reads) are denoted in yellow with high counts (>10,000) in pink. D, dose-dependent gene expression was
assessed in mice (n = 3) following oral gavage with sesame oil vehicle or TCDD. E, diurnally regulated genes are denoted with a “Y”. An orange ‘X’ indicates
disrupted diurnal rhythm following oral gavage with 30 μg/kg TCDD every 4 days for 28 days. ZT indicates statistically significant (P1(t) > 0.8) time of
maximum gene induction/repression. Differential expression with a posterior probability (P1(t)) > 0.80 is indicated with a black triangle in the upper right
tile corner. TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; AHR, aryl hydrocarbon receptor; Cbl, cobalamin; ZT, zeitgeber time.
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Cbl-dependent carboxylation pathway where it is first
carboxylated by propionyl-CoA carboxylase to (S)-methyl-
malonyl-CoA and then epimerized to (R)-methylmalonyl-CoA
by methylmalonyl-CoA epimerase (MCEE). Finally, the (R)-
methylmalonyl-CoA intermediate undergoes rearrangement
by Cbl-dependent MUT to produce the anaplerotic interme-
diate, succinyl-CoA. Expression of Pcca, Pccb, Echs1, Adhfe1,
and Aldh6a1 were repressed by 30 μg/kg TCDD that corre-
lated with increased SCEC levels in hepatic extracts.

MUT is 1 of the 2 mammalian enzymes that uses a Cbl
derivative as a cofactor, the other being MTR. Specifically,
MUT requires AdoCbl for the rearrangement of (R)-methyl-
malonyl-CoA to succinyl-CoA, while MTR uses methyl-
cobalamin to produce methionine from homocysteine (66).
J. Biol. Chem. (2022) 298(9) 102301 7



Figure 6. TCDD-elicited effects on the genes involved in the itaconate pathway. A, schematic overview of the pathway. Hepatic expression of (B) Acod1
was determined by qRT-PCR. Hepatic expression of (D) Auh and Clybl was determined by RNA-Seq. Time-course analysis was performed after a single bolus
oral gavage of 30 μg/kg TCDD. Dose-dependent expression was determined following treated with sesame oil vehicle or TCDD (0.01–30 μg/kg) every 4 days
for 28 days. The effect of TCDD on the diurnal rhythmicity of (C) Acod1, (E) Auh, (G) Clybl in male C57BL/6 mice following oral gavage with sesame oil vehicle
or 30 μg/kg TCDD every 4 days for 28 days. Posterior probabilities (*P1(t) ≥ 0.80) comparing vehicle and TCDD were determined using an empirical Bayes
method. Diurnal rhythmicity was assessed using JTK_CYCLE (‡ indicates q ≤ 0.1). Data are double-plotted along the x-axis to better visualize rhythmic
pattern. F, time-dependent hepatic expression of macrophages markers. Male C57BL/6 mice (n = 3) were administered a single bolus dose of 30 μg/kg
TCDD. Liver samples were collected at the corresponding time point. The presence of putative dioxin response elements (pDREs) and AhR enrichment are
represented as green boxes. Color scale represents the log2(fold change) for differential gene expression determined by RNA-Seq analysis. Counts represent
the maximum raw number of aligned reads to each transcript where a lower level of expression (≤500 reads) is depicted in yellow and a higher level of
expression (≥10,000) is depicted in pink. Differential expression with a posterior probability (P1(t)) > 0.80 is indicated with a black triangle in the upper right
tile corner. H, effects of TCDD on MUT activity. MUT activity was measured by thiokinase-coupled spectrophotometric assay where the product, succinyl-
CoA, is converted by a second enzyme, thiokinase, to succinate and CoA. Formation of CoA was monitored by the thiol-sensitive reagent, DTNB, which
forms a mixed disulfide with CoA and the nitrobenzene thiolate anion (TNB). Results are expressed as μmol TNB formed/minute/mg of protein. Asterisk (*)
denotes p < 0.05 determined by one-way ANOVA with a Dunnett’s post-hoc test (n = 6). I, itaconic acid in liver extracts from male mice orally gavaged every
4 days for 28 days with sesame oil vehicle or TCDD measured by LC-MS. Asterisk (*) denotes p < 0.05 determined by one-way ANOVA with a Dunnett’s post-
hoc test (n = 4). Error bars represent ± SD. TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; AHR, aryl hydrocarbon receptor; MUT, methylmalonyl-CoA mutase;
DTNB, 5,50-dithiobis-(2-nitrobenzoic acid).
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Cbl is considered a rare cofactor with levels ranging between
30 to 700 nM in humans with deficiency caused by inadequate
intake, malabsorption, chemical inactivation, or inherited
disruption of transport or cellular metabolism (67, 68). It is
only synthesized by microorganisms with absorption from
animal food sources limited to the distal ileum in humans (49).
Given the low levels of Cbl and its potential reactivity in
3 biologically relevant oxidation states, a complex escort sys-
tem comprising transporters and chaperones has evolved to
ensure delivery to mitochondrial MUT and cytosolic MTR. At
least 9 proteins are dedicated to the absorption, transport,
assimilation, derivatization, and trafficking of Cbl, AdoCbl and
methylcobalamin (66). Inborn metabolic disorders as well as
intestinal bacterial overgrowth that reduce Cbl levels or
disrupt delivery have been implicated in methylmalonic
aciduria and/or hyperhomocysteinemia (51, 69). TCDD dose
dependently decreased serum Cbl and hepatic cobalt levels, yet
had minimal effects on gene expression associated with Cbl
absorption, transport, assimilation, derivatization, and traf-
ficking. The lone exception was Cubn, the membrane receptor
responsible for the endocytic uptake of IF–Cbl complexes
expressed at the apical pole of enterocytes. Cubn in the
duodenum, jejunum, proximal ileum, and colon was dose-
dependently repressed between 3 and 30 μg/kg TCDD coin-
ciding with the dose-dependent decrease in hepatic Cbl levels.
However, Cbl absorption in humans is primarily attributed to
the distal ileum (49). Moreover, the mouse distal ileum
exhibited the highest Cubn expression levels and was induced
by TCDD in the distal ileum than the other intestinal seg-
ments. Although enticing to suggest TCDD repression of
Cubn in the duodenum, jejunum, proximal ileum, and colon
was responsible for the dose-dependent decrease in hepatic
Cbl levels, the induction and overall higher basal expression
levels of Cubn in the ileum, the primary site of Cbl absorption,
implies otherwise. Mmab was also repressed but only at
30 μg/kg TCDD.

Other potential mechanisms for lowering hepatic Cbl levels
also warrant consideration including the effects of TCDD on
the intestinal absorption of Cbl. Specifically, Cbl malabsorp-
tion has been attributed to intestinal bacterial overgrowth and
decreased gastric acid secretion (49, 67). Parietal cells of the
gastric mucosa secrete gastric acid that frees Cbl from
ingested proteins. In addition, the lower pH of the stomach
favors the protective binding of Cbl to salivary haptocorrin
(previously known as R binder). Parietal cells also express IF,
the glycoprotein responsible for binding Cbl in the higher pH
of the small intestine that facilitate absorption by the ileum
(67). Commonly prescribed protein pump inhibitors and
histamine 2 receptor antagonists have been shown to sup-
press gastric acid production. Moreover, a large population
case-controlled study reported a dose-dependent relationship
between Cbl deficiency and the use of acid-suppressing pre-
scription medication for 2 or more years (67, 70). The asso-
ciation was more significant with longer duration of use and
diminished after treatment was discontinued (70). Similarly,
TCDD is reported to decrease gastric acid secretion by
reducing secretory volume, acidity, and total acid output (71).
Collectively, this suggests that prolonged treatment with
TCDD may reduce systemic levels of Cbl due to decreased
gastric acid secretion.

More recently, lower Cbl levels have been linked to itaco-
nate, a cis-aconitate metabolite produced in large quantities
by activated macrophages (58, 59). Itaconate possesses anti-
inflammatory properties that block pro-inflammatory cyto-
kine release, inhibit reactive oxygen species production,
activate the master antioxidant regulator NRF2, and induce
the anti-inflammatory transcription factor, ATF3 (72). The
induction of Acod1, which converts cis-aconitate to itaconate,
is in agreement with the increased expression of macrophage
markers, the dose-dependent decrease in hepatic Cbl levels,
and the increased levels of itaconic acid in hepatic extracts.
ACOD1 is also transcriptionally and post-transcriptionally
regulated in response to lipopolysaccharide (LPS) and inter-
feron gamma (IFNɣ) (72, 73). Consequently, the bacterial
overgrowth and leaky gut caused by TCDD (17) suggest LPS
induction of Acod1 given the absence of AhR enrichment.
However, the ability of macrophage-secreted itaconate to be
absorbed by adjacent cells and cause intracellular effects is
debated (74). Although itaconate can be activated to itaconyl-
CoA, and subsequently metabolized to citramalyl-CoA, there
may be other sources of these intermediates (58). Recent
studies also show itaconyl-CoA can inhibit MUT activity by
forming a yet to be characterized stable adduct with the
50-deoxyadenosyl moiety of AdoCbl that reduces Cbl levels
(59). Overall, the dose-dependent repression of Pcca/b and
Mmab, as well as the decrease in Cbl levels and reduced MUT
activity are consistent with TCDD redirecting propionate
metabolism from the Cbl-dependent carboxylation pathway
to the Cbl-independent β–oxidation-like pathway that in-
volves propionyl-CoA metabolism to acrylyl-CoA and 3-HP
intermediates.

Interestingly, the dose-dependent inhibition of β-oxidation
by TCDD also caused a dose-dependent increase in other
enoyl-CoA species including octenoyl-CoA (18). The next step
in the metabolism of enoyl-CoAs, including acrylyl-CoA, in-
volves hydration. Trifunctional protein (MTP) is a multi-
subunit enzyme that carries out enoyl-CoA hydratase,
hydroxyacyl-CoA dehydrogenase, and 3-ketothiolase activ-
ities in the β-oxidation of straight chain FAs. The enoyl-CoA
hydratase alpha subunit of MTP (HADHA) prefers longer
chain (C12-16) enoyl substrates with minimal activity toward
short chain (C4) enoyl-CoAs (75). In contrast, ECHS1 pref-
erentially hydrates shorter chain enoyl-CoAs such as C3
crotonyl-CoA and exhibits diminished binding affinity for
longer chain enoyl-CoAs (76), but efficiently hydrates acrylyl-
CoA to 3-HP-CoA (77). We have shown TCDD increased
octenoyl-CoA levels and that octenoyl-CoA inhibited the hy-
dration of crotonyl-CoA, the preferred substrate of ECHS1
(18, 75). This suggests inhibition of ECHS1 activity by accu-
mulating octenoyl-CoA could also result in the accumulation
of acrylyl-CoA and subsequently, the SCEC conjugate. Inborn
metabolic disorders that compromise ECHS1 activity have
J. Biol. Chem. (2022) 298(9) 102301 9
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been linked to urinary acrylyl-CoA conjugate accumulation in
infants with pathology severity increasing following palmitate
loading (60). Coincidentally, hepatic β-oxidation occurs pre-
dominantly in the portal region, the zone first exhibiting dose-
dependent lipid accumulation and immune cell infiltration
after TCDD treatment (56). The structural similarity to other
short chain acyl-CoA species, such as propionyl-CoA and
crotonyl-CoA, further suggests acrylyl-CoA may be a substrate
for posttranslational acylation that could impose detrimental
structural and regulatory consequences on enzymes and his-
tones that affect protein–protein interactions and cellular
location in addition to function (78).

In summary, we propose TCDD dose dependently repressed
gene expression and enzymatic activity that redirected
propionyl-CoA from the preferred Cbl-dependent carboxyla-
tion pathway to the Cbl-independent β–oxidation-like
pathway resulting in the accumulation of highly reactive
acrylyl-CoA, due to inhibition of ECHS1 as evident by the
presence of the SCEC conjugate. The accumulation of tri-
acylglycerols, FAs, cholesterol, cholesterol esters, and phos-
pholipids is first observed as macro- and micro-steatosis
following TCDD treatment (15, 56). Fatty liver in combination
with increased reactive oxygen species levels from induced
oxidoreductase activities such as CYP1A1, XDH/XO, and
AOX1 increase oxidative stress levels and lipotoxicity, result-
ing in subsequent inflammation. This is accompanied by
disruption of enterohepatic circulation that not only increased
bile acid levels and its propionyl-CoA byproduct but also
promoted bacteria overgrowth in the gut, reduced intestinal
motility, and increased intestinal permeability as well as the
levels of serum LPS and cytokine including IFNɣ (17, 39).
Circulating LPS and IFNɣ would worsen hepatic oxidative
stress and induce ACOD1 activity following the activation of
infiltrating macrophages (73). Activated macrophages produce
millimolar levels of itaconate with extracellular itaconate taken
up and converted to itaconyl-CoA, the MUT inhibitor (55).
Itaconyl-CoA inhibition of MUT activity and the repression of
genes associated with the Cbl-dependent carboxylation
pathway collectively redirect propionyl-CoA to the less-
efficient Cbl-independent β–oxidation-like pathway where
propionyl-CoA is first oxidized to acrylyl-CoA. Under normal
conditions, acrylyl-CoA would be hydrated to 3-HP but
ECHS1 activity is inhibited by accumulating octenoyl-CoA due
to the futile cycling of FA oxidation and acyl-CoA hydrolysis
resulting in incomplete β-oxidation (18). Highly reactive
acrylyl-CoA would react with available sulfhydryl groups dis-
rupting protein structure and function contributing to the
hepatotoxicity burden along with other toxic metabolites such
as dicarboxylic acids, produced as a result of chronic metabolic
reprograming in response to persistent AhR activation by
TCDD. Collectively, this is consistent with the multihit
mechanism proposed for NAFLD where steatosis progresses to
steatohepatitis with fibrosis and serves as a risk factor for more
complex metabolic diseases including HCC (5). It also suggests
that TCDD and related compounds, and NAFLD, may share
common nongenotoxic mechanisms that lead to HCC.
Nevertheless, additional studies are needed to determine the
10 J. Biol. Chem. (2022) 298(9) 102301
relevance of AhR-mediated metabolic reprogramming by
TCDD and related compounds in human models.

Experimental procedures

Animal treatment

Postnatal day 25 (PND25) male C57BL/6 mice weighing
within 10% of each other were obtained from Charles River
Laboratories. Mice were housed in Innovive Innocages con-
taining ALPHA-dri bedding (Shepherd Specialty Papers) in a
23 �C environment with 30 to 40% humidity and a 12 h/12 h
light/dark cycle. Aquavive water (Innovive) and Harlan Teklad
22/5 Rodent Diet 8940 containing 60 μg vitamin B12/kg of diet
was provided ad libitum. On PND28, mice were orally gavaged
at the start of the light cycle (zeitgeber [ZT] 0 to 1) with 0.1 ml
sesame oil vehicle (Sigma-Aldrich) or 0.01, 0.03, 0.1, 0.3, 1, 3,
10, and 30 μg/kg body weight TCDD (AccuStandard) every
4 days for 28 days for a total of seven treatments. The first
gavage was administered on day 0, with the last gavage
administered on day 24 of the 28-days study. The doses used
consider the relatively short study duration in mice compared
to lifelong cumulative human exposure from diverse AhR li-
gands, the bioaccumulative nature of halogenated AhR ligands,
and differences in the half-life of TCDD between humans
(1–11 years (43, 79)) and mice (8–12days (80)). Similar
treatment regimens have been used in previous studies (14, 19,
35, 39, 81). On day 28, tissue samples were harvested (ZT 0–3),
immediately flash frozen in liquid nitrogen, and stored
at −80 �C until analysis. All animal procedures were approved
by the Michigan State University Institutional Animal Care
and Use Committee (IACUC; PROTO202100219).

Liquid chromatography tandem mass spectrometry

Flash frozen liver samples (�25 mg) were extracted using
HPLC-grade methanol and water (5:3 ratio) containing
20 13C-,15N-labeled amino acid (Sigma; 767964) internal
standards (35). HPLC-grade chloroform (methanol:water:-
chloroform ratio 5:3:5) was added, vortexed, shaken for 15 min
at 4 �C, and centrifuged at maximum speed (3000×g) to ach-
ieve phase separation. The methanol:water phase containing
the polar metabolites was transferred, dried under nitrogen gas
at room temperature. Untargeted extractions were recon-
stituted with 400 μl of 10 mM tributylamine and 15 mM acetic
acid in 97:3 water:methanol for analysis. Samples were
analyzed on a Xevo G2-XS Quadrupole Time of Flight mass
spectrometer attached to a Waters Acquity UPLC (Waters)
with negative-mode electrospray ionization run using an MSE

continuum mode method. LC phases, gradient rates, and
columns were used as previously published (35). For untar-
geted acyl-CoA analysis, MSE continuum data was processed
with Progenesis QI (Waters) to align features, deconvolute
peaks, and identify metabolites. Metabolite identifications were
scored based on a mass error <12 ppm to Human Metab-
olome Database entries (82), isotopic distribution similarity,
and theoretical fragmentation comparisons to MSE high-
energy mass spectra using the MetFrag option. Raw signals
for each compound abundance were normalized to a
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correction factor calculated using the Progenesis QI median
and mean absolute deviation approach. Significance was
determined by a one-way ANOVA adjusted for multiple
comparisons with a Dunnett’s post-hoc test (Table S2). Raw
data is deposited in the NIH Metabolomics Workbench
(ST001379).

For SCEC analysis, frozen liver samples (�25 mg) were ho-
mogenized in 400 μl of 70% acetonitrile containing 2 μM
13C5,

15N-methionine (labeled amino acid cocktail; Sigma). After
centrifugation, the supernatant was transferred on Resprep PLR
96-well plate (Restek) where precipitated proteins and phos-
pholipids were removed by filtration. Filtrate was dried under
nitrogen gas and reconstituted in 10 mM perfluoroheptanoic
acid in water. Samples were analyzed using a Xevo TQ-S micro
Triple Quadrupole Mass Spectrometry system combined with
Waters Acquity UPLC (Waters) fitted with an Acquity HSS T3
2.1 × 100 mm column maintained at 40 �C. The mobile phases
were 10 mM perfluoroheptanoic acid in water (mobile phase A)
and acetonitrile (mobile phase B) using the following gradient:
(0 min–100% A, 1.0 min–100% A, 6.0 min–35% A, 6.01 min–
10% A, 7.0 min–10% A, 7.01 min–100% A, 9.0 min–100% A).
The flow rate was 0.3 ml/min with an injection volume of 10 μl
and total run time 9 min. Multiple reaction monitoring in pos-
itive ion mode was used for compound detection. Transitions
used for quantification are provided in Table S1.

Itaconic acid extracts were prepared and analyzed as pre-
viously described with slight modifications (83). Briefly, frozen
liver samples (�40 mg) were homogenized (Polytron PT2100,
Kinematica) in acetonitrile:water ratio 8:2, vortexed, shaken for
5 min at 4 �C, and centrifuged at maximum speed (3000×g).
Supernatant was dried under nitrogen and dried extracts were
reconstituted in 200 μl of a 1:9 methanol:water solution con-
taining 2% formic acid. Samples were separated with an
Acquity HSS T3 column (1.8 μm, 100 × 2.1 mm; Waters) with
0.1% formic acid in water (solvent A) and 0.1% formic acid in
acetonitrile (solvent B) mobile phase gradient (0 min–100% A,
1.0 min–100% A, 2.0 min–80% A, 4.0 min–1% A, 5.0 min–1%
A, 5.01 min–100% A, 7.0 min–100% A, flow rate 0.3 ml/min).
Detection was performed using a Xevo G2-XS Quadrupole
Time of Flight mass spectrometer with electrospray ionization
in negative ion mode. Data were acquired using a TOF MS
scanning method (m/z 50–1200 scan range) with the target
enhancement option tuned for m/z 129. Signals were identified
by retention time and accurate mass using MassLynx Version
4.2 (Waters). A 6 point itaconic acid standard calibration curve
was prepared by diluting unlabeled standard (Sigma Aldrich).
Gene expression, ChIP, pDRE, and protein location data

Hepatic RNA-seq datasets were previously published (35, 36,
84). Genes were considered differentially expressed when |fold-
change| ≥1.5 and posterior probability values (P1(t)) ≥ 0.8 as
determined by an empirical Bayes approach (85). Hepatic time
course (GSE109863), dose response (GSE203302), and diurnal
rhythmicity (GSE119780) datasets as well as duodenal
(GSE87542), jejunal (GSE90097), proximal (GSE171942), and
distal ileal (GSE89430) and colon (GSE171941) datasets are
available at the Gene Expression Omnibus. Diurnal rhythmicity
was determined using JTK_CYCLE as previously described
(35). AhR ChIP-seq (GSE97634) and computationally identified
putative DREs (https://doi.org/10.7910/DVN/JASCVZ) data
were previously published (36, 86). Significant AhR ChIP-seq
binding used a false discovery rate ≤0.05. Putative DREs were
considered functional with a matrix similarity score ≥0.856.

Quantitative real-time PCR

Expression of Acod1 was determined by quantitative real-
time PCR. Total hepatic RNA was reverse transcribed by Su-
perScript II (Invitrogen) using oligo dT primer according to
the manufacturer’s protocol. The quantitative real-time PCR
was performed using iQ SYBR Green Supermix (BioRad) on a
Bio-Rad CFX Connect Real-Time PCR Detection System.
Gene expression relative to vehicle control was calculated
using the 2−ΔΔCT method, where each sample was normalized
to the geometric mean of three housekeeping genes (Actb,
Gapdh, and Hprt). Gene expression data are plotted relative to
vehicle control. See Table S3 for primer sequences.

Measurement of Cbl and cobalt levels

Serum Cbl levels (vehicle, 1–30 μg/kg TCDD groups) were
determined by ELISA using a commercially available kit
(Cusabio) using SpectraMax ABS Plus plate reader (Molecular
Devices). Cobalt levels were measured in liver extracts (vehicle,
3–30 μg/kg TCDD groups) using inductively coupled plasma
mass spectrometry at the Michigan State University Diagnostic
Center for Population and Animal Health.

MUT assay

MUT activity was measured in hepatic extracts using a
thiokinase-coupled, spectrophotometric assay (87, 88). Total
protein lysates were isolated from frozen samples with
NP-40 cell lysis buffer (Thermo Fisher Scientific) containing
protease inhibitor using a Polytron PT2100 homogenizer
(Kinematica). MUT activity assay mixture contained 50 mM
trisphosphate buffer pH 7.5, 4 mM 5,50-dithiobis-(2-
nitrobenzoic acid), 10 mM ADP, 20 mM MgCl2, 20 mM
methylmalonyl-CoA, 0.1 U thiokinase, 20 μM AdoCbl. All
components were incubated at 30 �C for 40 min to equilibrate
temperature. The reaction was started by the addition of 1 μg
protein extract. Absorbance at 412 nm (A412) was measured
for 2 min, every 8 s. The increase in A412 in reactions lacking
substrate was subtracted from all readings. A412 values were
converted to concentration of free CoA using a pathlength
correction determined for the reaction volume and extinction
coefficient of 14150 M−1 cm−1.

Metagenomic analysis of microbial Cbl metabolism

Cecums from vehicle, 0.3, 3, and 30 μg/kg TCDD treatment
groups were used for metagenomic analysis. Genomic DNA
was extracted using the FastDNA spin kit for soil (SKU
116560200, MP Biomedicals) and submitted for quality con-
trol, library prep, and 150-bp paired-end sequencing at a depth
≥136 million reads using an Illumina NovaSeq 6000
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(Novogene) (NCBI BioProject ID: PRJNA719224). Reads
aligning to the C57BL/6 Mus musculus genome (NCBI
genome assembly: GRCm38.p6) were identified, flagged, and
removed using bowtie2 (89), SamTools (90) and bedtools (91).
The HuMaNn3 bioinformatic pipeline (92) was used with
default settings to classify reads to UniRef90 protein ID’s using
UniProt’s UniRef90 protein data base (January, 2019). Reads
classified to UniRef90 IDs were mapped to enzyme commis-
sion and PFAM entries using the human_regroup_table tool.
Abundances were normalized to gene copies per million reads
using the human_renorm_table tool. Statistical analysis used
Maaslin2 (https://github.com/biobakery/Maaslin2) with
default settings for normalization (total sum scaling), analysis
method (general linear model), and multiple correction
adjustment.
Data availability

RNA-Seq and AhR CHIP-Seq data are available through
Gene Expression Omnibus (GSE109863, GSE87519,
GSE119780, GSE97634, GSE87542, GSE90097, GSE171942,
GSE89430, GSE171941). Shotgun metagenomic analysis of
dose-dependent TCDD-elicited effects on cecal gut microbiota
is available through NCBI BioProject, ID: PRJNA719224. Raw
data of untargeted metabolomic analysis are deposited in the
NIH Metabolomics Workbench (ST001379).
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