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Abstract

Antimicrobial- resistant Escherichia coli, particularly those resistant to critically important antimicrobials, are increasingly 
reported in wildlife. The dissemination of antimicrobial- resistant bacteria to wildlife indicates the far- reaching impact of selec-
tive pressures imposed by humans on bacteria through misuse of antimicrobials. The grey- headed flying fox (GHFF; Pteropus 
poliocephalus), a fruit bat endemic to eastern Australia, commonly inhabits urban environments and encounters human micro-
bial pollution. To determine if GHFF have acquired human- associated bacteria, faecal samples from wild GHFF (n=287) and 
captive GHFF undergoing rehabilitation following illness or injury (n=31) were cultured to detect beta- lactam- resistant E. coli. 
Antimicrobial susceptibility testing, PCR and whole genome sequencing were used to determine phenotypic and genotypic anti-
microbial resistance profiles, strain type and virulence factor profiles. Overall, 3.8 % of GHFF carried amoxicillin- resistant E. coli 
(wild 3.5 % and captive 6.5 %), with 38.5 % of the 13 GHFF E. coli isolates exhibiting multidrug resistance. Carbapenem (bla

NDM-5
) 

and fluoroquinolone resistance were detected in one E. coli isolate, and two isolates were resistant to third- generation cepha-
losporins (bla

CTX- M-27
 and ampC). Resistance to tetracycline and trimethoprim plus sulfamethoxazole were detected in 69.2% and 

30.8 % of isolates respectively. Class 1 integrons, a genetic determinant of resistance, were detected in 38.5 % of isolates. Nine 
of the GHFF isolates (69.2 %) harboured extraintestinal virulence factors. Phylogenetic analysis placed the 13 GHFF isolates 
in lineages associated with humans and/or domestic animals. Three isolates were human- associated extraintestinal patho-
genic E. coli (ST10 O89:H9, ST73 and ST394) and seven isolates belonged to lineages associated with extraintestinal disease in 
both humans and domestic animals (ST88, ST117, ST131, ST155 complex, ST398 and ST1850). This study provides evidence 
of anthropogenic multidrug- resistant and pathogenic E. coli transmission to wildlife, further demonstrating the necessity for 
incorporating wildlife surveillance within the One Health approach to managing antimicrobial resistance.

DATA SUMMARY
Paired short- read sequence data for 13 antimicrobial- resistant 
Escherichia coli isolated from grey- headed flying foxes have 
been uploaded to the NCBI Sequence Read Archive (SRA) 
under BioProject ID PRJNA606529 (https://www. ncbi. nlm. 
nih. gov/ sra/ PRJNA606529). Assembled isolate sequences are 
available in EnteroBase, according to isolate name (http:// 

enterobase. warwick. ac. uk/ species/ index/ ecoli). Class 1 inte-
gron sequences were submitted to GenBank under acces-
sion numbers MT241250 to MT241254. An IncX3 plasmid 
sequence was submitted to GenBank under accession number 
MT264996 (https://www. ncbi. nlm. nih. gov/ genbank/). Indi-
vidual sample SRA and GenBank accession numbers, and 
EnteroBase Barcodes are available in Table S2 (available 
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in the online version of this article). GitHub URL links for 
interactive versions of all GrapeTree cgMLST phylogenetic 
trees are provided in Table S3 (available in the online version 
of this article).

INTRODUCTION
Global dissemination of multidrug- resistant (MDR) patho-
genic Escherichia coli to humans, domestic animals and wild-
life is of significant concern [1, 2]. In particular, dissemination 
of E. coli strains exhibiting resistance to critically important 
antimicrobials (CIAs), including third- to fifth- generation 
cephalosporins, fluoroquinolones, carbapenems and colistin, 
is of most concern [3, 4]. The dissemination of multidrug 
resistance is greatly facilitated via the association of anti-
microbial resistance genes with mobile genetic elements 
(MGEs), such as plasmids and transposons [5]. MGEs enable 
the horizontal transfer of antimicrobial resistance genes 
(ARGs) between diverse species of bacteria [5]. Integrons, 
via their association with transposons and plasmids, have 
played a significant role in the emergence and spread of anti-
microbial resistance (AMR) [6]. Class 1 integrons are capable 
of capturing and expressing diverse ARGs, mediated by the 
integrase gene (intl1) and a promoter (Pc), and typically carry 
a 3′-conserved segment (qacE∆1- sul1) [7]. The clinical class 
1 integron is common in Gram- negative bacteria, including 
MDR pathogenic E. coli [6].

The pathogenicity of E. coli strains is largely determined by 
the carriage of virulence factors (VFs) with specific combina-
tions of VFs defining pathogenic types (or pathotypes) [8]. 
Pathotypes are divided into those causing intestinal disease, 
referred to as intestinal pathogenic E. coli (IPEC), and those 
causing extraintestinal disease, referred to as extraintestinal 
pathogenic E. coli (ExPEC) [8]. ExPEC are subtyped according 
to infection site and host, such as uropathogenic E. coli 
(UPEC) in urinary tract infections (UTIs), sepsis- associated 
E. coli (SEPEC), neonatal meningitis E. coli (NMEC) and 
avian pathogenic E. coli (APEC) [9]. Core housekeeping 
genes are used to distinguish E. coli sequence types (STs), 
most commonly using the Achtman seven- gene multilocus 
sequence typing (MLST) scheme [10]. Specific STs such as 
ST69, ST73, ST95, ST131 and ST393 represent clonal groups 
of pathogenic E. coli [11], which are often associated with 
MDR UTI and sepsis [12–14].

MDR E. coli, including human pathogenic strains and clonal 
groups, are increasingly being detected in wildlife species 
around the world [15–18]. Of significant concern are the 
growing reports of resistance to CIAs in E. coli from wildlife, 
particularly extended- spectrum beta- lactamase- (ESBL) [19] 
and carbapenemase- producing E. coli [20], conferring resist-
ance to third- generation cephalosporins and carbapenems 
respectively. An anthropogenic origin of AMR in wildlife 
is further supported by the higher prevalence of AMR in 
wildlife species in close proximity to anthropogenic activity 
[21]. Wildlife species in captivity typically exhibit higher 
levels of AMR compared to their wild counterparts [22, 23], 

as do wildlife living or feeding in urban environments, such 
as silver gulls (Chroicocephalus novaehollandiae) [20], house 
crows (Corvus splendens) [16], red foxes (Vulpes vulpes) [24] 
and rats (Rattus norvegicus and R. rattus) [15]. Wild birds, 
particularly migratory species, may play a significant role in 
the long- distance dissemination of CIA- resistant E. coli [25].

Bats are the only mammals to have achieved powered flight 
[26], and like birds, they are highly mobile and capable of 
flying long distances [27, 28]. There are over 1300 species of 
bats belonging to the order Chiroptera [29], which is divided 
into two suborders: Yangochiroptera (includes the majority 
of microbat species) and Yinpterochiroptera (includes fruit 
bats and flying foxes) [30]. E. coli is reported as a common 
component of the intestinal microbiome in diverse species of 
microbats [31, 32] and fruit bats [32–36]. MDR and ESBL- 
producing E. coli have been detected in microbat species 
in Peru [37], Poland [38] and Portugal [39], and ExPEC- 
associated VFs were detected in antimicrobial- resistant E. coli 
from microbats in Brazil [31] and Portugal [39]. Of four studies 
investigating AMR in E. coli from fruit bat species, MDR and 
ESBL- producing E. coli were isolated from Franquet’s epau-
letted fruit bats (Epomops franqueti), Woermann’s fruit bats 
(Megaloglossus woermanni) [40] and straw coloured fruit bats 
(Eidolon helvum) (A. O. Oluduro, pers. comm.) in Africa [41]. 
The detection of AMR in fruit bats dates to as early as 1985, 
with trimethoprim, sulfamethoxazole and first- generation 
cephalosporin- resistant E. coli found in fruit bats (Cynopterus 
sp.) in Indonesia [42]. In contrast, E. coli isolates from five fruit 
bat species in the Republic of Congo did not exhibit acquired 
AMR, but multiple isolates were carrying ExPEC- associated 
VFs and 38.5 % of E. coli isolates were assigned to human- and 
domestic animal- associated STs (ST69, ST101, ST127, ST131 

Impact Statement

The spread of antimicrobial- resistant bacteria to wildlife 
has implications for the continuing emergence of antimi-
crobial resistance. We undertook studies targeting beta- 
lactam- resistant Escherichia coli in grey- headed flying 
foxes (GHFF), a fruit bat species endemic to Australia. We 
identified E. coli exhibiting resistance to multiple antimi-
crobials including several considered critically impor-
tant in human and veterinary medicine (carbapenems, 
cephalosporins and fluoroquinolones). The majority of 
resistant E. coli were also characteristic of extraintes-
tinal pathogenic E. coli, a type of E. coli that can cause 
urinary tract and blood infections in people. Phyloge-
netic analysis showed the GHFF E. coli isolates to be 
closely related to isolates associated with humans and/
or domestic animals. These findings indicate GHFF have 
acquired antimicrobial- resistant and pathogenic E. coli 
from humans and domestic animals. Further studies are 
needed to determine if these E. coli pose a zoonotic risk 
for people and if they impact GHFF health.
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and ST372) [33]. To date, no studies have performed whole 
genome sequencing (WGS) or phylogenetic analysis on E. coli 
isolates from either microbats or fruit bats.

Grey- headed flying foxes (GHFF; Pteropus poliocephalus) are 
a large fruit bat species endemic to Australia, with a broad 
geographical range extending across four States in eastern 
Australia. GHFF colonies typically comprise several thou-
sand individuals and may contain upwards of 50 000 flying 
foxes. Over recent decades, the number of colonies in urban 
environments, and the number of GHFF occupying urban 
colonies, has been increasing [43, 44], thus creating greater 
connectivity between people and GHFF in urban Australia.

Beta- lactam- resistant E. coli have previously been reported 
in several non- Australian fruit bat species [40–42], but no 
studies have examined the carriage of beta- lactam- resistant 
E. coli in Australian fruit bats. However, ARGs to narrow- 
spectrum penicillins, trimethoprim and aminoglycosides 
were detected in class 1 integrons in faecal DNA from GHFF, 
indicating carriage of resistance determinants by intestinal 
bacteria [45]. This study investigated the occurrence and 
genetic mechanisms of beta- lactam and multidrug resist-
ance in E. coli isolated from wild GHFF in urban colonies 
and captive GHFF undergoing rehabilitation following illness 
or injury. E. coli exhibiting AMR were assessed for human- 
associated STs and virulence determinants associated with 
specific pathotypes of E. coli.

METHODS

Faecal sample collection
A total of 318 faecal samples from wild GHFF (n=287) 
and captive GHFF (n=31) were used in this study. Captive 
GHFF were injured or sick flying foxes (from wild colonies) 
undergoing rehabilitation. Samples representing wild GHFF 
were obtained from three locations: Sydney, New South 
Wales (NSW) (n=61); Lake Macquarie, NSW (n=121); and 
Adelaide, South Australia (SA) (n=104). Captive GHFF 
samples were obtained via two wildlife rehabilitation organi-
zations: Fauna Rescue of South Australia (SA) (n=19) and 
Wildlife Information, Rescue and Education Service NSW 
(WIRES) (n=12). The captive GHFF in SA were recovering 
from heat stress and did not receive antimicrobial therapy 
and veterinary treatment records were unavailable for the 
NSW captive GHFF.

Faecal samples were acquired either directly from individual 
GHFF or opportunistically under roosting flying foxes. Using 
a FecalSwab system (COPAN), discrete faecal samples were 
collected from plastic drop sheets placed under roosting flying 
foxes (n=194), via a rectal swab (n=94; Adelaide) or collected 
aseptically from the intestine at necropsy (n=30; Adelaide and 
Sydney). Euthanized and freshly deceased GHFF were frozen 
at −20 °C and thawed for necropsy and sampling within 4–8 
weeks. FecalSwab samples were stored at 4 °C and cultured 
within 72 h of collection.

Detection of beta-lactam-resistant E. coli in faecal 
samples
Faecal samples were screened for the presence of beta- lactam- 
resistant E. coli (specifically, resistance to penicillins and 
third- generation cephalosporins) by inoculating FecalSwab 
media (0.2 ml) into 5 ml of Luria- Bertani (LB) broth (Difco 
Laboratories) containing 10 mg l−1 amoxicillin (a penicillin) 
(Sigma), and incubated overnight at 37 °C. The LB broth was 
then inoculated onto Chromocult Coliform Agar (Merck 
Millipore) supplemented with 10 mg l−1 amoxicillin (Sigma) 
or 32 mg l−1 cefoperazone (a third- generation cephalosporin) 
(Oxoid) and incubated overnight at 37 °C. Dark blue or purple 
colonies were deemed to be E. coli.

Antimicrobial susceptibility testing of E. coli 
isolates
Isolates exhibiting beta- lactam resistance underwent further 
antimicrobial susceptibility testing (AST) against a panel of 
19 antibiotics comprising 12 antimicrobial categories using 
disc diffusion and minimal inhibitory concentration (MIC) 
methods. Disc diffusion AST was performed according to the 
European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) with 18 antibiotics comprising 11 antimicrobial 
categories [46] (Table S1). Isolates were evaluated as suscep-
tible or resistant using EUCAST breakpoint criteria (v 9.0 
available at http://www. eucast. org/ clinical_ breakpoints/). 
Where EUCAST breakpoints were unavailable, susceptibility 
was determined using the Clinical and Laboratory Standards 
Institute (CSLI) breakpoint criteria (CLSI M100 ED29 : 
2019 available at https:// clsi. org/ standards/ products/ free- 
resources/ access- our- free- resources/).

A negative control, E. coli isolate FF1170 (Enterobase Barcode 
ESC_JA9915AA) was sourced from a GHFF faecal sample 
cultured on non- supplemented Chromocult Coliform Agar 
(Merck Millipore). Isolate FF1170 carried no ARGs (previ-
ously determined by WGS) and was phenotypically suscep-
tible to all 19 antibiotics used for AST. FF1170 was included 
as a quality control and to assist evaluating zone diameters 
where no EUCAST or CLSI breakpoint criteria existed. In 
the absence of breakpoint data, growth up to the edge of the 
disc was evaluated as resistant, and intermediate resistance 
was reported where inhibition zone diameters were smaller 
than the negative control isolate FF1170, but growth was not 
up to the edge of the disc. Multidrug resistance was defined 
as acquired resistance to at least one agent in three or more 
antimicrobial categories [47].

MIC methods were used for AST of colistin and imipenem. 
MIC determination of colistin was performed according to 
EUCAST guidelines and the ISO- standard broth microdilu-
tion method (20776-1), using cation- adjusted BBL Mueller- 
Hinton II Broth (Becton Dickinson) and colistin sulphate 
salt ≥15 000 U mg−1 (Sigma). Isolates exhibiting carbapenem 
resistance in EUCAST disc diffusion AST (imipenem IPM10 
and meropenem MEM10) were further tested to determine 
the MIC of imipenem using M.I.C. Evaluator strips (Oxoid).

http://www.eucast.org/clinical_breakpoints/
https://clsi.org/standards/products/free-resources/access-our-free-resources/
https://clsi.org/standards/products/free-resources/access-our-free-resources/
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Screening for class 1 integrons in E. coli isolates
Isolates were grown in 10 ml of LB broth (Difco Labora-
tories) at 37 °C overnight with shaking (150 r.p.m.) and 
DNA extracted using the ISOLATE II Genomic DNA Kit 
(Bioline). DNAs were then screened for the presence of the 
class 1 integron integrase gene (intI1) using primers HS463a 
and HS464, and intI1 positives were then amplified using 
primers HS458 and HS459 (target the conserved attl1 and 
3′ qacE∆1 region of the class 1 integron) [45]. IntI1- positive 
isolates which failed to amplify gene cassette arrays using 
primers HS458 and HS459 were amplified using primers 
HS458 and JL- D2 [48] using cycling conditions of 94 °C for 
3 min; 35 cycles 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 
min 30 s; and 72 °C for 5 min. JL- D2 targets the IS26 trans-
posase, an alternativee 3′ sequence to the qacE∆1- conserved 
segment found in class 1 integrons [48]. The HS458/HS459 
and HS458/JL- D2 PCRs both amplify the entire class 1 
integron gene cassette array.

PCR amplicons were purified for sequencing using the 
MinElute PCR Purification Kit (Qiagen). Sequencing was 
performed at the Ramaciotti Centre for Genomics (Sydney, 
NSW, Australia) using Big Dye Terminator chemistry version 
3.1 and ABI 3730/3730xl Capillary Sequencers (Applied 
Biosystems). Sequences were manually checked for quality, 
assembled using Geneious R11 software (Biomatters) and 
analysed for the presence of AMR genes using Integrall (http:// 
integrall. bio. ua. pt/? search#). Annotation was performed 
manually in Geneious using BLASTn (https:// blast. ncbi. nlm. 
nih. gov/ Blast. cgi). Class 1 integron sequences were submitted 
to GenBank (Table S2).

Whole genome sequencing of E. coli isolates
Isolates were grown in 5 ml LB broth culture at 35 °C over-
night with shaking (150 r.p.m.) and DNA extracted as above. 
Genomic DNA concentrations were determined using a 
Qubit dsDNA BR assay kit (Invitrogen). Libraries were 
prepared using Nextera XT DNA or Nextera DNA Flex kits 
(Illumina) according to the manufacturer’s instructions. WGS 
was performed on an Illumina MiSeq system using the MiSeq 
reagent kit v2 (2×150 bp paired- end reads) or MiSeq reagent 
kit v3 (2×300 bp paired- end reads). Raw sequence reads 
were assembled as de novo genome sequences using SPAdes 
Assembler 3.13.0 [49] in Geneious Prime 2020.2.1 (Biomat-
ters). Raw sequence reads for all antimicrobial- resistant E. coli 
isolates were uploaded to the NCBI Sequence Read Archive 
(SRA). Individual SRA accession numbers and EnteroBase 
Barcodes are listed in Table S1.

ResFinder 4.0 (available at https:// cge. cbs. dtu. dk/ services) 
was used to identify acquired AMR genes and point muta-
tions in WGS SPAdes assemblies for each isolate, with search 
parameters set at a 90 % threshold for identity and 60 % 
minimum length [50]. Isolates uploaded in EnteroBase were 
assigned to an E. coli phylogroup using ClermonTyping [51], 
ST using the Achtman seven gene MLST scheme, predicted 
serotype (O:H) and fimH type using fimTyper [52] (http:// 
enterobase. warwick. ac. uk/ species/ index/ ecoli) [53].

WGS SPAdes assemblies for all isolates were screened for VFs 
associated with IPEC and ExPEC using VirulenceFinder 2.0, 
with search parameters set at a 90 % threshold for identity 
and 60 % minimum length (available at https:// cge. cbs. dtu. 
dk/ services) [54] and ABRicate VFDB (https:// github. com/ 
tseemann/ abricate) [55], with search parameters set at a 80 % 
threshold for identity and 80 % DNA coverage in Galaxy 
Australia (available at https:// usegalaxy. org. au/). Isolates 
were assessed for the presence of 27 ExPEC- associated VFs: 
adhesins (afa/dra, fimH, iha, papA/papC, sfa/foc, tsh), inva-
sins (gimB, ibeA), iron acquisition (fyuA/irp/ybt, ireA, iroN, 
iutA/iucA, sitA), protectins (iss, neuC, traT), toxins (astA, clb, 
cnf1, hly, sat, usp, vat), miscellaneous (ompT, pic, malX) and 
capsule (kpsM II) [9, 56, 57]. Isolates were also assessed for the 
presence of additional VFs, including bacteriocins (colicins 
and microcins), chuA, lpfA and senB.

Isolate pathotype was designated according to carriage of 
ExPEC- associated and additional VFs. Of the 27 ExPEC- 
associated VFs, five were considered key VFs (afa/dra, iutA, 
kpsM II, papA/papC, sfa/foc) [56]. The presence of two or 
more of these five key ExPEC VFs was used define isolates as 
ExPEC [56]. Isolates that carried fewer than two of the five key 
ExPEC VFs were defined as ‘ExPEC- potential’, ‘ExPEC- like’ 
or ‘low pathogenicity’ as follows: ‘ExPEC- potential’ if they 
carried five or more of 27 ExPEC- associated VFs, ‘ExPEC- 
like’ if they carried fewer than five ExPEC VFs but five or 
more total VFs (ExPEC- associated and additional VFs), or 
‘low pathogenicity’ if they carried fewer than five total VFs.

ST131 isolates were assigned to a clade according to fimH 
type, gyrA and parC allele types (and associated phenotypic 
resistance or sensitivity to fluoroquinolones), and the pres-
ence or absence of blaCTX- M-15 [2, 58]. ST131 isolates were also 
assigned a virotype according to a scheme based on the pres-
ence or absence of 11 VFs [13].

Plasmids were detected using PlasmidFinder 2.1, with search 
parameters set at a 95 % threshold for identity and 60 % 
minimum length for the Enterobacteriaceae database [59] 
(available at https:// cge. cbs. dtu. dk/ services). The blaNDM-5 
IncX3, blaNDM-7 IncX3 and blaNDM-1 plasmids were assem-
bled using Geneious Prime 2020.1.1 1 (Biomatters). IncX3 
plasmid annotation was performed using a reference library 
comprising GenBank accessions (CP032424, MG825368, 
MG825382, MG825384, MH347484, MH917280) with 
>99.99 % identity match to the FF993W IncX3 plasmid in a 
BLASTn search (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi). The 
FF993W IncX3 plasmid sequence was submitted to GenBank 
under accession number MT264996.

Phylogenetic analysis of E. coli isolates
E. coli isolates phylogenetically related to GHFF isolates were 
identified in EnteroBase by searching for isolates with the 
same ST using the Achtman seven gene MLST scheme (http:// 
enterobase. warwick. ac. uk/ species/ ecoli/ search_ strains? 
query= st_ search) [53]. Where fewer than 50 isolates of the 
same ST were found, the search was expanded to include 
STs with up to two locus variants. Phylogenetic analysis 

http://integrall.bio.ua.pt/?search#
http://integrall.bio.ua.pt/?search#
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://cge.cbs.dtu.dk/services
http://enterobase.warwick.ac.uk/species/index/ecoli
http://enterobase.warwick.ac.uk/species/index/ecoli
https://cge.cbs.dtu.dk/services
https://cge.cbs.dtu.dk/services
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
https://usegalaxy.org.au/
https://cge.cbs.dtu.dk/services
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://enterobase.warwick.ac.uk/species/ecoli/search_strains?query=st_search
http://enterobase.warwick.ac.uk/species/ecoli/search_strains?query=st_search
http://enterobase.warwick.ac.uk/species/ecoli/search_strains?query=st_search
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comparing EnteroBase and GHFF isolates was performed 
using GrapeTree to construct a rapid neighbour- joining 
(RapidNJ) minimum spanning tree based on the core- genome 
MLST (cgMLST) V1 +Hierarchical Clustering (HierCC) 
V1 scheme from EnteroBase [60]. For trees comprising in 
excess of 250 isolates, clades containing the GHFF isolate were 
identified and used to reconstruct refined trees. All resulting 
trees contained between 17 and 204 isolates. Branch lengths 
were used to calculate the cgMLST allelic differences between 
closely related isolates. GitHub URL links for interactive 

versions of all GrapeTree cgMLST phylogenetic trees are 
provided in Table S3.

Clusters containing GHFF isolates identified in the GrapeTree 
phylogenetic analysis were used to construct a maximum- 
likelihood tree [53] based on RAxML of non- repetitive core 
SNPs (minimum presence 95 %) using the EnteroBase SNP 
Project dendrogram module against an appropriate refer-
ence genome (Enterobase barcodes for reference genomes 
are provided in the legends to Figs 1–4) [53]. Metadata and 
WGS assemblies for SNP cluster isolates were downloaded 

Fig. 1. Phylogenetic and metadata analysis of human- associated amoxicillin- resistant extra- intestinal pathogenic E. coli isolates from 
grey- headed flying foxes (GHFF) and closely related isolates identified in Enterobase. Left: GrapeTree phylogeny reconstructed using a 
rapid neighbour- joining (RapidNJ) minimum spanning tree based on the cgMLST V1+Hierarchical Clustering (HierCC) V1 scheme. GHFF 
isolates are described as Source Type ‘Bat’ and highlighted with a black circle. Clusters containing GHFF isolates are circled in red. 
Scale bars indicate the number of cgMLST allelic differences. GitHub URL links for interactive versions of all GrapeTrees are provided in 
Table S3. Right: core genome SNP analysis and associated metadata tables of GrapeTree clusters containing GHFF isolates. Maximum- 
likelihood trees were based on RAxML of non- repetitive core SNPs using the EnteroBase SNP Project dendrogram module against a 
reference genome (removed from SNP tree images for clarity). Isolate ID indicates Enterobase Barcode or GHFF isolate name. Coloured 
rectangles (orange for GHFF and grey for other host sources) indicate the presence of a specific gene and white squares indicate its 
absence. Orange text indicates GHFF isolates. Scale bars indicate the number of substitutions per site. (a) FF993W, ST10 O89:H9. (b) 
FF1659B, ST73 O22:H1. (c) FF1145A, ST394 O17/O77:H18.
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Fig. 2. Phylogenetic and metadata analysis of human- and animal- associated amoxicillin- resistant extra- intestinal pathogenic E. 
coli isolates from grey- headed flying foxes (GHFF) and closely related isolates identified in Enterobase. Left: GrapeTree phylogeny 
reconstructed using a rapid neighbour- joining (RapidNJ) minimum spanning tree based on the cgMLST V1+Hierarchical Clustering 
(HierCC) V1 scheme. GHFF isolates are described as Source Type ‘Bat’ and highlighted with a black circle. Clusters containing GHFF 
isolates are circled in red. Scale bars indicate the number of cgMLST allelic differences. GitHub URL links for interactive versions 
of all GrapeTrees are provided in Table S3. Right: core genome SNP analysis and associated metadata tables of GrapeTree clusters 
containing GHFF isolates. Maximum- likelihood trees were based on RAxML of non- repetitive core SNPs using the EnteroBase SNP 
Project dendrogram module against a reference genome (removed from SNP tree images for clarity). Isolate ID indicates Enterobase 
Barcode or GHFF isolate name. Coloured rectangles (orange for GHFF and grey for other host sources) indicate the presence of a specific 
gene and white squares indicate its absence. Orange text indicates GHFF isolates. Scale bars indicate the number of substitutions per 
site. (a) FF1616, ST88 O8:H19. (b) FF1659A, ST155 ONT:H9. (c) FF1084, ST1850 O9:H10. (d) FF1249, ST131 O25:H4.
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from EnteroBase [53] and analysed for VFs, AMR genes and 
plasmids as described for GHFF isolates. Additional meta-
data was obtained for ST10 O9:H9 isolates from the Philip-
pines (BioProject PRJEB17615) [61] and German isolates 
ESC_NA8438AA and ESC_NA8451AA (J. B. Hans and 
the National Reference Laboratory for multidrug- resistant 
Gram- negative bacteria, Bochum, Germany; pers. comm.), 
and ST73 isolate ESC_EA4438AA (D. M. Gordon, Australian 
National University, pers. comm.).

RESULTS
Selective culture for beta-lactam-resistant E. coli in 
GHFF faecal samples
Beta- lactam- resistant E. coli were isolated from 12 of 318 
faecal samples collected from wild and captive GHFF, giving 
an overall occurrence of 3.8 % (Table 1). The occurrence was 
3.5 % (n=10/287) in the wild GHFF and 6.5 % (n=2/31) in 
the captive GHFF, and the two captive locations differed 
considerably (Sydney, 0.0 % and Mylor, 10.5 %) (Table 1). 
Amoxicillin- resistant E. coli (n=13) were present in 12 
GHFF faecal samples, with two morphologically distinct 
E. coli isolates (determined by colony colour) detected in 
one faecal sample (FF1659) (Table 1). A single isolate also 
exhibited resistance to cefoperazone (abundant growth at 
32 mg l−1) and a second isolate exhibited intermediate resist-
ance to cefoperazone (low growth at 32 mg l−1) (Table 2).

Strain typing of GHFF E. coli isolates
The 13 amoxicillin- resistant E. coli isolates belonged to six 
phylogroups, with 46.6 % (n=6/13) of isolates designated 
phylogroup A, and the remaining seven isolates distributed 
between phylogroups B1, B2, C, D and G (Table 2). The 13 
GHFF isolates were assigned to 12 different STs (Table 2), 
of which four isolates belonged to the ST10 complex (ST10, 
ST48 and ST7187) and two belonged to the ST155 complex 
(ST155 and ST1673) (Table 2). All 13 isolates were assigned 
different serotypes, with three designated O non- typable 
(ONT) (Table 2).

Phenotypic resistance profiles of beta-lactam-
resistant GHFF E. coli
AST identified resistance to 17 antibiotics from 10 antimi-
crobial categories across all 13 amoxicillin- resistant GHFF 
E. coli isolates (Table 2). All isolates (n=13/13) also exhib-
ited resistance to ampicillin, 69.2 % (n=9/13) to tetracycline, 
30.8 % (n=4/13) to trimethoprim/sulfamethoxazole, 30.8 % 
(n=4/13) to at least one aminoglycoside (streptomycin 
and/or spectinomycin) and 15.4 % (n=2/13) to first- and 
third- generation cephalosporins (Table  2). One E. coli 
isolate from Sydney (FF993W, ST10 O89:H9) was highly 
MDR, exhibiting resistance to 10 antimicrobial categories, 
including carbapenems (imipenem MIC=32 µg ml−1), third- 
generation cephalosporins and fluoroquinolones (Table 2). 

Fig. 3. Phylogenetic and metadata analysis of animal- associated amoxicillin- resistant extra- intestinal pathogenic E. coli isolates from 
grey- headed flying foxes (GHFF) and closely related isolates identified in Enterobase. Left: GrapeTree phylogeny reconstructed using a 
rapid neighbour- joining (RapidNJ) minimum spanning tree based on the cgMLST V1+Hierarchical Clustering (HierCC) V1 scheme. GHFF 
isolates are described as Source Type ‘Bat’ and highlighted with a black circle. Clusters containing GHFF isolates are circled in red. 
Scale bars indicate the number of cgMLST allelic differences. GitHub URL links for interactive versions of all GrapeTrees are provided in 
Table S3. Right: core genome SNP analysis and associated metadata tables of GrapeTree clusters containing GHFF isolates. Maximum- 
likelihood trees were based on RAxML of non- repetitive core SNPs using the EnteroBase SNP Project dendrogram module against a 
reference genome (removed from SNP tree images for clarity). Isolate ID indicates Enterobase Barcode or GHFF isolate name. Coloured 
rectangles (orange for GHFF and grey for other host sources) indicate the presence of a specific gene and white squares indicate its 
absence. Orange text indicates GHFF isolates. Scale bars indicate the number of substitutions per site. (a) FF1155A, ST117 O85:H18. (b) 
FF1140B, ST1673 ONT:H21.



8

McDougall et al., Microbial Genomics 2021;7:000571

Fig. 4. Phylogenetic and metadata analysis of amoxicillin- resistant E. coli isolates with low pathogenicity from grey- headed flying foxes 
(GHFF) and closely related isolates identified in Enterobase. Left: GrapeTree phylogeny reconstructed using a rapid neighbour- joining 
(RapidNJ) minimum spanning tree based on the cgMLST V1+Hierarchical Clustering (HierCC) V1 scheme. GHFF isolates are described as 
Source Type ‘Bat’ and highlighted with a black circle. Clusters containing GHFF isolates are circled in red. Scale bars indicate the number 
of cgMLST allelic differences. GitHub URL links for interactive versions of all GrapeTrees are provided in Table S3. Right: core genome 
SNP analysis and associated metadata tables of GrapeTree clusters containing GHFF isolates. Maximum- likelihood trees were based 
on RAxML of non- repetitive core SNPs using the EnteroBase SNP Project dendrogram module against a reference genome (removed 
from SNP tree images for clarity). Isolate ID indicates Enterobase Barcode or GHFF isolate name. Coloured rectangles (orange for GHFF 
and grey for other host sources) indicate the presence of a specific gene and white squares indicate its absence. Orange text indicates 
GHFF isolates. Scale bars indicate the number of substitutions per site. (a) 1158A, ST10 O16:H48. (b) FF1091, ST48 O4:H26. (c) FF1150B, 
ST7187 ONT:H11. (d) FF1640, ST398 O155:H20.
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Overall, 38.5 % (n=5/13) of amoxicillin- resistant E. coli were 
MDR, with four of five isolated from wild GHFF and one 
from a captive GHFF. Resistance to amikacin, gentamycin, 
colistin and nitrofurantoin was not detected.

AMR genes and associated elements
Class 1 integrons encoding ARGs were identified in five of 
13 E. coli isolates (38.5 %), with four of five isolated from 
wild GHFF and one from a captive GHFF. The most frequent 
cassette array contained a dihydrofolate reductase gene, 
dfrA14 (n=3), conferring resistance to trimethoprim, one 
cassette contained an aminoglycoside adenylyltransferase 
gene, aadA1 (conferring spectinomycin and streptomycin 
resistance), and one cassette contained two genes, dfrA17 
(trimethoprim resistance) and aadA5 (spectinomycin resist-
ance) (Table S4). In four of five class 1 integrons detected, the 
typical 3′-conserved segment (qacE∆1- sul1) was replaced by 
an IS26 transposase and only the integron harbouring aadA1 
carried the full length 3′-conserved segment containing sul1. 
BLASTn searches of the three class 1 integron types found 
identical sequence matches for each to numerous integrons 
associated with diverse hosts and E. coli strains, including 
ExPEC strains: GenBank accessions CP038455 and LR130553 
(dfrA14- IS26), MH847038 (dfrA17- aadA5- IS26) and 
CP048873 (aadA1- qacE∆1).

WGS of E. coli isolates identified 16 resistance mechanisms 
(11 acquired ARGs and five known point mutations in 
intrinsic ARGs) in addition to ARGs identified in class 1 
integrons (ARG profiles for all isolates are provided in Table 
S4). The highly MDR isolate FF993W (ST10 O89:H9) carried 
nine acquired ARGs and four known point mutations. The 
remaining 12 isolates carried between one and five acquired 
resistance genes or known point mutations. AMR genes and 
corresponding EUCAST phenotypic antibiotic resistance 
profiles are shown in Table 2.

Resistance to amoxicillin and ampicillin was predominantly 
conferred by blaTEM genes (92.3 %), blaTEM- 1A (n=1/13) and 
blaTEM- 1B (n=11/13). A single isolate (ST131) carried a 
known point mutation in the ampC gene promotor (T- 32A), 

conferring resistance to amoxicillin and ampicillin, plus 
amoxicillin- clavulanic acid, first- generation cephalosporins 
and intermediate resistance to third- generation cephalo-
sporins. In the highly MDR ST10 O89:H9 isolate, first- and 
third- generation cephalosporin resistance was associated 
with blaCTX- M-27 (100 % identity to GenBank sequence 
AY156923) and carbapenem resistance was conferred 
by a New Delhi metallo- beta- lactamase blaNDM-5 (100 % 
identity to GenBank sequence JN104597). The blaNDM-5 
gene was carried on an IncX3 plasmid (partial sequence, 
45 510 bp, GenBank MT264996) and showed >99.99 % 
identity to numerous blaNDM-5 carrying IncX3 plasmids 
that were predominantly associated with E. coli (GenBank 
MH347484, MG825384 and MG825382), but also Klebsiella 
pneumoniae (GenBank MK628734), Citrobacter freundii 
(GenBank CP024820) and Proteus mirabilis (GenBank 
CP043333). The E. coli isolates harbouring highly similar 
IncX3 plasmids were associated with diverse STs and hosts, 
including ST48 from geese (GenBank CP034745), ST156 
from human blood (GenBank CP048025), ST977 from 
pork (GenBank MG825382), ST1011 from human faeces 
(GenBank AP023197) and ST1079 from chicken (GenBank 
MG825384). The FF993W blaNDM-5 IncX3 plasmid (GenBank 
MT264996) did not harbour class 1 integrons or any other 
resistance genes, but did carry multiple transposases (IS5/
IS1182, IS30 and ISL3).

Eight of nine tetracycline- resistant isolates carried tet(A), 
although the genetic mechanism of tetracycline resistance 
could not be identified in the ninth isolate FF1155A (ST117). 
Trimethoprim plus sulfamethoxazole- resistant isolates all 
carried sul2 (n=4/4), in addition to the dfrA genes identified 
in class 1 integrons. Two of 13 isolates carried aph(3′′)- Ib 
and aph(6)- Id conferring streptomycin resistance. In isolate 
FF993W (ST10 O89:H9), fluoroquinolone resistance was 
conferred by a combination of four point mutations in gyrA 
(S83L and D87N), parC (S80I) and parE (L416F), and chlo-
ramphenicol resistance by catA2. The ST394 isolate carried 
the qnrS1 gene but failed to exhibit phenotypic resistance to 
quinolones or fluoroquinolones.

Table 1. Occurrence of amoxicillin- resistant (AMX- R) E. coli detected by location

Location Wild/captive No. of faecal samples tested No. of faecal samples positive for AMX- R E. coli No. AMX- R E. coli isolated

SYD Wild 61 4/61 (6.6 %) 4

LM Wild 122 3/122 (2.5 %) 4

ADL Wild 104 3/104 (2.9 %) 3

Total (wild)   287 10/287 (3.5 %) 11

SYD Captive 12 0/12 (0.0 %) 0

MYL Captive 19 2/19 (10.5 %) 2

Total (captive)   31 2/31 (6.5 %) 2

Total (wild and captive) 318 12/318 (3.8 %) 13

ADL, Adelaide. AMX- R, Amoxicillin- resistant. LM, Lake Macquarie. MYL, Mylor. SYD, Sydney.
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VFs and plasmids of GHFF E. coli isolates
WGS analysis revealed 21 ExPEC- associated VFs distributed 
among the 13 GHFF E. coli, with the most frequent VFs being 
fimH (100 %, n=13/13), iss and ompT (69.2 %, n=9/13), sitA 
(61.5 %, n=8/13), traT (53.8 %, n=7/13) and iroN (46.2 %, 
n=6/13) (Table S4). Less frequently detected VFs included 
aerobactin (iutA/iucA), afa, astA, colibactin (clbB), cnf1, kpsM 
II, papC, sfa/foc, uropathogenic- specific protein (usp) and 
yersiniabactin (fyuA/irp/ybt), which were present in less than 
40 % of GHFF E. coli isolates. Six VFs (gimB, iha, ireA, malX, 
neuC and sat) were not detected. At least one bacteriocin was 
present in eight isolates (61.5 %), and four of these eight were 
carrying both colicin and microcin VFs (Table S4). Between 
one and five plasmids were identified in the GHFF isolates, 
including IncFIB (69.2 %, n=9/13), IncFII (46.2 %, n=6/13), 
IncX (30.8 %, n=4/13) and Col (30.8 %, n=4/13). The VF and 
plasmid profiles for all isolates are provided in Table S4.

The carriage of three key ExPEC VFs (afa, iutA and sfa/foc) 
by FF1659B (ST73 O22:H1) made it the only GHFF E. coli 
isolate meeting the criteria for ExPEC. A further six isolates 
(46.2 %) each carried one key ExPEC- associated VF. Based 
on overall ExPEC VF profiles, the 13 GHFF isolates were 
assigned to four pathotypes: ExPEC (7.7%, n=1/13), ExPEC- 
potential (46.2 %, n=6/13), ExPEC- like (15.4 %, n=2/13) and 
low pathogenicity (30.8 %, n=4/13) (Table 2). Of the nine E. 
coli isolates with ExPEC traits, the majority (8/9) were from 
wild GHFF and one (FF1084) was from a captive GHFF at 
Mylor (Table 2).

Phylogenies of E. coli with ExPEC traits

Human-associated ExPEC lineages
GrapeTree phylogenetic analysis placed three of the nine 
GHFF isolates with ExPEC traits (FF993W, FF1659B and 
FF1145A) in lineages predominantly comprising human- 
sourced isolates (Fig. 1a–c). All three GHFF isolates were 
clustered with very closely related human- sourced ExPEC 
isolates, with the most closely related isolates having only 13, 
11 and 21 cgMLST allelic differences for FF993W, FF1659B 
and FF1145A respectively. All three GHFF human- associated 
ExPEC isolates harboured class 1 integrons, and two were 
considered MDR (FF993W and FF1145A).

The highly MDR E. coli isolate FF993W (ST10 O89:H9) was 
the only O89:H9 serotype isolate in a cluster of predominantly 
clinical human- sourced O9:H9 serotype isolates (Fig. 1a). The 
cluster was broadly divided into two sub- clusters harbouring 
different VF and AMR profiles, with aerobactin, blaCTX- M-

15,blaOXA-1 and dfrA17 present in one sub- cluster, and bacte-
riocins, blaCTX- M-27,blaTEM- 1B and dfrA14 generally present in 
the second sub- cluster containing the GHFF isolate (Fig. 1a). 
Additionally, three variants of the blaNDM gene (blaNDM-1, 
blaNDM-5 and blaNDM-7) were present in isolates in the second 
sub- cluster containing FF993W (Fig.  1a). FF993W (ST10 
O89:H9) was most closely related to three human isolates, 
two from Germany (ESC- NA8438AA and ESC_NA8451AA 
having 13–17 cgMLST allelic differences respectively) and one 

from the USA (ESC_SA9076AA having 24 cgMLST allelic 
differences) (Fig. 1a). Both FF993W and ESC_SA9076AA 
harboured identical IncX3 plasmids carrying blaNDM-5 and 
two isolates, one from the Philippines (ESC_GA3189AA) 
and one from the USA (ESC_SA9085AA), harboured IncX3 
plasmids carrying blaNDM-7 (Fig.  1a). The blaNDM-7 IncX3 
plasmid was almost identical to the blaNDM-5 IncX3 plasmid 
carried by FF993W and ESC_SA9076AA, with only two 
nucleotide differences between the blaNDM genes and a 1277 
bp IS30 transposase deletion in the blaNDM-7 IncX3 plasmid. 
The five Philippines sourced isolates in the GHFF sub- cluster 
harboured blaNDM-1 on a different 27 kbp plasmid, including 
ESC_GA3189AA, which co- harboured the blaNDM-7 IncX3 
plasmid (Fig.  1a). All cluster isolates carried an IncFIB 
plasmid and all except one also carried an IncFII plasmid, but 
carriage of other plasmid types was highly variable (Fig. 1a).

The only isolate to be classified as ExPEC, FF1695B (ST73 
O22:H1), was placed in a cluster with six human ExPEC 
isolates and was most closely related to three Australian- 
sourced UPEC (11–28 cgMLST allelic differences) (Fig. 1b). 
All seven cluster isolates harboured highly similar VF profiles 
(including afa, clb, cnf1, hly, kpsM II, sfa/foc, usp and yersinia-
bactin), AMR genes (aadA1, blaTEM- 1B and sul1) and plasmids 
(Col156, IncFIB and IncFII) (Fig. 1b).

The GHFF E. coli isolate FF1145A (ST394 O17/O77:H18) 
belonged to a predominantly human- associated cluster, 
including one ExPEC, and was most closely related to two 
human faecal- sourced isolates from Cambodia (21 cgMLST 
allelic differences) (Fig. 1c). All cluster isolates shared almost 
identical VF profiles, including KpSM II, lpfA and ompT, 
whereas AMR and VF profiles were diverse, with the excep-
tion of blaTEM- 1B and tet(A) carriage by almost all isolates 
(Fig. 1c).

Human- and animal-associated ExPEC lineages
GrapeTree phylogenetic analysis placed four isolates with 
ExPEC traits (FF1616, FF1659A, FF1084 and FF1249) in 
lineages comprised of human- and animal- sourced isolates 
(Fig.  2a–d). However, all four GHFF isolates belonged to 
clusters predominantly containing animal- sourced isolates, 
with at least one human- associated isolate being present in 
three of four clusters (Fig. 2a–d). The most closely related 
isolates had 83, 54, 74 and 32 cgMLST allelic differences for 
FF1616, FF1659A, FF1084 and FF1249 respectively, and are 
notably less closely related to GHFF isolates in comparison 
to the three GHFF isolates clustered with human- associated 
ExPEC (11–21 cgMLST allelic differences).

The FF1616 (ST88 O8:H19) cluster included one human 
ExPEC and three poultry- sourced isolates showing 83–104 
cgMLST allelic differences to FF1616 (Fig.  2a). All ST88 
O8:H19 cluster isolates harboured bacteriocins, yersinia-
bactin and papC VFs (Fig. 2a). Four of five cluster isolates 
harboured IncFIB and IncFII plasmids, but carriage of other 
plasmid types and ARGs was highly variable (Fig. 2a).

The FF1659A (ST155 ONT:H9) and FF1084 (ST1850 
O9:H10) E. coli clusters both contained isolates, including 
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ExPEC, from diverse host sources (Fig. 2b, c). The ST155 
ONT:H9 cluster isolates showed 54–71 cgMLST allelic 
differences to FF1659A and all harboured aerobactin, yers-
iniabactin and bacteriocins (Fig. 2b). ST155 cluster isolates 
also harboured similar plasmid profiles, but ARG carriage 
was variable (Fig. 2b). The ST1850 O9:H10 cluster contained 
two ExPEC isolates, one sourced from human blood and the 
other from canine urine, showing 86 and 82 cgMLST allelic 
differences to FF1084 respectively (Fig. 2c). ST1850 cluster 
isolates showed highly variable VF, ARG and plasmid profiles 
(Fig. 2c).

FF1249 belonged to a highly virulent ST131 O25:H4 fimH22 
clade B virotype D cluster, with no isolates harbouring 
blaCTX_M-15 or parC/gyrA allele variants conferring fluoroqui-
nolone resistance (Fig. 2d). Two cluster isolates, FF1249 and 
the gull isolate (ESC_IA0983AA), carried an ampC point 
mutation (T- 32A) conferring resistance to cephalosporins, 
and no isolates harboured any acquired ARGs (Fig. 2d). The 
GHFF ST131 cluster contained six canine- sourced ExPEC 
and one gull faecal isolate, showing 32–46 cgMLST allelic 
differences to FF1249 (Fig.  2d). The most closely related 
isolate (32 cgMLST allelic differences) was sourced from 
canine urine in Australia (ESC_SA4313AA) (Fig. 2d). The 
ST131 cluster isolates shared almost identical VF profiles, 
including ibeA, KpsM II, usp and yersiniabactin, and all 
isolates carried Col156, IncFIB and IncFII plasmids, with 
one exception (Fig. 2d).

Animal-associated ExPEC lineages
GrapeTree phylogenetic analysis placed two isolates with 
ExPEC traits (FF1155A and FF1140B) in lineages consisting 
of animal- and environmental- sourced isolates, including 
ExPEC, but were devoid of human- associated isolates (Fig. 3a 
and b). These two GHFF isolates were not closely related to 
cluster isolates, with the most closely related having 108 and 
149 cgMLST allelic differences for FF1155A and FF1140B 
respectively.

Isolate FF1155A (ST117 O85:H18) was clustered with six 
Ovariable:H18 isolates that showed 108–226 cgMLST allelic 
differences (Fig.  3a). All ST117 O85:H187 cluster isolates 
had similar VF profiles, with some carrying bacteriocins and 
aerobactin, and included one canine UPEC (Fig. 3a). ST117 
cluster isolates harboured highly variable ARG and plasmid 
profiles, with the exception of IncFIB plasmid carriage by six 
of seven isolates (Fig. 3a).

Isolate FF1140B (ST1673 ONT:H21) belonged to a small 
cluster containing three isolates from poultry and one from 
bovine (Fig. 3b). Two of the three poultry isolates were APEC 
sourced in Australian which showed 169 and 170 cgMLST 
allelic differences to FF1140B (Fig. 3b). All ST1673 cluster 
isolates harboured bacteriocins, hlyF and iss, with aerobactin 
present in all isolates except the GHFF isolate (FF1140B) 
(Fig. 3b). ST1673 cluster isolates all harboured IncFIB and 
IncI1- I plasmids, but carriage of other plasmids and ARGs 
was variable (Fig. 3b).

Phylogenies of E. coli with low pathogenicity
Four E. coli isolates presented as low pathogenicity, comprising 
three from wild GHFF (FF1150B, FF1158A and FF1640) and 
one (FF1091) from a captive GHFF at Mylor. GrapeTree phylo-
genetic analysis placed all four isolates in lineages containing 
both human- and animal- sourced isolates,(Fig. 4a–d), with 
three of four isolates belonging to the ST10 complex (ST10, 
ST48 and ST7187) (Fig. 4a–c).

The three ST10 complex isolates belonged to clusters predom-
inantly consisting of isolates sourced from animal or human 
faeces and animal products (Fig. 4a–c). The FF1158A (ST10 
O16:H4) isolate was not closely related to other cluster isolates 
(471–684 cgMLST allelic differences), whereas FF1091 (ST48 
O4:H26) and FF1150B (ST7187 ONT:H11) were more closely 
related to cluster isolates (111–195 and 24–321 cgMLST allelic 
differences respectively) (Fig. 4a–c). Isolates in the three ST10 
complex clusters exhibited highly variable ARG carriage 
and generally carried few VFs, although all three clusters 
contained at least one isolate which had acquired considerable 
VFs (Fig. 4a–c).

The remaining low pathogenic GHFF isolate, FF1640 (ST398 
O155:H20), belonged to an ST398 Ovariable:H20 cluster, with 
isolates showing 95–254 cgMLST allelic differences to FF1640 
(Fig. 4d). The cluster contained two ST398 O155:H20 ExPEC 
isolates, one sourced from human blood and one bovine 
mastitis (Fig. 4d). Only four ST398 cluster isolates harboured 
more than one VF, and AMR carriage was highly variable 
(Fig. 4d).

DISCUSSION
In this study, antimicrobial- resistant E. coli were isolated from 
3.5 % of wild and 6.5 % of captive GHFF faecal samples, which 
is in agreement with studies reporting higher occurrences 
of AMR determinants (class 1 integrons) in captive GHFF 
[45] and antimicrobial- resistant E. coli in Australian captive 
wild birds [23]. Of the 13 amoxicillin- resistant E. coli isolates 
from GHFF, two exhibited resistance to at least one human 
and veterinary CIA (including carbapenems, third- generation 
cephalosporins and fluoroquinolones) [3, 4]. Bacterial isolates 
exhibiting resistance to CIAs are classified as priority 1 (crit-
ical) antibiotic- resistant bacterial pathogens requiring urgent 
research and development of new antibiotics [62].

Although this study reported a limited number of beta- 
lactam- resistant E. coli isolates (n=13), reflecting the low 
occurrence (3.8 % overall) in a large sample size of GHFF 
(n=318), the data clearly demonstrate the transmission of 
antimicrobial- resistant E. coli from humans and domestic 
animals into GHFF.

The presence of antimicrobial- resistant E. coli in wild GHFF 
across all sampled regions were less variable in comparison 
to the captive GHFF. Overall, the occurrence of resistance to 
amoxicillin and ampicillin in E. coli isolated from wild GHFF 
was low (3.5 %) and similar to levels of ampicillin resistance 
previously reported in Australian wild mammals (2.9 %) [63]. 
As this study selected for amoxicillin- resistant E. coli isolates, 
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the occurrence of E. coli carrying resistance to non- beta- 
lactam categories of antimicrobials may be underestimated in 
GHFF. The low levels of resistance to third- generation cepha-
losporins and fluoroquinolones, and absence of resistance to 
colistin in E. coli from GHFF correlate with low levels (≤3.0 %) 
observed in Australian food- producing animals [64, 65], wild 
mammals [63] and wild birds [23]. However, widespread 
occurrence of resistance to third- generation cephalosporins 
and fluoroquinolones has recently been reported in E. coli 
from Australian silver gulls [18].

Of most concern was the detection of a highly MDR E. coli 
isolate from a wild GHFF in Sydney which exhibited resist-
ance to three CIAs, specifically carbapenems (blaNDM-5), third- 
generation cephalosporins (blaCTX- M-27), fluoroquinolones 
and seven additional categories of antimicrobials. The first 
blaNDM-5- producing E. coli were reported in 2011 from a 
human clinical case in the UK, following hospitalization in 
India [66]. Subsequently, blaNDM-5 has been reported glob-
ally in human clinical E. coli isolates, including in Australia 
[67], and in food- producing animals [68] and companion 
animals [69, 70]. To date, carbapenemase- producing E. 
coli have not been detected in Australian food- producing 
[64, 65] or companion animals [71–73] but were detected 
in Australian silver gulls carrying E. coli harbouring blaIMP-4 
and blaOXA-48 at two sampled locations [18, 20]. This is the 
first detection of blaNDM-5 in E. coli isolated from non- human 
hosts in Australia, and to the best of our knowledge, the first 
report of a carbapenemase- producing E. coli in bats globally. 
Previously, carbapenemase- producing Klebsiella pneumoniae 
(blaOXA-48 and blaKPC-3) have been isolated from microbat 
guano in Algeria [74].

In four of the five class 1 integrons harboured by GHFF E. coli, 
the typical 3′-conserved segment (qacE∆1- sul1) was replaced 
by an IS26 transposase, which is consistent with reports 
of an increased prevalence of IntI1- ARG- IS26 structured 
class 1 integrons in E. coli from both animals and humans 
in Australia [48, 75, 76]. The only integron containing the 
typical 3′-conserved segment (IntI1- aadA1- qacE∆1- sul1) 
was harboured by the ST73 O22:H1 isolate (FF1659B). This 
integron was also characteristically present in human clinical 
ST73 ExPEC in an Australian study, including two isolates 
closely related to the GHFF ST73 isolate [77].

The genetic characterization of antimicrobial- resistant E. coli 
detected in GHFF demonstrates a transmission pathway from 
humans and/or domestic animals into flying foxes living in 
urban and/or captive environments. The detection of three 
isolates belonging to human- associated ExPEC lineages (ST10 
O89:H9 and O9:H9, ST73 O22:H1 and ST394 O17/O77:H18) 
adds to growing evidence for spillover of antimicrobial- 
resistant pathogenic E. coli strains from humans into wildlife 
[15–18]. ST10 O89:H9 and O9:H9 MDR E. coli have also 
been isolated from wild silver gulls in Australia [18], although 
the GHFF ST10 O89:H9 isolate was more closely related to 
MDR human clinical isolates [61], suggesting wild gulls 
were not the source of the GHFF isolate. ST73 is increas-
ingly associated with human UTIs, and more recently, blood 

infections [14, 77]. The ST73 ExPEC isolate was detected 
in a wild GHFF from Lake Macquarie and was very closely 
related to two human clinical isolates (11 and 21 cgMLST 
allelic differences) sourced from urine samples at a hospital 
located approximately 100 km from the GHFF colony [77]. 
ST394 clonal group A (CGA) is typically a human intestinal 
pathogen (enteroaggregative E. coli), although some lineages 
are associated with UTIs and bacterial prostatitis [78, 79].

Seven additional GHFF isolates belonged to lineages associ-
ated with extraintestinal disease in humans and/or domestic 
animals (ST88, ST117, ST131, ST155 complex, ST398 and 
ST1850) [80–83]. These findings indicate the source of these 
isolates is likely to be domestic animals, but they have the 
potential to be zoonotic pathogens. Four of the seven STs have 
been reported as APEC in Australia (ST88, ST117, ST155 
and ST1673) [84]. ST117 belongs to the recently described 
phylogroup G lineage, which is associated with extraintestinal 
disease primarily in poultry [84], but also in domestic animals 
and humans [85]. ST131 O25:H4 is a globally distributed 
ExPEC clonal lineage consisting of three distinct clades (A, B 
and C) [2, 58]. The GHFF ST131 clade B isolate was detected 
in a wild GHFF from Sydney, New South Wales, and was clus-
tered with six canine- sourced ExPEC isolates. Interestingly, 
the most closely related isolate (32 cgMLST allelic differences) 
was a canine UPEC, also sourced from New South Wales, 
Australia. Clinical infections with ST131 from diverse clades, 
including human- associated lineages, have been reported in 
companion dogs in Australia [72]. These findings indicate 
a possible transmission pathway from a companion dog to 
wild GHFF and suggest dogs may facilitate spillover of ST131 
ExPEC into Australian wildlife.

While transmission pathways were not part of this study, the 
most likely acquisition source of antimicrobial- resistant E. coli 
by wild GHFF is exposure to water contaminated by effluent 
and runoff [86]. Flying foxes are found either in flight or in 
elevated vegetation and exhibit an unusual ‘dipping’ behav-
iour to obtain drinking water. GHFF ‘dip’ or skim across the 
surface of a large freshwater body (lake, pond, dam or river) 
whilst in flight and return to a roost to lick their wet fur to 
intake water, and any microbes it carries. Further studies 
encompassing sampling of urban waters in the vicinity of 
GHFF colonies would be required to identify transmission 
pathways in wild GHFF. Several studies have documented the 
acquisition of MDR E. coli by captive animals, with potential 
sources including human wildlife carers, domestic animals 
and other wildlife in captivity [22, 23, 87].

The majority of studies examining AMR and pathogenic E. 
coli in wildlife largely focus on the role of wildlife as reservoirs 
of AMR and zoonotic bacteria [86, 88]. Equally relevant is 
the potential for anthropogenically derived bacteria to nega-
tively impact or cause disease in wildlife (reverse zoonosis or 
zooanthroponosis) [89]. It is currently unknown if the acqui-
sition of pathogenic E. coli strains from human and domestic 
animal sources by GHFF can cause disease in flying foxes. E. 
coli isolates with ExPEC virulence characteristics have been 
isolated from the internal organs of fruit bats in the Republic 
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of Congo, although it was unknown if carriage was associated 
with clinical disease [33].

Every year thousands of sick and injured flying foxes enter 
wildlife hospitals and wildlife rehabilitation facilities in 
Australia [90] with many requiring antimicrobial therapy. 
Amoxicillin, amoxicillin- clavulanic acid and enrofloxacin 
(a veterinary fluoroquinolone) are all commonly prescribed 
to flying foxes in care [91], and resistance to all three was 
detected in GHFF in this study. Antimicrobial administra-
tion to GHFF may select for antimicrobial- resistant E. coli 
and result in a poor response to treatment, increase the risk 
of developing secondary ExPEC infections and reduce the 
prognosis for recovery. Selecting for resistant isolates also 
increases the potential for their dissemination to other flying 
foxes in care, their human carers and into the environment 
after release from captivity. The emergence of anthropogenic 
AMR and E. coli exhibiting ExPEC characteristics in GHFF is 
yet another threat to this already threatened flying fox species, 
potentially exacerbated by heat stress events, habitat loss and 
food shortages, which are resulting in increasing numbers of 
GHFF entering care each year [90, 92].

The zoonotic and public health risks associated with 
antimicrobial- resistant E. coli carriage by wild GHFF is low 
(3.5 % occurrence), although it must be considered that 
urban GHFF colonies typically contain 10 000 to 20 000 
individuals, which equates to approximately 350–700 GHFF 
per colony that may disseminate potentially zoonotic E. coli 
in urban environments [93]. The detection of one MDR 
carbapenemase- producing human clinical isolate (ST10 
O89:H9), one confirmed human ExPEC isolate (ST73) and 
seven additional isolates with ExPEC potential indicates 
GHFF can harbour antimicrobial- resistant E. coli capable of 
causing extraintestinal infections in humans.

CONCLUSION
This study has demonstrated the transmission of anthro-
pogenic E. coli harbouring diverse AMR mechanisms and 
ExPEC virulence traits to GHFF in urban and captive 
environments. This is the first detection of blaNDM-5 carrying 
carbapenem- resistant E. coli from a non- human host in 
Australia, suggesting wild GHFF may act as vectors of 
carbapenem resistance. This study also suggests GHFF 
may be potential reservoirs for antimicrobial- resistant 
human- associated ExPEC lineages, providing opportunities 
for zoonosis to occur. The highly mobile nature of GHFF 
increases the potential to disseminate E. coli over wide 
areas, including urban environments. This study highlights 
the importance of a One Health approach, incorporating 
human, animal and ecosystem health, to investigating the 
prevalence of AMR and zoonotic diseases. Adopting surveil-
lance methods which incorporate genetic characterization 
of antimicrobial- resistant isolates can identify potential 
zoonotic and zooanthroponotic risks, benefitting both public 
health and flying fox health.
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