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Abstract.
BACKGROUND: The main obstacle encountered in microarray technology is how to mine the valuable information under the
profiles and study the genes function.
OBJECTIVE: Maximal information coefficient (MIC) is a novel, non-parametric statistic that has been successfully applied
to genome-wide association studies and differentially gene and miRNA expression analysis. However, the data used in these
applications are not gold standard but real data.
METHODS: Therefore, this study attempts to test the feasibility of MIC for differentially expressed gene identification with
simulation data.
RESULTS: Our experiments indicate that, MIC perfermance is better than Limma always, which is almost the same level of
SAM, ROTS or DESeq2. However, the count of AUC < 0.5 of MIC is significantly smaller than the three methods, and MIC
does not exhibit an abnormal phenomenon in which the AUC increases as the noise increases.
CONCLUSIONS: Compared to the existing methods, our experiments show that MIC is not only in the first tier in identifying
differentially expressed genes and noise immunity, but also shows better robustness and stronger data/environment adaptability.
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1. Introduction

A gene expression analysis plays an important role in studying biological characteristics and gene
functions [1,2]. Based on the analysis, we might identify the differentially expressed genes (DEGs)
without being influenced by some factors, such as biological conditions, the states of cell cycle, tissues
and individuals. And, by the DEGs, it is possible to discover the disorder of biological processes and
dysfunctions of the organism, identify risk genes, and clarify the key influence of the pathogeny on gene
expression, which is of great significance for the prevention and treatment of diseases.

A microarray is one of the ordinary means in the field of biomedicine. It can obtain a large number
of gene expression profiles, overcome the defects of the analysis on single gene, and integrate bio-
information to the extent possible, and then be used to analyze the expression and function of multi-
genes during disease development [3–6]. How to mine the valuable information under the gene profiles
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and study the genes function is the main obstacle in microarray technology [7]. The technology of gene
expression analysis has been widely used in biology and medical statistics.

Since the advent of microarray technology, many promising methods have been proposed for gene
expression analysis [5–19]. Some commonly used methods include Signification Analysis of Microar-
rays (SAM) [14], Limma [11,20], Reproducibility-Optimized Test Statistic (ROTS) [15,21,22], Cy-
berT [16,23] and Rank Products [17,24]. In addition, DESeq [25] and DESeq2 [26] can also be em-
ployed to identify DEGs, although they are original for RNA-seq analysis. These methods are promising
in identifying differentially expressed genes, however, they might have some limitations. For example,
SAM might lose some valuable DEGs [27]. Thus, it is one of important works in bioinformatics to
explore novel methods unceasingly for differentially expressed genes identification.

Maximal Information Coefficient (MIC) is a novel statistical method to explore some unknown rela-
tionships between two variables [28]. It has an important characteristic of model independence, which
is suitable for the studies of unknown models such as gene expression. We have successfully employed
MIC to genome-wide association studies and identifying DEGs and differentially expressed miRNAs,
and achieved well results [29–33]. However, the data for our studies are real gene expression profiles,
which are experimentally derived data, not gold standard. So far, we have not found an accepted and
open accessed gold standard profile. Thus, this study attempts to generate many simulation data sets
on several distributions for discussing the feasibility of introducing MIC to identifying DEGs, by using
SAM, Limma, ROTS and DESeq2 as the benchmarks. Our experiments indicate that, MIC perfermance
is better than Limma always, which is almost the same level of SAM, ROTS or DESeq2. However, the
count of AUC < 0.5 of MIC is significantly smaller than the three methods, and MIC does not exhibit
an abnormal phenomenon in which the AUC increases as the noise increases. Thus, compared with the
existing methods, MIC is not only in the top tier in differentially expressed genes identification and noise
immunity, but also shows better robustness and adaptability in environment.

2. Material and methods

2.1. Material

2.1.1. Simulation data
Since there are not any accepted and open accessed genes profile marked real DEGs can be used as

gold standard, we generated some simulation data as our data sources. Based on the studies of [34,35],
the simulation data include four density distributions of normal, chi-square, exponential and uniform
with the parameters shown on Table 1. For each distribution, we take arbitrarily one parameter from
non-DEGs and DEGs respectively to construct a pair of parameters to generate datasets. And, each
pair of parameters was repeatedly used to generate 100 datasets, each containing 10000 genes (5% of
which are DEGs), 6 cases and 6 controls. In this way, a total of 29 groups containing 2900 datasets are
generated.

2.1.2. Transformation of simulation data for DESeq2
DESeq2 is a novel method for RNA-seq analysis, which needs count data as its inputs. A gene expres-

sion dataset, however, is not of count but continuous. Thus, the simulation data must be transformed for
DESeq2. The conventional transformation is to simply round the expression values to the nearest inte-
ger, which will lose too much information for low expression. Here, we let the values multiply 10 and
then round them to the nearest integer to reduce the loss of information. Moreover, the expressed values
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Table 1
Simulation data distributions and generating parameters

Distribution Non-DEGs DEGs
Case Control Case Control

Normal Mean = −8, sd = 0.4 Mean = −8, sd = 0.4 Mean = −6, sd = 0.2 Mean = −6.1, sd = 0.2
Mean = −10, sd = 0.8 Mean = −10, sd = 0.8 Mean = −8, sd = 0.4 Mean = −8.5, sd = 0.5
Mean = −12, sd = 1.0 Mean = −12, sd = 1.0 Mean = −10, sd = 0.8 Mean = −11, sd = 1.0

Chi-square Df = 5, ncp = 0 Df = 5, ncp = 0 Df = 5, ncp = 0 Df = 3, ncp = 0
Df = 3, ncp = 0 Df = 3, ncp = 0 Df = 5, ncp = 0 Df = 5, ncp = 1
Df = 5, ncp = 0.5 Df = 5, ncp = 0.5 Df = 5, ncp = 0 Df = 3, ncp = 1
Df = 3, ncp = 0.5 df = 3, ncp = 0.5

Exponential Rate = 1 Rate = 1 Rate = 1 Rate = 1.5
Rate = 1 Rate = 0.5

Uniform Min = 0, max = 1.5 Min = 0, max = 1.5 Min = 0, max = 1.5 Min = 0.5, max = 2.0
Min = 1.5, max = 2.5 Min = 1.5, max = 2.5 Min = 0, max = 1.5 Min = 1.0, max = 2.5

Min = 0.5, max = 2.0 Min = 2.0, max = 3.0

in normal datasets may be negative because of its logarithm transformation, we translate the dataset up
|min(s)|+2 units when the dataset includes negative values where min(s) denotes the minimal value in
the dataset and +2 is to prevent excessive count of zero. In fact, for any density distribution curve, the
operations of scaling and translation will not cause any deformation of the curve. That is, the operations
will not affect the distribution of the data, namely, that it will not take any effect to a method.

2.2. Methods

2.2.1. Maximal information coefficient
As an exploratory analysis tool, MIC can be used to explore the possible, important and undiscovered

relationships in hundreds of variable values, such as the relationship between genes and diseases in a
genome-wide dataset. The study [28] defines MIC of two-variable D as

MIC (D) = max
xy<B(n)

{
M (D)x,y

}
, (1)

where n denotes sample size, B(n) represents the upper limit of xy grids (in general, ω(1) < B(n) <
O(n1−ε), 0 < ε < 1), and M (D) is the feature matrix of D, which defined by

M(D)x,y =
I∗(D,x, y)

logmin{x, y}
, (2)

where I∗ denotes the mutual information of the two variables in D.
MIC is a non-parametric statistic that is independent of any model of the two variables. So far, there is

no any reliable model to represent the relationship between the phenotypes and gene expressed values.
Thus, MIC is very suitable for gene expression analysis.

Suppose the profile D has N samples (Nd cases and Nu controls), L genes for each sample. Let

phenotype T = (t1, t2, . . . , tN ), where ti =

{
0, controls
1, cases ; the expressed values of genes G =

(g1, g2, . . . , gL)
T , where gj = (g1j , g2j , . . . , gNj), gij denotes the expressed value of the j-th gene

in the i-th sample. Then, the model between gene gj and phenotype T can be simply defined as

T = f(gj). (3)

Thus, it is possible to infer the differentially expressed significance of the gene gj by simply calcu-
lating the MIC value between the phenotype T and the expression value gj without considering the real
model.
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2.2.2. Benchmarks
In order to compare the performance of identifying differentially expressed genes of MIC, we chose

four ordinary methods of SAM, DESeq2, Limma and ROTS as benchmarks.

2.2.2.1. Significant analysis of microarrays
A traditional t-test [36] of two-sample with two independent normal distributions can be written as

t =
g1 − g2√
s2g1
n1

+
s2g2
n2

, (4)

where sg1 and sg2 are the variances of the gene’s expressed value g1 and g2 under two conditions, re-
spectively. For a low level expressed gene, sg1 and sg2 are usually small, which it is very likely to
lead t-test to identifying a non-significant gene as significant. To overcome the shortcoming of a tra-
ditional t-test, Tusher et al., Smyth, and Broberg proposed SAM, B-statistics, and samroc methods,
respectively [11,14,18].

Significant analysis of microarrays (SAM) is similar to t-test and uses a permutation to estimate the
false discovery rates [14]. It introduces a small positive constant s0 to reducing the shortcoming of small
variance of a traditional t-test. SAM-statistics is

ts ≈
g1 − g2√

s2g1
n2

+
s2g2
n1

+ s0

. (5)

2.2.2.2. DESeq2
DESeq2 is the successor to DESeq. DESeq is a widely used method for massive RNA-seq data anal-

ysis. It is based on the NB model with mean and variance linked by local regression [25]. DESeq2
integrates a number of advanced methods for quantitative analysis of RNA-seq data by using shrinkage
estimators for dispersion and fold change. In fact, although DESEQ2 is original designed for RNA-seq
analysis, it can be employed to gene expression analysis as well.

2.2.2.3. Linear models for microarray
Limma considers a gene expression satisfies

E (yg) = Xαg (6)

and

var (yg) =Wgσ
2
g (7)

where yg is the expressed vector from different samples, X is the design matrix, ag is the coefficient
vector, Wg is the known non-negative weight matrix.

The variable that represents the possible differences between test groups is

βg = CTαg, (8)

where C is the contrast matrix. The linear model is fitted to the response variable to obtain the estimator
s2g of the coefficient estimators α̂g and σ2g .

The contrast estimator is defined as β̂g = CT α̂g, and its covariance matrix is

var
(
β̂g

)
= CTVgCs

2
g, (9)
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Fig. 1. Flowchart of the study.

where vg is the unscaled covariance matrix. Limma’s hypothesis about β̂g and s2g is to obtain a modified
t-statistic

tgj =
β̂gj

sg
√
vgj

, (10)

vgj is the j-th diagonal element of CTVgC.

2.2.2.4. Reproducibility-optimized test statistic
Reproducibility-optimized test statistic (ROTS) optimizes a set of modified t-test parameters by max-

imizing reproducibility based on bootstrap samples detection. The existing works have shown that
ROTS performs well in microarrays, massive RNA-seq data and mass spectrometry-based proteomics
data [15,21,22].

ROTS maximizes the scaled reproducibility based on the parameter and the size k of the top list:

Rk (dα)−R0
k (dα)

sk (dα)
, (11)

sk(dα) is the estimated standard deviation of the bootstrap distribution of the observed reproducibil-
ity Rk(dα). R0

k(dα) corresponds to the repeatability of the random data. ROTS calculates the average
repeatability of the permuted random dataset from a real sample. Repeatability calculation involves a
statistic similar to a t-test

dα (g) =
|xg − yg|
α1 + α2sg

, (12)

where xg and yg are the means of gene g of groups x and y, respectively. sg is the standard error.

3. Results

In this study, all experiments were based on Windows 7 operating system platform. The simulation
datasets were generated by programmed by R language (V3.5.0). Excepting MIC, the other methods
were directly implemented by Bioconductor [37] (V3.7) in R language. MIC statistic employs the Matlab
codes (the core code is implemented in C language) provided in the study [38]. The R language runs
under the RStudio [39] (V1.1.456) shell.

By the above codes, the 2900 simulation datasets were analyzed in R language/Matlab.
Figure 1 shows the flowchart of this study.
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Fig. 2. AUC boxplot on normal data. “×”s are the means. Bidirectional arrows represent ± 1 σ.

Fig. 3. AUC boxplot on chi-square data. “×”s are the means. Bidirectional arrows represent ± 1 σ.

3.1. Test the performance of identifying DEGs by MIC

Here, we used AUC to represent the performances of identifying DEGs of the methods. Let MIC and
the four benchmarks mine the 2900 simulation datasets to identify DEGs, and calculate AUCs according
to the identifying results of each method, and plot boxplots shown in Figs 2–5.

In addition, since a method will lose its value to identify DEGs as AUC = 0.5, we also counted the
case of AUC 6 0.5 of the five methods (Table 2). In Table 2, both 5 of MIC are from the chi-squared
datasets.
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Table 2
The counts of AUC 6 0.5

Method AUC 6 0.5 AUC < 0.5
MIC 5 5
SAM 301 301
Limma 1896 728
ROTS 35 35
DESeq2 535 535

Note: The counts are from the 2900
simulation datasets, one for each.

Fig. 4. AUC boxplot on exponential data. “×”s are the means. Bidirectional arrows represent ± 1 σ.

Fig. 5. AUC boxplot on uniform data. “×”s are the means. Bidirectional arrows represent ± 1 σ.
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Table 3
The linear fits of Noise-AUC plots

Distribution Method Slope Adj. GOF P

Normal MIC −0.0920 0.914 2.71 × 10−6

SAM −0.0768 0.967 3.32 × 10−8

DESeq2 −0.0157 0.482 1.06 × 10−2

ROTS −0.113 0.924 1.51 × 10−6

Limma 0.00574 0.302 4.64 × 10−2

Chi-square MIC −0.0185 0.994 1.22 × 10−9

SAM −0.0142 0.957 1.17 × 10−7

DESeq2 −0.00771 0.764 2.67 × 10−4

ROTS −0.0148 0.965 4.41 × 10−8

Limma 0.00274 0.912 2.91 × 10−6

Exponential MIC −0.0294 0.988 4.17 × 10−10

SAM −0.035 0.991 1.27 × 10−10

DESeq2 −0.0364 0.978 5.76 × 10−9

ROTS −0.0463 0.989 2.91 × 10−10

Limma −0.00447 0.179 0.108
Uniform MIC −0.191 0.963 5.94 × 10−8

SAM −0.207 0.978 5.66 × 10−9

DESeq2 −0.205 0.970 2.29 × 10−8

ROTS −0.203 0.976 9.12 × 10−9

Limma −0.0967 0.875 1.47 × 10−5

Note: “Slope” indicates the slope of the line, “Adj. GOF” is the ad-
justed goodness of fit, and “P ” is the P -value of the fit.

Table 4
The counts of slope > 0

Method Slope > 0
MIC 0
SAM 3
Limma 11
ROTS 0
DESeq2 8

Note: The counts are from the 29
groups of simulation datasets.

3.2. Test the noise immunity of identifying DEGs by MIC

A real gene expression profile contains a large amount of noise [40]. It is an important index that the
ability of a method to resist noise interference over identifying DEGs. To evaluate the noise immunity of
a method, we simulate noise-bearing gene expression data by adding white noise on the simulated data.

Our experiments show that the AUCs of all the methods in all the datasets are around 0.5 when the
variance of white noise reaches to 2.0. Therefore, in the noise immunity experiments, we set the range
to [0, 2.0] of the white noise added to the simulation datasets, with step of 0.2, a total of 11 levels of
noise. For each noise level, all the methods identify DEGs and calculate the average AUCs grouped by
the distributions. Then plot the scatter plots of Noise-AUC, and make linear fits to all points. Figures 6–9
show the plots of MIC and the Table 3 lists the summarization of all methods on the four distributions.

Moreover, we also recorded the curve fitting of each dataset, and counted the fitted line slopes greater
than 0 for each method (Table 4).
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Fig. 6. Noise-AUC plot of MIC on normal. The line is fitted by the points. “Slope” indicates the slope of the line, “Adj. GOF”
is the adjusted goodness of fit, and “P ” is the P -value of the fit.

Fig. 7. Noise-AUC plot of MIC on chi-square. The line is fitted by the points. “Slope” indicates the slope of the line, “Adj.
GOF” is the adjusted goodness of fit, and “P ” is the P -value of the fit.

4. Discussions

Differentially expressed gene identification is an application of data mining. It identifies genes with
differential expression levels (variables) based on sample phenotypes (covariates). Therefore, the rela-
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Fig. 8. Noise-AUC plot of MIC on exponential. The line is fitted by the points. “Slope” indicates the slope of the line, “Adj.
GOF” is the adjusted goodness of fit, and “P ” is the P -value of the fit.

Fig. 9. Noise-AUC plot of MIC on uniform. The line is fitted by the points. “Slope” indicates the slope of the line, “Adj. GOF”
is the adjusted goodness of fit, and “P ” is the P -value of the fit.

tionship between sample phenotype and expression level can be simplified into a model Eq. (3). Based
on this model, differentially expressed genes can be screened by simply calculating the MIC values of all
genes. The entire calculation process does not involve assumptions and calculations of any parameters.
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4.1. Performance of identifying DEGs by MIC

Figures 2–5 show that the AUCs of MIC are significantly better than the Limma’s (the AUCs of
Limma are also significantly lower than the other benchmarks’). The AUC of MIC is ranked the first
with SAM and ROTS in the chi-square distribution data, ranked second after ROTS (small 6.19%) in
normal distribution, ranked 4th after SAM, ROTS and DESeq2 (small 3.94%, 6.07%, 3.66%, respec-
tively) in exponential distribution, and also ranked 4th after the three methods (small 4.09%, 4.19%,
3.41%, respectively) in uniform distribution. If we only consider the ranks and difference percentage
of AUCs, we can think that the performance of identifying DEGs by MIC is significantly better than
Limma’s, which is almost same as the performances of SAM, ROTS and DESeq2. However, after fur-
ther checking Figs 2–5, we can find that the feature of AUC variance of MIC is the best except for the
uniform distribution, which is only 8.89% larger than Limma’s in the normal distribution. A smaller
AUC variance means that the method is more adaptive to the data/environment, and less likely to be
miscalculation affecting by the change of gene expression. Although the AUC variance MIC performs
similarly to SAM, ROTS, and DESeq2 in uniform distribution, the density of gene expression is usually
not uniform in reality.

In addition, it means a method has no value in practice when AUC = 0.5, and indicates a method
has serious defects when AUC < 0.5. Based on analysing various types of data, the fewer AUC 6 0.5
indicates that the method is more robust and adaptable to data/environment. Table 2 shows the counts
of AUC 6 0.5 in 2900 AUCs for each method. It indicates that the counts of MIC are greatly less than
the other methods. Although Table 2 suggests that MIC has 5 AUCs less than or equal to 0.5 in the chi-
square distribution datasets, it is only 0.417% of the 1200 chi-square datasets, accounting for 0.172% of
all datasets.

In summary, compared with the existing methods, MIC method is in the first tier in the performance
of identifying DEGs, and it has stronger robustness and higher data/environment adaptability.

4.2. Noise immunity of identifying DEGs by MIC

The noise involved in a gene profile is an important factor affecting the accuracy of a method to
identifying DEGs, especially for low expressed genes. In order to investigate the noise immunity of
MIC, we tested its performance of identifying DEGs in a noisy environment by adding white noise to
a noise-free dataset. For a method with excellent noise immunity, its AUCs should decrease with the
increase of noise, and the slower decreasing, the stronger the noise immunity. Our experiments (Figs 6–
9) show that the AUCs of each method have a good linear relationship with the noise intensity (the
magnitudes of variance of the white noise). Thus, we linearly fit the AUCs to use the slope of the fitted
line as a quantitative indicator for the noise immunity of a method. Obviously, the slope of the fitted line
should be less than or equal to 0, and the smaller the absolute value, the stronger the noise immunity.
By Limma, the slopes of the fitted lines in the normal and chi-square distribution shown in Table 3 are
greater than 0. Meanwhile, Table 4 also shows that the method has up to 11 groups with a slope greater
than 0 (accounting for up to 37.9%, significantly higher than the other 4 methods). Moreover, Limma
is also greatly weaker than the other four methods in performance of identifying DEGs. Therefore, we
consider to remove Limma from the next step in the noise immunity test.

In the noise immunity test shown Figs 6–9 and Table 3, the slope of fitted line of MIC is nearly same
as SAM and ROTS in the normal data, whose absolute value is larger than DESeq2. And, the slope is
almost same as SAM, ROTS and DESeq2 among the other three distributions. Furthermore, in the counts
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of the fitted line slope shown in Table 4, MIC and ROTS have no slope is greater than 0, while SAM and
DESeq2 have 3 and 8, respectively.

In summary, compared with the existing methods, MIC is also in the first tier in terms of noise immu-
nity.

4.3. Advantages and disadvantages of MIC

MIC is a non-parametric statistic with good noise immunity. It has better ability to discover non-
function relations than the ordinary methods in exploring two-variable relationships. And, it has better
uniformity to functional relationships [28] (i.e., MIC can yield almost the same value regardless of
the functional relationship). In general, a gene expression data contains amount of noise [40], and the
functional relationship between phenotype and expressed values is not clear, making MIC very suitable
for the analysis of gene expression.

The deficiencies of MIC are mainly reflected in the fact that it is an exhaustive algorithm, leading
its runtime is not more advantageous than the methods including permutation such as SAM, ROTS and
DESeq2. When we use MIC to process very large datasets, its algorithmic time is a factor that must be
considered. In addition, the essence of MIC is to replace all points in the dataset with some grids on
a two-dimensional plane. Since the number of grids is not infinite, it is only an approximate method,
being reduced accuracy of the algorithm. And thirdly, compared with the existing methods, although
MIC performance is in the first tier, our experiments show that it has a few results of AUC < 0.5,
indicating that it may yield false positives. It needs to be optimized in further studies.

Our experiments verify that MIC is feasible to identify differentially expressed genes, and its per-
formance of identifying DEGs and noise immunity are in the first tier of the existing methods, and it
has advantage with more robustness and adaptability. Since the distributions of gene expression may
be diverse, our experiments did not involve more distributions. And, we did not test the runtime of the
algorithm. These might be further studied in the future.
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