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Abstract: Cellular Automata (CA) is one of the most common techniques used to simulate the
urbanization process. CA-based urban models use transition rules to deliver spatial patterns of
urban growth and urban dynamics over time. Determining the optimum transition rules of the
CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth
driving forces. Recently, new CA models integrated with optimization methods based on swarm
intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC)
algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose
a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition
rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with
multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was
made through statistical methods such as overall accuracy, the figure of merit and total operating
characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to
assess the performance of our proposed model versus similar swarm intelligence algorithm methods.
We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and
51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the
allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less
than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model
with fewer quantity and allocation errors and slightly more hits.

Keywords: urban growth model; cellular automata; model calibration; swarm intelligence; artificial
bee colony algorithm; remote sensing image

1. Introduction

In recent decades, rapid urbanization has led to many negative impacts on the environment, such
as the loss and fragmentation agricultural lands and of natural areas that support wildlife. To avoid
these impacts, anticipatory planning has to be considered [1]. Urban growth models have been
proposed to use the capabilities of a new generation of spatial analysis tools within the geospatial
information systems (GIS) framework. They investigate urban regions using various multi-temporal
datasets such as remote sensing images to detect changes over the time [2–7]. A number of models
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have been created in order to support land use planning [8–13] or to quantify the environmental
consequences of potential future urban growth scenarios (e.g., [14,15]).

It is well accepted that urban growth is a complex process [16–18] consisting of several interacting
elements. Thus, to model this process several urban growth models have been presented such as Markov
chain models [19], spatial logistic regression [20], multi-criteria evaluation [19], cellular automata
(CA) [16,21–23], agent-based models [17,24] and machine learning and artificial intelligence (AI)
methods like artificial neural networks (ANN) [25,26], support-vector machine (SVM) [27,28], genetic
algorithms (GA) [29], and data mining [30]. AI-based methods can capture existing nonlinearities and
heterogeneities of the urban growth process. It is clear that superiority of methods depends on how to
set the configuration parameters of the algorithms, size of training and test sets, designing classifiers
in two classes or multiclass, choice of datasets for training and validation and so on [31,32].

Among the models listed above, CA has arguably been the most popular tool used to simulate
urban changes because of its capacity to reproduce the dynamics of complex systems, its self-organization
characteristics, and its flexibility and compatibility with the raster data structure (in sensu) [11,33,34].
Indeed, it has been shown that CA models, especially GIS-based CA models, can efficiently simulate
urban growth processes [16,34–36] and estimate spatial patterns of urban growth [36]. However,
calibrating an urban CA is challenging and complicated because of the existing spatial heterogeneity
of urban forms and the nonlinearity of urban growth driving forces (cf. [37,38]). To calibrate urban CA
models, some researchers (e.g., [21,30,35,39]) have used statistical approaches, such as multi-criteria
evaluation (MCE) or logistic regression (LR), to estimate growth parameters, with moderate success.
Fuzzy logic approaches have also been employed to estimate CA parameters; some have even used
fuzzy logic to quantify uncertainties in CA models [3,40,41]. However, many researchers are still
exploring how other techniques might further improve the calibration of CA-based urban models.
One common approach has been to integrate CA models with other AI tools—so called “hybrid AI
modeling environments”—where tools such as ANN [42–44], SVM [45,46], simulated annealing [47], data
mining algorithms [48], and genetic algorithms [49–52] are used to calibrate CA-based urban models.

Each of the abovementioned CA calibration approaches has strengths and weaknesses.
Statistical-based methods, such as MCE, assume linear relationships among spatial variables, which
can neither capture nor eliminate autocorrelation effects because of non-linear relations in urban
growth driving forces [47,53]. Integrating CA with ANN has some benefits as ANNs can quantify
non-linear relationships among spatial variables; however, ANNs due to their somewhat “black box
nature”, do not provide clear interpretable weights for different variables [41], can get trapped in
local minima [42] or may even over-fit the data and thus cannot be generalized [25]. Other intelligent
techniques for calibrating CA have been proposed, based on evolutionary algorithms such as genetic
algorithms (GAs). Despite the advantages of GAs such as promising behavior in searching complex and
multimodal spaces, GAs sometimes are computationally intense when solving small scale problems.
They may not reach the global solution and suffer from being trapped in local optima [54,55].

An active area of AI research is called swarm intelligence (SI) [56,57] and this has been promising
in a variety of fields such as business, medicine and information sciences. Swarm intelligence is
the simulation of social insects using computer models. The simulation takes advantage of the
simple behavior of individuals (e.g., ants following each other in a line) but together their “meta”
behavior (e.g., searching for food) emerges as a complex outcome that is robust, flexible and efficient.
Swarm behaviors that are simulated include ant colony movement, bird flocking, and fish schooling,
among others [58]. Several SI algorithms exist, some of which researchers in urban modeling have
employed to a very limited extent. Liu et al. used an ant colony optimization (ACO) approach to
discover CA transition rules [59,60]. Their ACO-CA model effectively captured the complexities
of urban growth. More recently, Yang et al. (2013) showed that integrating CA with a bee colony
optimization (BCO) algorithm could produce better simulation results than an ACO-CA model [61].
Feng et al. tested a particle swarm optimization (PSO)-CA model with a model developed using LR
and found that PSO increased model goodness of fit in four out of five criteria over using LR [62].
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Cao et al. used the cuckoo search algorithm to discover transition rules for CA. They showed that the
CA model calibrated by that cuckoo search algorithm had greater accuracy than that of other swarm
models such as the ACO-CA model [63].

The artificial bee colony (ABC) algorithm was developed over ten years ago and is one of
the SI algorithms most widely used by businesses to understand complex human social systems.
ABC simulates the foraging behavior of honey bee colonies [64]. The ABC has shown better results in
performance and computational efficiency compared to other SI algorithms like PSO and ACO [65,66].
ABC has several advantages over these other SI approaches as ABC algorithms display simplicity,
flexibility, and robustness; fewer control parameters are also required compared to alternative methods
and there is considerable ease of implementation as well [67].

Here, we present our new approach that integrates ABC and a LR-based CA model for urban
growth simulation. Our research attempted to continue the way to explore new effective methods.
To the best of our knowledge, integration of ABC with CA for the purposes of characterizing transition
rules (CA calibration) has not been attempted. Similar research has been carried out, however.
Yang et al. recently integrated a BCO algorithm with CA. BCO, like ABC, is inspired by a bee’s food
searching behavior [61]. However, BCO builds solutions from the beginning within execution steps
while ABC performs a local search to improve a “current best solution” iteratively [68]. However, we
believe that the integration of CA with SI algorithms such as ABC is at the forefront of CA and hybrid
AI urban modeling research.

The proposed model was tested on Urmia (Iran) to simulate its future urban growth patterns.
The city is located in the northwest of Iran and is an important geographical region bordering two
countries (Turkey and Iraq). In the last five decades, the population of Urmia has increased more than
10-fold, while its area contemporarily increased by about 27-fold [69], showing rapid urbanization.

2. CA Model for Urban Growth

Urban growth models attempt to anticipate future urban expansion with increasing benefits
and reducing environmental impacts. Some important parameters affecting urban growth include
accessibility to the central business district, population centers, main roads and railways, proper
physical condition (such as slope, elevation, distance to faults, water courses and land capabilities),
considering zoning policies and distance to sensitive ecological areas [36]. One of the successful
methods for simulating spatial dynamic urban growth is the use of CA. However, what can influence
the success of CA in urban growth simulation is the optimum determination of the CA transition rules
based on not only the cell status and those of its neighbors but also other factors called development
potentials and constraints such as environmentally sensitive areas, restricted areas and development
policies. Development potentials and constraints are, following several others [17,62]:

St+1
ij = f (St

ij, Ωi
ij, Con, N) (1)

where St
ij and St+1

ij show the states of a cell at location ij at time t and t + 1, respectively. f is the

transition function, specifying Ωi
ij as the neighborhood evaluation function, Con as the constraints of

influencing factors, which exclude the urban growth such as sensitive and protecting areas. This can
be defined as a binary layer that was prepared by overlaying the exclusion areas. In this layer, the zero
value shows areas where development is not allowed, and N is the number of cells. Therefore, the
development potential value (Pc)i

ij of the cell at location ij at time t is formulated as follows [45,62]:

(Pc)t
ij = (Pg)ij ×Ωt

ij × Con×
(
1 + (−lnγ)α) (2)

where (Pg)ij is a potential value of cell at location ij. γ is a stochastic factor ranging from 0 to 1, α is
a parameter to control the degree of stochasticity. LR is a multi-variant discovery method that is
often combined with CA. LR has the capability to eliminate spatial autocorrelation and reduce spatial
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dependency among variables. Formally, by using LR, the development potential of cell at location ij,
(Pg)ij, based on spatial factors is presented as [37,38,62]:

(Pg)ij =
1

1 + exp(−(a1x1 + . . . + akxk))
(3)

where x1, x2, . . . , xk are various spatial development variables affecting urban growth, including
the aforementioned accessibility to the central business district, population centers, main roads and
railways, suitable physical conditions (such as slope, elevation, distance to faults, water courses
and land capabilities), considering zoning policies and distance to sensitive ecological areas [17,36].
a1, a2, . . . , ak are different weights for the variables. Additionally, the urban growth is influenced
by dynamic factors such as the local interaction between a cell at location ij and its neighborhood
cells. The potential of neighborhood effects (Ωt

ij) within an n × n Moore’s neighborhood of the cell at
location ij is represented as follows [36]:

Ωt
ij =

∑ij Con(St
ij = urban)

n× n− 1
(4)

where Con(St
ij = urban) shows the number of urban cells in Moore’s neighborhood. St

ij is situation
of cell at location ij that can be urban or non-urban. Finally, the value of the calculated development
potential (Pc)t

ij is compared with a threshold value (Q) to decide whether a non- urban cell can be
converted to an urban cell at time t + 1 using Equation (5). Q is a uniform random distribution grid in
range of [0, 1] [36,39]. This threshold can be easily found out through a couple of trials [70]:

St+1
ij =

{
Converted to urban (Pc)t

ij ≥ Q
Non converted (Pc)t

ij < Q
(5)

3. The Artificial Bee Colony (ABC) Algorithm

The ABC algorithm is inspired by the intelligent behavior of honeybees in finding nectar sources
around their hives. It mimics a real bee colony, where tasks are completed by specialized bees with
a division of tasks distributed in three kinds of groups [64,71]. Exploitation of the explored nectar
sources and sharing information about their quality are performed by the worker bees. Scout bees
search the surrounding environment to discover new food sources, and onlooker bees wait in the hive
to receive information about the explored food sources provided by the worker bees. Onlooker bees
always select a food source with the highest quality. Communications between these different groups are
often accomplished through a dance, where onlooker bees in the hive watch dances that show profitable
food sources and choose a source based on the appropriateness of dances [65]. The ultimate goal of the
group is to optimize a unified outcome, viz., store the greatest amount of nectar (food) in the hive.

In the optimization problem, the ABC algorithm considers the food source position and the
amount of its nectar as a possible solution for the problem and fitness of the solution, respectively.
The following steps represent the basic ABC algorithm procedure as described by others [64,72,73]:

In first step, it is necessary to perform exploration of the search space. This can be done by
adjusting all worker bees randomly. Random initialization is accomplished via:

Xmn = Xmin,n + rand(0, 1)(Xmax,n − Xmin,n) (6)

where Xmn is a solution (food source), m = 1 . . . SN, n = 1 . . . D. SN is the number of solutions (food
sources) and D represents the number of optimization parameters. In each of the iterations, a worker
employed bee is randomly assigned to the food source (the solution). The selected worker bee applies
a modification on the position of the food source according to its local information to find a new food
source. The food source Vmn is located within the neighborhood of every food source Xmn:
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Vmn = Vmn + ϕmn(Xmn − Xzn) (7)

where n is a random number in [1, D] and z ∈ {1, 2, ...SN} is a random index that must be different
from m so that a new hybrid solution can be obtained. ϕmn represents a uniformly distributed real
number in range of [−1, 1] that controls production of food source locations around Xmn. In this
equation, the mth worker bee exchanges information with the zth worker bee. Then, a greedy selection
strategy is made to choose a better position based on the profitability between the new position (Vmn)
and the previous position (Xmn). The profitability (fitness) of the two positions is evaluated by:

f itnessi =

{
1

1+ fi
i f fi ≥ 0

1 + abs( fi) i f fi < 0

}
(8)

where fi is the cost value of the produced solution i and abs is the absolute value. If the new position
has a better fitness value, then the previous position is ignored. Otherwise, the previous position is
preserved and the worker bee remains at that position. Based on following probability, every one of
the onlooker bees decides to exploit the position of worker bees around its location or not:

pi =
f itnessi

∑SN
i=1 f itnessi

(9)

Again, the onlooker bees search around corresponding worker bees through Equation (7) and
a greedy selection strategy is performed on the onlooker bees in the mentioned way. Then, the
abandoned solution (position) is determined if it exists and is replaced with a new randomly produced
solution (position) Xmn for the scout using Equation (7). The best solution (position) achieved
so far is memorized and the previous steps are repeated until reaching the termination criterion.
The pseudo-code of the ABC algorithm is given in Algorithm 1:

Algorithm 1. The pseudo-code of the ABC algorithm

Generate the initial solution population using Equation (6)
Set Cycle = 1
Repeat until Cycle ≤ the maximum iteration number

Produce positions (new solutions or food source positions) for worker bees by Equation (7) and
evaluate them

Apply the greedy selection process to select worker bees
Calculate the probability values pi using Equations (8) and (9)
If pi > rand(0,1), then

Produce positions (the new solutions) for onlooker bees using Equation (7) and evaluate them
Apply the greedy selection process to select onlooker bees

End if
Determine the abandoned position (solution), if exists
Replace it with a new randomly produced position for the scout using Equation (7)
Record current best solution
Cycle = Cycle + 1

End repeat

4. The New ABC-CA Model

Here, we combine the ABC algorithm with CA to determine a set of optimum transition rules
for the CA portion of the urban model. In the first step, CA components such as cell size and the
neighborhood size (in this study radius neighborhood was defined within three cells) were established.
The input data which includes initial land-use maps, spatial variables as urban growth driving forces
and urban expansion limitations are contained as raster format maps.
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Then, the initial configurations of the ABC algorithm were set up. In this research, population
size, number of worker bees and number of onlooker bees were set to 100, 50 and 50, respectively.
The dimension in the proposed ABC-CA model is set to 7, showing the number of spatial variables
and limitation conditions (distance from business center, distance from road networks, distance from
population centers, land use, environmental sensitive areas, slope and elevation maps). Our proposed
model was repeated 350 times.

Also, initial CA transition rules were randomly set by the worker bees. A transition rule is produced
by a value of the cell status. This status can be defined by the lower and upper bound of each parameter.
The cell status and variables illustrated in Figure 1 are linked to a rule with the same pattern.
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According to Figure 1, every spatial variable (the urban growth driving forces) can be divided into
various classes, for example variable slope can be classified into 0%–5%, 5%–7%, 7%–10%, 10%–15%
and more than 15%. Each of these classes can be considered as a variable affecting urban growth. With
each iteration of the ABC algorithm, and for every variable (including its subset classes), best lower
and upper threshold values are determined. A transition rule is constructed by defining an upper and
a lower threshold value for each variable. Worker and onlooker bees attempt to find the best lower
and upper threshold values of each variable. The combination of a set of optimized values forms
a transition rule based on the selection performed by the ABC algorithm. In addition, development
potential maps for each defined bee are produced through LR (Equation (3)) based on the optimized
values (the lower and upper threshold values) of variables. In other words, the potential or the
possibility of conversion of a non-urban cell to an urban cell is calculated by LR. This process is
performed in CA mechanism. In each encoded solution of the population of bees, the parameters such
as Dist-road, Slope, Elevation, Dist_population_centerss and Dist-Business_center lower, and upper
limitations, are calculated. A sample of transition rules of CA can be represented in Table 1:

Table 1. Part of the transition rules derived by the proposed models.

If (Dist-road < 0.400 km & Dist-road > 0.200 km & Slope > 0% & Slope < 3% & Elevation > 1250 m & Elevation
< 1320 m & Dist-Business_center < 2 km & Dist-Business_center < 0.5 km & Dist_population_center > 0.5 km
& Dist_population_center < 2 km & Neighborhood_Info < 8),

Then
Probability of conversion of the cell base on Equations (3) and (4): (P = 0.6755)
If P > threshold Then Pixel class = urban else pixel class = non-urban

End if

Finally, the CA output will be a map showing simulation of urban growth for each worker bee.
By cell-based comparison among the produced simulated maps for every bee with the initial land-use
map, the best bee is selected according to maximum likelihood with the initial land-use map. If the
results of the simulation are recognized to be appropriate, the process is completed and these new
transition rules are stored. Otherwise, based on the second step of the ABC algorithm, the better
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worker bee applies modifications on the solutions (rules) according to feedbacks (Vmn in Equation (7)).
Other steps of ABC algorithm also continue to search for an optimal solution (rule). The combination
of the optimized coefficient values as a path obtained for each variable through the ABC algorithm
constitutes our CA transition rules (for example mentioned above rule).

In the proposed model, the number of cells that were not predicted correctly is considered as
a cost value ( fi) of the produced result. This value can be obtained by different cells between simulated
and reference maps. Therefore, the fitness function of the proposed model attempts to minimize the
cost value. This was repeated in each iteration of the model. The final transition rules provide the
estimate of an urban transition for that cell. These rules were applied on the second land-use map by
the CA procedure to achieve the predicted map. The pseudo-code of the proposed ABC-CA model is
given in Algorithm 2 and Figure 2 shows the flowchart of the new ABC-CA model.

Algorithm 2. The pseudo-code of the proposed ABC-CA model

Input datasets
Initialize the ABC algorithm configurations
Set Cycle = 1
Repeat until Cycle ≤ the maximum iteration number

Initialize transition rules using worker bees based on lower and upper threshold values for every variable
Calculate conversion potential value (cell status) based on LR and transition rules in CA mechanism
Produce new lower and upper threshold values for new rule construction by the worker bees using Equation (7)
Apply the greedy selection process to select worker bees for achieving new lower and upper threshold values
Calculate the probability values pi using Equations (8) and (9)
If pi > rand(0,1), then

Produce new lower and upper threshold values for onlooker bees using Equation (7)
Apply the greedy selection process to select onlooker bees for achieving new lower and upper threshold values

End if
Determine the lower and upper threshold values, if they exist
Replace it with a new randomly produced position (the lower and upper threshold values) for the scout using Equation (7)
Record current best (the lower and upper threshold values) and construct current best rule
Calculate conversion potential value based on LR and transition rules in CA mechanism
Produce the simulated land use map and Compare it with actual land use map
Cycle = Cycle + 1

End repeat

Model Assessment

The accuracy of the simulation results compared to the reference map needs to be validated to
quantify the goodness-of-fit of urban growth projections [74]. Comparisons between the observed and
the simulated changes, based on the four generalization types of pixels, are performed. These pixel
types include the areas of observed change simulated correctly (hits; H), observed persistence simulated
as change (false alarms; F), observed change simulated as persistence (misses; M), and observed
persistence simulated as persistence (correct rejections; CR) [52]. Table 2 shows the contingency table
representing the proportion of pixels in the actual map versus the simulated maps illustrating the
allocation disagreement between the simulated and actual changes. Indeed, the contingency table
presents accuracy statistics, including total accuracy, user accuracy and producer accuracy.

Table 2. Contingency table.

Reality

Model results

Change Persistence Total (Producer Accuracy)

Change H F H + F
Persistence M CR M + CR

Total (user accuracy) H + M F + CR H + F + M + CR
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Figure 2. The new ABC-CA urbanization model.

Other statistical measures, such as figure of merit (FoM) and overall accuracy (OA), were used
to assess the accuracy of the models. The FoM is defined as the ratio of the intersection of observed
change and predicted change to a union of the observed change and predicted changes. Also, the OA
is calculated by dividing the total number of correct pixels (diagonal) by the total number of pixels in
the contingency table. It measures the overall proportion of correctly categorized pixels as changes to
the total number of cells [75,76].

Another method that is widely used to validate urban growth and land change models is the
receiver operating characteristics (ROC) index that evaluates the capability of the model in producing
the best suitability maps independently of applying threshold values [77,78]. However, several
researchers have argued against the use of ROC as a model goodness of fit as it has biased outcomes.
To overcome ROC deficiencies, the total operating characteristics (TOC) index was introduced [75].
TOC generates a graphical plot to reveal the information which shows the entire contingency table for
all thresholds while ROC fails to do that. TOC shows the produced information of ROC and additional
information such as the size of the number of observations (as the horizontal axis) and the size of
references (the vertical axis). For the TOC plot, there are two minimum and maximum boundaries that
show the possible space of appearing the TOC curve. If the curve is close to the maximum boundary,
then the ranking of observations is high. Each point with the horizontal value and vertical value in
TOC is calculated by Equation (10) and a corresponding threshold t [75]:
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Xt =
F

F + CR
; Yt =

H
H + M

(10)

In this research, the mentioned validation methods (comparisons between the observed and
the simulated changes, OA, FoM and TOC plot) were used to evaluate performance of the
implemented methods.

5. Study Area and Dataset

Our new ABC-CA model is tested using spatial data from the city of Urmia, Iran (Figure 3) with
the objective of being able to predict its future urban growth patterns. In the past five decades, the
population of Urmia has increased 10-fold [69]. However, its area has increased approximately 27-fold
during this same period. This means that the rapid urbanization has occurred in this period at an
unplanned trend.
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Additionally, a simple land-use change analysis reveals that the areas in northeast and east of
the border of the city were agricultural lands in 1997 and were converted to urban areas in recent
years. Based on the land use maps, urban lands in Urmia in 1997 were about 4435 hectares, and these
lands increased to 7140 hectares in 2006 and 9500 hectares in 2015. This means that the area of Urmia
increased by more than double in the recent 20 years. During 1997–2015, about 54% of the urban areas
of Urmia were mostly agricultural lands located on the margins of the city. There is local concern that
if these trends continue, the agricultural economy of the region will be negatively impacted. To avoid
this outcome, this study was initiated in order to forecast the future growth trends of Urmia which can
be useful for municipal land use planners.

To develop our ABC-CA urban model, we used as the basic data land use maps that were extracted
from a classification of Landsat satellite images of the years 1997, 2006 and 2015 (Landsat 5, 7 and 8,
respectively) for the Urmia metropolitan region. We employed a supervised maximum likelihood
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classification method and registered the land use/cover maps to the National Cartographic Centre of
Iran topographic maps at a scale of 1:2000. We classified the Landsat images as three classes including
urban areas, agricultural lands and wastelands. The overall accuracies for the classified maps for the
years 1997, 2006 and 2015 were 91.73%, 93.38% and 93.55%, respectively.

Based on these land use maps of the city of Urmia, urban maps for 1997 to 2015 were extracted
(Figure 4). According to previous studies of urban growth (e.g., [36,61,79]) the urban growth driving
forces used to predict future urban growth; the relevant data are shown in Table 3. The slope and
elevation maps with resolution of 30 × 30 m are derived from the digital elevation model extracted
from topographic maps produced by National Cartographic Center of Iran.
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Table 3. The urban growth driving forces [23,79,80].

Variables Data Sources

Distance from business center map Topographic maps (for years of 1997 and 2006)

Distance from road networks map map Road networks (for year of 1997)

Distance from population centers mapcenters Topographic map (for year of 1997)

Land use and Land cover maps Landsat™ classified images
(for years of 1997, 2006 and 2015)

Environmental sensitive areas map Environmental maps (for years of 1997 and 2006)

Slope and elevation maps Topographic map and digital elevation model
(for year of 1997)

The slope and elevation maps are important factors in modeling of urban growth because they
involve realism into the prediction model by representation of real morphology of the study area.
Another dataset used in this study is transportation network that is demonstrated the density of
transport network showing the relationships among different land-uses. The road dataset was extracted
from the topographic map and updated by the data produced by Road Maintenance and Transpiration
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Organization of Iran. Another dataset used in this model is environmentally sensitive areas such as
forests, wetlands, floodplains, or environmentally sensitive lands that the future urban growth plan
must preserve. This data was derived from environmental maps and land use maps. Proximity to
major business center of Urmia and its neighboring population centers maps are other datasets used in
the study. These datasets can have effect on the city’s future growth. Our investigation shows that in
last decades the fast urban growth in Urmia has caused the neighboring villages to join to the city, so
the associated data given in Table 3 were collected from different sources, converted to raster format at
a spatial resolution of 30 m and loaded to the GIS database in this research (Figure 5).
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6. Implementation and Results

The proposed ABC-CA model was developed in Matlab™ and ArcGIS™ software based on the
data processing steps presented in Figure 6. Based on the obtained rules applied on the actual land-use
of 1997, the simulated map was produced for 2006. To train the model, comparisons of the simulated
and actual land-use map of 2006 was made as measures of their goodness of fit, and if their similarities
met the threshold criteria, the process was stopped and the algorithm presented the optimum transition
rules for CA model; otherwise, it was repeated until reaching the threshold criteria (in this research,
the algorithm was repeated 350 times). As it was mentioned earlier, the threshold value of CA part of
the model (Q in Equation (5)) can be found out through a couple of trials. In the proposed model, the
cost value was defined with difference between the simulated and the reference maps. In the iterative
approach, the model attempts to minimize the cost value. The land use in 2006 is then simulated by
running the ABC–CA model.
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In the next step, the obtained optimum transition rules are applied to actual land-use map of
2006 to achieve the predicted map of urban growth of the city of Urmia for 2016. Additionally, to test
the model prediction capability, the predicted map is verified by the reference map of 2015. If the
verification is accepted, the final optimum transition rules are obtained. Otherwise, some modifications
on the ABC algorithm are performed and then the above process (re-training the model to achieve
new optimum rules) is repeated until the result is satisfactory through the verification step. Based on
trial and error, our model could obtain the final optimum rules with modification of the ABC-CA
specifications with ten repeats. This means that the algorithm was repeated 350 times in any iteration of
the test step. The evaluation step was performed based on getting to maximum likelihood or minimum
difference between the simulated results and the actual land use map.

Figure 7 illustrates the ABC-CA model results in various iterations, where T is the number of
iterations. According to Figure 7, the ABC-CA model had been slow in the simulation process up to
iteration 150. This means that the discovered transition rules were not optimal to predict the 2006 land
use correctly. However, the model performed with faster trends, especially after iterations 250 through
318. In other words, the model continued to produce more optimized rules between iterations 250
to 318. Since ABC is a stochastic search algorithm, there is no guarantee the results will improve by
increasing the number of iterations in the ABC-CA model. Investigation of the corresponding results
in various runs of our model show that increasing the number of runs may not guarantee achieving
better rules and consequently better simulation and the model should be replicated as long as it is
representing a stable outcome. For example, the ABC-CA model operated to improve results up to
iteration 13 (extraction of better rules and subsequently producing better simulation results) while
the produced result in iteration 14 was worse than the previous iteration and this trend continued to
iteration 16. This means that the model could not discover better transition rules and performed worse.
However, the model stores the best transition rule and when the result is worse in the next iteration, it
discards inappropriate results and continues with new parameters. Subsequently, the model routine
is repeated until the results stabilize. Thus, after producing poor results in iterations 14 and 15, our
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model improved the results and produced better outcomes in iteration 16 compared with iteration
15. It should be noted that more poor results were repeated several times with the ABC-CA model
execution during its 350 iterations. However, the behavior of the model was improving the produced
results (or transition rules) in ascending order from iteration 248 to iteration 318. Then, our model
produced the same results from 318 to 350 iterations (i.e., it was stable).
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6.1. Model Validation

The proposed model to simulate the growth of Urmia for the year 2006 is run and the model results
are produced. To compare the results in operation, the implementation of other SI-based models such
as ACO can help to provide a proper understanding of our model’s performance. Several studies have
been performed using ACO to discover transition rules of CA in the simulation of urban systems [59,60].
They revealed that ACO is able to discover CA transition rules better than conventional methods.
Therefore, in this research the ACO-CA model was implemented to simulate urban growth and its
result was compared with our proposed ABC-CA model. We used actual land use of 2006 as the
training data in setting up the model suggested by Pontius and Malanson [74]. For model accuracy
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assessment, they suggested using the entire landscape. Furthermore, actual land use in 2015 was used
to validate the models’ capabilities in producing simulation results.

Table 4 shows the two models’ contingency tables representing the proportion of pixels in
the actual map of 2015 versus the simulated maps of the two models illustrating the allocation
disagreement between the simulated and actual changes. Visual comparison of Figure 8 indicates
that distributions of allocation errors (misses and false alarms) in the ABC-CA model result are fewer
than the ACO-CA model result, while the ABC-CA model has slightly more hits. In other words, the
spatial patterns of the simulated urban growth have more compliance with actual urban growth trends
compared to the other method. These findings are also confirmed by Table 4.
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In this research, the FoMs of the ABC-CA and the ACO-CA models were 51.7% and 42.9%,
respectively. This means that the FoM of the proposed models had better agreement between the
observed and predicted changes. Also, the OA is calculated by dividing the total number of correct
pixels (diagonal) by the total number of pixels in the contingency table [77]. The OA of the ABC-CA
and the ACO-CA models were 90.1% and 87.2%, respectively. This means that the ABC-CA model
could produce better prediction accuracy. The allocation disagreement (AD), summation of the false
alarms and misses, is another index for validation of the model results. The AD of the ABC-CA model
was 9.9%, while this measurement for the ACO-CA model was 12.8%. The amount of disagreement
that occurred due to the ABC-CA model simulation is less than with the ACO-CA model. The results
also show that the ABC-CA model outperforms the ACO-CA model with fewer quantity and allocation
errors and slightly more hits.

Table 4. Contingency tables of the ABC-CA and the ACO-CA models.

Reality (the ABC-CA Model) Reality (the ACO Model)

Simulation
results

Change Persistence Total Change Persistence Total

Change 10.6% 6.7% 17.3% 9.6% 7.9% 17.5%
Persistence 3.2% 79.5% 82.7% 4.9% 77.6% 82.5%

Total 13.8% 86.2% 100% 14.5% 85.5% 100%

Figure 9 shows the TOC plots for the ABC-CA and the ACO-CA models. Comparing the
two plots shows that the TOC curve of the ABC-CA model is closer to the maximum boundary
representing the highest ranking observations of the index variable [75] rather than the TOC curve of
the ACO-CA model. This means that the ABC-CA model produces better results compared to those of
the ACO-CA model.
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6.2. Results and Discussion

After the validation process, the new ABC-CA model was applied to predict the future of urban
growth in Urmia for the year 2016 (Figure 10).
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Therefore, comparing the boundary of Urmia in 2006 and its prediction for 2016 illustrates that
urban growth in Urmia will most often occur in the northwest, west and southern areas of the city
that are mostly barren lands. These sites have suitable specifications to undergo urban development
showing the planned urban growth. Figure 10 shows the cells where ACO and ABC models agree and
disagree for the predictions. According to Figure 10, in 34.1% of the growth cells, the ABC-CA and the
ACO-CA models predict similar results.

Furthermore, based on Figure 2 urban growth in Urmia during 2006–2015 is 2326 hectares
(25,839 pixels) that the ABC-CA model could simulate 63.3% of the growth correctly while the ACO-CA
model predicted 45.6% correctly. In other words, the cells where the ABC-CA predicts as urban cells
correctly are about 18% more than the ACO-CA predicts as urban. In this study, swarm intelligence
(SI) algorithms, in particular the ABC algorithm, was integrated with CA to calibrate CA in the urban
growth process because of its capabilities in dealing with complex relationships. Based on the spatial
and temporal properties of the proposed model, modelers can combine complex tools to distinguish
long-term trends in urban growth from local changes. The simulations presented here verify that the
city tends to expand in bordering areas except in agricultural areas in the northeast. According to the
modeling results, it was determined that most of the urban growths in Urmia in 1997–2015 occurred in
the boundaries of the city with the conversion of rural land to urban regions. The proposed model
results follow up the existing urban growth trends partially, but the model tried to produce the results
that met the conditions based on urban growth effective parameters.

Due to the nonlinearity and heterogeneity existing among urban growth driving forces, our
proposed model could predict the urban growth in Urmia more accurately. The results verified that
the model had some errors in predicting changes in the eastern parts of Urmia because the land use
of those regions during 1997–2006 remained as agricultural land which were suddenly converted to
urban lands in 2015. Our studies indicated that the conversion of agricultural lands to urban areas in
the eastern parts of Urmia occurred because of their proximity to a major ring road (connecting the
eastern parts of Urmia to its northern parts). It was also found that proximity to roads compared with
other distance-based parameters in urban growth in Urmia has played a prominent role in this process.
Overall, it was realized that urbanization in the eastern and northern parts of Urmia (especially in
northeastern parts) rather than other regions was caused because of the conversion of agricultural
lands to urban areas, while in other areas urban growth occurred in the steep fringe wastelands.
Meanwhile in this study, the importance of slope and elevation as urban driving forces were assessed
lower than other parameters.

However, in this AI hybrid modeling approach, a number of limitations were encountered.
The model produced false growth values or missed the growths so errors were possible. In some
cases, modeling errors arise from errors in the data such as the classification errors in producing land
use maps. These errors affected the simulation results shown as the areas in red color (misses) in the
southeast and northeast of Urmia. The model cannot provide proper simulation results when there is
no prior evidence of the region to growth. In addition, dynamicity of urban growth driving parameters
during the simulated period may have effect on spatial distribution of the simulation results.

In terms of performance, the convergence in the ABC-CA model was much faster compared to
that of the ACO-CA model because of large search space in urban growth modeling. In addition,
implementation of the ABC-CA model was easier than the ACO-CA model because the ABC algorithm
is considered highly flexible since only requires two control parameters of maximum cycle number
and colony size, while the ACO algorithm has more control parameters. The ACO algorithm was
usually used to solve discrete problems such as network-based problems (finding a shortest path) and
it needs discretized attributes but the ABC algorithm can be used flexibly in continuous (urban growth
modeling) or discrete fields.

In this experiment, the performance of the two models for modeling urban growth in Urmia
are assessed using Matlab2010 on a CORE i7 CPU with 8GB RAM. The time taken (in seconds) to
complete achieving the outcomes for the ABC-CA model is 31.6 h, while the ACO-CA model took
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39.3 h to complete the process. However, our proposed model, to obtain accurate results, generally
performs slowly because of many iterations required. The computational cost of the algorithm is
extensive and it requires a high memory capacity. To overcome these limitations, it is necessary to
consider some strategies such as using a new search mechanism, improvement in the configuration of
the initial population and using the neighborhood selection by onlooker bees [81,82] to improve the
algorithm performance.

Finally, in this research we attempted to propose a new urban growth modeling with the CA
model that integrated with the ABC algorithm. The OA index of the proposed model compared to
the ACO algorithm has not been a significant improvement (<3%), however in all evaluation indices
including running time, convergence capability, flexibility, statistical measurements and the produced
spatial patterns, the ABC-CA model’s performance showed relative improvement and therefore its
superiority was confirmed.

7. Conclusions

In CA models, as urban change models, extraction of transition rules which determine the future
status of the cells is critical. It is necessary to use proper methods (AI) to discover the rules because
of special conditions such as nonlinearity of city expansion. A new method based on SI is ABC.
The ABC algorithm performance in solving optimization problems is good. However, few studies
have employed the ABC algorithm for urban growth modeling. We constructed an ABC-CA model
that has better performance in numerical tests compared with those of the other similar methods.
In this study to calibrate the CA model, the integration of LR and the ABC optimization approach
has been presented and assessed. We selected 1997 as the base year for simulating future urban
growth of Urmia and used land uses of years 2006 and 2015 to test and validate results, respectively.
Finally, the simulation results were obtained for the urban growth in 2016. Assessments of the results
of the proposed model and ACO-CA model were performed using overall accuracy and error as
diagnostic tools, AD, FoM, OA and the TOC curve. The overall accuracy and the figure of merit of
the ABC-CA model is 90.1% and 51.7%, which is 2.9% and 8.8% higher than those of the ACO-CA
model, respectively. The allocation disagreement of the ABC-CA model is 9.9%, which is 2.9% less
than that of the ACO-CA model. The TOC curve of the ABC-CA model is closer to the maximum
boundary representing the highest ranking observations of the index variable rather than the TOC
curve of ACO-CA model. Therefore, the prediction results for 2016 show that the ACO-CA model has
more urban growth rate (15% more) compared with those of the ABC-CA model.
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