
www.neoplasia.com

Volume 19 Number 2 February 2017 pp. 84–92 84
SHARPIN Facilitates
p53 Degradation in
Breast Cancer Cells1,2
Huijie Yang*,3, Sifan Yu*,†, 3, Weilong Wang‡, 3,
Xin Li*, Yingxiang Hou*, Zhenhua Liu§,
Yuanyuan Shi*, Kun Mu¶, Gang Niu#, Juntao Xu#,
Hui Wang*, Jian Zhu* and Ting Zhuang*

*Research Center for Immunology, School of Laboratory
Medicine, Henan Collaborative Innovation Center of
Molecular Diagnosis and Laboratory Medicine, Xinxiang
Medical University, Xinxiang 453003, Henan Province, PR
China; †Key Laboratory of Carcinogenesis and Translational
Research (Ministry of Education) Department of Renal
Cancer and Melanoma, Peking University School of
Oncology, Beijing Cancer Hospital and Institute, Beijing,
China; ‡Department of Gastroenterology, the Third Affiliated
Hospital of Xinxiang, Xinxiang Medical University, Xinxiang
453003, Henan Province, PR China; §College of Life Science
and Technology, Synthetic Biology, Medical Institute,
Xinxiang Medical University, Xinxiang 453003, Henan
Province, PR China; ¶Department of Pathology, Shandong
University School of Medicine, Jinan, PR China;
#Department of Cancer genomics, LemonData biotech
(Shenzhen) Ltd., Shenzhen, PR China
Abstract
The ubiquitin binding protein SHAPRIN is highly expressed in human breast cancer, one of the most frequent female
malignancies worldwide. Here, we perform SHARPIN depletion in breast cancer cells together with RNA sequencing. The
global expression profiling showed p53 signaling as a potential SHARPIN target. SHARPIN depletion decreased cell
proliferation, which effect could be rescue by p53 knocking down. Depletion SHARPIN significantly increases p53 protein
level and its target genes inmultiple breast cancer cell lines. Further experiment revealed that SHARPIN could facilitate p53
poly-ubiquitination and degradation in MDM2 dependent manner. Immuno-precipitation assay showed that SHARPIN
associated with MDM2 and prolonged MDM2 protein stability. Analysis of public available database showed SHARPIN
correlated with poor prognosis specifically in p53 wild-type breast cancer patients. Together, our finding revealed a novel
modifier for p53/MDM2 complex and suggested SHARPIN as a promising target to restore p53 function in breast cancer.
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Introduction
Breast cancer causes about 20% of cancer incidence and 15% of
cancer mortality in women [1]. The receptor-based molecular
classification is based on estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor
(HER2) status and divides breast cancer into Luminal A, Luminal
B, HER-2-enriched, and basal-like tumors [2]. The molecular
classification is an important reference for treatment choice. For
example, selective modulator of ER alpha, such as tamoxifen, could
achieve good clinical outcome in ER-positive tumors, while
triple-negative breast cancer (TNBC) is applicable for chemotherapy
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as the primary treatment. The challenge is breast cancer resistance to
endocrine/chemotherapy, which causes refractory disease. It is of
great importance to characterize novel therapeutic targets for breast
cancer treatment.
P53 functions as a tumor suppression gene, which locates on

chromosome 17 [3]. P53 protein could be triggered by several events,
such as oncogene activation, DNA damage, and oxidative stress [4].
When it is activated, p53 half-life is increased and leads to the
transcription of p53 target genes [5,6]. Several p53 target genes, such
as P21 and BTG2, induce cell cycle arrest, while another group of p53
target genes, including BAX, regulate cell apoptosis [7]. Besides, p53
protein subject to precise control in unstressed conditions by several
post-translational modifications, such as ubiquitination. Several E3
ligases have been shown to directly regulate p53 ubiquitination and
protein stability [8]. The mostly studied p53 E3 ligase is MDM2,
which is also the direct target gene of p53. If p53 is activated and
induces the expression of MDM2, increased MDM2 protein will
interact with p53 and promotes p53 poly-ubiquitination and
degradation [9]. The MDM2-p53-negative feedback controls
p53 signaling at proper range with respect to cell stress [10,11].
Besides a few direct E3 ligases targeting p53, more and more E3
ligases are found to modulate MDM2-p53 complex, such as RNF31
and RNF2 [12,13].
SHARPIN (Shank-Interacting protein-like 1, SIPL1) was firstly

identified as Shank binding protein in postsynaptic density [14].
Further researches revealed SHARPIN as the component of linear
ubiquitin chain assembly complex (LUBAC) and facilitated NFκB
signaling transduction [15]. From The Cancer Genome Atlas
database (https://tcga-data.nci.nih.gov/docs/publications/tcga/), we
observe SHARPIN amplification in several cancer types, including
breast cancer, while its function is not clear. Hereby, we identified
SHAPRIN as a novel MDM2-p53 modifier from unbiased approach
of genomic expression profiling by SHARPIN depletion. SHARPIN
interacts with MDM2 and prolongs its stability, which leads to
suppressive effect to p53 protein and its target genes, ultimately
facilitates breast cancer proliferation. With the critical effect of
SHARPIN, it should be explored as a potential target for breast cancer
treatment.

Results

SHARPIN is Higher Expressed in Breast Tumor and Correlates
with Poor Survival in P53 Wild-Type Breast Cancer Patients
By analysis of TCGA public available database (https://tcga-data.

nci.nih.gov/), we observe that SHARPIN mRNA level is higher
compared with normal breast tissue, which is consistent with
published article (Figure 1A) [16]. Through analysis the breast
cancer survival data (http://kmplot.com/analysis/), we find that
SHARPIN expression correlates with poor prognosis in all breast
cancer patients (Figure 1B). Interestingly, SHARPIN mRNA level
shows even higher correlation with poor prognosis in P53 wild-type
breast cancer patients (Figure 1C).

SHARPIN Depletion Increases the Expression of p53 Target
Genes in Breast Cancer Cells
To approach the function of SHARPIN in breast cancer cells in an

unbiased way, we analyzed changes in previously generated global
gene expression profiles following SHARPIN depletion in MCF-7
breast cancer cells. The pathway analysis revealed that SHARPIN
depletion decreases the activity of several pathways, including MAPK
and AMPK. On the other hand, SHARPIN depletion activates
another group of pathways, such as PTEN and p53. The degradation
effect of SHARPIN on PTEN was reported in previous study and is
also observed in our RNA-seq data [17] (Figure 1C). By specific
analysis of p53 target genes, we observe that a group of p53 activating
target genes is increased, including MDM2, P21 and GADD45A,
while the p53 suppressive genes are decreased, such as BCL2
and CCND1.

SHARPIN Depletion Increases p53 Signaling and Decreases
Cell Proliferation in p53-Dependent Manner

We further analyze SHARPIN function in breast cancer cell
proliferation. WST-1 assay shows that SHARPIN depletion decreases
cell proliferation compared with control group (Figure 2A). The EdU
incorporation assay reveals that SHARPIN depletion significantly
reduces the proportion of EdU-positive cells, while an additional
depletion of p53 at least partially restores EdU incorporation
(Figure 2B). By depletion SHARPIN in two different siRNA oligos,
we observe the similar increase of P53 protein and its target genes,
including P21, BTG2, P53INP1 and MDM2.

SHARPIN Protein Controls p53 Signaling in Breast Cancer Cells
In order to further confirm the suppressive effect of SHARPIN on p53

signaling, we deplete SHARPIN in multiple p53 wild-type breast cancer
cell lines (MCF-7 and MDAMB175) with/without cisplatin treatment,
which causes DNA damage and subsequently activating p53 signaling.
The western blot shows that SHARPIN depletion increases p53 level in
both breast cancer cell lines and cisplatin-induced p53 levels are further
enhanced (Figure 3, A and B). In addition, SHARPIN depletion causes
increased expression of p53-target genes P21, BTG2, P53INP1 and
MDM2, which effects are further enhanced by SHARPIN depletion
under cisplatin-induced condition (Figure 3, C and D). Conversely,
transient over-expression SHAPRIN decrease p53 protein level and it
target genes in breast cancer cells (Figure 3, E and F).

SHARPIN Modulate p53 Protein Stability in MDM2
Dependent Manner

In order to identify the potential mechanism between SHARPIN and
p53, we examine the p53 mRNA and protein level after 24 hours of
SHARPIN depletion. P53 protein levels are increased within 24 h of
SHARPIN knockdown (Figure 4A), at a time point when p53 mRNA is
slightly decreased, suggesting that SHARPIN directly regulates p53
protein levels (Figure 4A). Furthermore, when cells were treated with the
proteasome inhibitor MG132 there was no further increase of p53 in
SHARPIN depleted cells (Figure 4B). Finally, SHARPIN depletion
significantly increased the half-life of endogenous p53 (Figure 4C).
Interestingly, in the presence of Nutlin-3-the MDM2 functional
inhibitor, SHARPIN depletion did not increase p53 protein levels
(Figure 4D). This indicates SHARPIN might exert its impact through
MDM2. By transfection SHARPIN and MDM2 in different combina-
tions in HEK293 cells, we observe that SHARPIN could not promote
p53 poly-ubiquitination alone (Figure 4E, lane 2). However, with the
presence of MDM2, SHARPIN could further promote p53
poly-ubiquitination (Figure 4E, lane 3 and 4).

SHARPINAssociates withMDM2 and IncreasesMDM2 Stability
Immuno-precipitation assay fails to detect the interaction between

SHARPIN and p53 (data not shown). However, SHARPIN could
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Figure 1. SHARPIN is higher expressed in breast tumor, correlates with poor prognosis and regulates p53 signaling. (A) SHARPIN mRNA
level comparison between breast tumor and normal breast tissue from TCGA database. (B) SHARPIN mRNA level correlates with poor
prognosis in all breast cancer patients. (C) SHARPIN mRNA level correlates with poor prognosis in p53 wild-type breast cancer patients.
(D) Schematic graph illustrates significantly changed signaling by SHARPIN depletion in MCF-7 cells. Signal pathway enrichment analysis
was used to derive the related pathways, using P b .01 and fold change N2 as cutoff to derive regulated genes and P b .001 to defined
significantly enriched pathways. (E) The heatmap graph shows the p53-activated/SHARPIN-suppressed genes in MCF-7 cells.
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interact with MDM2 at endogenous level (Figure 5A). Transient
overexpression SHARPIN significantly increases MDM2 protein
level, although MDM2 mRNA level is decreased (Figs. 3F and 5B).
In the presence of the proteasome inhibitor (MG132), the stabilized
effect of MDM2 by SHARPIN could be gradually diminished
(Figure 5C). Finally, SHARPIN overexpression significantly in-
creased the half-life of MDM2 (Figure 5D). By overexpression
SHARPIN, we observe the significant decrease of MDM2
poly-ubiquitin chain (Figure 5E).

Discussion
In our report, we demonstrate one ubiquitin binding protein
SHAPRIN associates with MDM2/p53 complex. We propose a
model that SHARPIN interacts and stabilizes MDM2, which
subsequently promotes p53 poly-ubiquitination and degradation
(Figure 6). SHARPIN depletion causes decreased cell proliferation,
suggesting it might be an interesting target for breast cancer treatment.

P53 is one of the most famous tumor suppressors and named as
“genome guard” [18]. The inactivation of p53 is a critical step for
carcinogenesis in many cancers [19]. Therefore, p53 is one of the
most frequent mutated genes in human cancer, such as ovary cancer
and small cell lung cancer [20–22]. P53 has relatively low mutation
rate in breast cancer (about 30%) and must of mutations happen in
ER-negative tumors [23]. However, p53 could also been silenced in
other forms, such as promoter hyper-methylation and
post-translational modifications [24,25]. The p53 post-translational
modifications include ubiquitination, phosphorylation, acetylation
and methylation, which are tightly relevant to p53 function [26,27].
Among these, ubiquitination was firstly discovered and mostly
studied. Besides MDM2, a few other E3 ligases were reported to
directly facilitate p53 poly-ubiquitination and degradation, such as
COP1 and P300 [28,29]. However, recently p53 papers discovered a
group of E3 ligase or ubiquitin binding proteins, which modulate p53
function in MDM2-dependent manner. Most of these indirect p53
modulators are atypical E3 ubiquitin ligases or harbors ubiquitin
binding domain without E3 ligases function [30–32]. One of the
most famous indirect modifiers is MDM4, which shares some
common protein domain with MDM2 [33]. However, it lacks of
ubiquitin ligase activity and fails to degrade p53 alone. With the
existence of MDM2, MDM4 prolongs MDM2 stability and
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Figure 2. SHARPIN depletion inhibits cell proliferation and activates p53 signaling in breast cancer cells. (A) TheWST-1 assay was used to
determine the cellular metabolic activity at indicated time points after transfection. Experiments were done in triplicates. All values are
mean ± S.D. (n = 3, *P b .05). (B) SHAPRIN knockdown decreases cell proliferation in MCF-7 cells as determined by EdU incorporation,
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promotes MDM2-dependent p53 degradation [34]. In breast cancer,
MDM4 gene is often amplified [35]. Our previous research also
identified RNF31 as a p53/MDM2 modifier [12]. RNF31 promotes
p53 degradation also in MDM2-dependent manner. Here we find
SHARPIN as another novel and indirect p53 modifier. Interestingly,
depletion RNF31 will not affect the endogenous binding between
SHARPIN and P53, which means that even SHARPIN/RNF31
complex modulate the linear ubiquitination of NEMO, they seems to
function independently in regulation P53 stability (Supplementary
Figure 1A). Since SHAPRIN stabilizes MDM2, it may indicate its
atypical function in modulating E3 ligase-proteasome function.
There are 2 possible models can explain that. One is that SHARPIN
might promote MDM2 mono-ubiquitination to increase the protein
stability. Another is that SHARPIN might compete with other
degradative E3 ubiquitin ligase for the binding to MDM2. Even more
studies are needed to address the detailed mechanism, we believe the
identification of novel p53 modifiers will not only help to understand
the complexity of p53 signaling in human cancer background, but
also increase our knowledge of the function of less known atypical E3
ubiquitin ligases and these ubiquitin binding proteins, such as
RNF31 and SHARPIN.

SHAPRIN protein was firstly identified from synaptic density and
characterized as shark-interaction protein [14]. The most striking
finding is that SHARPIN is identified as the LUBAC complex and
facilities NFκB signaling transduction [36]. Without SHAPRIN,
LUBAC complex is deficient to linear ubiquitinate IKKr. Subse-
quently, the phosphorylation of IKBa is crippled and P65/P50 could
not translocate into the nuclear to induce the target gene expression.
SHARPIN knockout mice show chronic proliferative dermatitis,
presenting with epidermal hyperplasia and keratotic hyperkeratosis
[37]. Besides, SHARPIN depleted mice also show impaired B and T
cell development [38]. Compared with well characterized function of
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Figure 3. SHARPIN controls p53 protein levels and expression of p53 target genes in breast cancer cells. (A and B) MCF-7 and
MDAMB175 cells were transfected with siSHARPIN or siControl. After 48 h, cells were treated with 10 μM cisplatin or vehicle. p53 and
SHARPIN levels were determined by Western blot analysis. Actin was used as internal control. Each experiment was repeated for three
times. (C and D) SHAPRIN depletion increases the expression of endogenous p53 target genes. MCF-7 and MDA-MB-175 cells were
transfected with siSHARPIN or siControl. After 48 h cells were treated with 10 μM cisplatin or vehicle for 6 h and RNA was prepared. The
expression levels of the endogenous p53 target genes, P21, P53INP1, BTG2, and MDM2, were determined by qPCR. Shown are the
results from triplicate experiments. *P b .05 for siSHARPIN versus siControl. siControl were compared to siSHARPIN group; in cisplatin
treated samples, siControl were compared to siSHARPIN group separately. (E) Overexpression of SHARPIN decreases endogenous p53
protein levels in MCF-7 cells. MCF-7 cells were transfected with plasmids expressing Flag-tagged SHARPIN or the Flag tag alone. After 48
h whole-protein extracts were prepared and the levels of SHARPIN, p53 and the internal control Actin were determined by Western blot
analysis. (F) Overexpression of SHARPIN decreases endogenous p53 target genes in MCF-7 cells. MCF-7 cells were transfected with
plasmids expressing Flag-tagged SHARPIN or the Flag tag alone. After 48 h, total mRNA were extracted and the expression levels of the
endogenous p53 target genes, P21, P53INP1, BTG2 and MDM2, were determined by qPCR. Shown are the results from triplicate
experiments. *P b .05 for siSHARPIN versus siControl.
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SHAPRIN in immunology, less is known about SHARPIN in
cancers. Our study firstly identifies the role of SHARPIN in
promoting wild-type P53 degradation and correlates with poor
prognosis in P53 wild-type breast cancer. However, SHARPIN also
correlates with poor prognosis in P53 mutant breast cancers, but it
does not regulate mutant P53 (Supplementary Figure 1, B and C).
Besides, the TCGA database, we can observe a fairly high gene
amplification of SHARPIN in human cancers, such as pancreatic
cancer, ovarian cancer and breast cancer, indicating an important
oncogenic role in human cancers. Some breast cancer paper shows
that SHARPIN is higher expressed in ER-positive/AKT-positive
tumors and promotes breast cancer metastasis [16,39]. This could be
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explained that SHARPIN has been shown to bind PTEN and inhibit
PTEN function, since PTEN antagonizes AKT activity [17]. Our
unpublished data show SHARPIN promotes several oncogenic
pathways, including estrogen signaling and AMPK pathway, which
might indicates that targeting SHARPIN could be a promising
therapeutic strategy by inhibiting several oncogenic pathways.
Materials and Methods

Cell Culture
MCF-7 and HEK293 cells were cultured in DMEM (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin (Invitrogen) at 37°C in a humidified
atmosphere of 5% CO2 in air. MDA-MB-175 cells were cultured in
RPMI 1640 (Invitrogen) supplemented with 10% FBS (GIBCO)
and 1% penicillin/streptomycin.

Plasmids
SHARPIN (pcDNA-Flag-SHARPIN) construct was kindly pre-

sented from Dr. Kazuhiro Iwai and was previously described [15].
P53 and MYC-MDM2 plasmids were obtained from the Addgene
Company and were previously described [40].

siRNA and Plasmids Transfection
Cells were transfected with 50 nM siRNA. SHARPIN siRNAs

sequences were shown here: SHARPIN siRNA #1: CUGCUUUC-
CUCUACUUGCUdTdT; siRNA #2: GCUUUCCUCUACUUGC
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density, each cycloheximide treated time point was normalized to its zero time point for each group. (E) SHARPIN inhibits MDM2
poly-ubiquitination in HEK293 cells. HEK293 cells were transfected with 0.5 μg myc-MDM2 plasmid and 0.5 μg Flag-tag or Flag-SHARPIN
plasmids. After 24 h, cells were treated with MG132 for 8 h. Cell lysis was prepared for Western blot analysis. The unmodified and
ubiquitinated MDM2 were shown.
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UGUdTdT. p53 siRNA and control siRNA are Stealth Select siRNA
(Invitrogen). INTERFERin transfection reagent (Polyplus Transfection,
409–10) was used according to the manufacturer's protocol. Plasmids
were transfected by Lipofectamin 2000 (1,662,298, Invitrogen).

RNA Extraction and qPCR Analysis
RNeasy kits were used to extract total RNA (Qiagen). qPCR was

performed as previously described [41]. 36B4 was used as internal control
[42]. Primer sequences for qPCR are provided in Supplementary Figure 1.

Western Blotting
Cells were lysed with RIPA lysis buffer. Anti-p53 (D0–1, SC126)

was from Santa Cruz Biotechnology. Anti-SHARPIN (AB69507),
anti-MDM2 (ab87134) and anti-FLAG (M2, ab48763) were
acquired from Abcam. Anti-actin (8H10D10) was acquired from
Cell Signaling Technology.

Quantification of Cell Viability
MCF-7 cells were transfected with siSHARPIN or siControl in

24-well plates. After 24 h, the cells were seeded into 96-well plates.
Cell numbers were determined using the WST-1 cell proliferation
reagent as previously described [43].

Flow Cytometry
For ethynly-deoxyuridine (EdU) labeledDNA stain, cells were transfected

with siSHARPIN, sip53 and siControl. After 24 h, 10 μMEdUwas added
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Figure 6. Hypothetical model for the functional interplay of SHARPN with P53/MDM2 complex in breast cancer cells.
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into each plate for the last 60 min. The BD LSR II flow cytometer (BD
Bioscience) was used to measure the flow fluorescence intensity.

Co-Immunoprecipitation (Co-IP)
Co-IP was performed essentially as previously described [44]. Cell

lysates were pre-cleared with rabbit IgG for 2 h and subsequently
incubated overnight with SHAPRIN rabbit antibody (AB69507), while
rabbit IgG was used as negative control. The bound proteins were
analyzed by Western blot with mouse MDM2 antibody (ab87134).

Protein Stability Assays
MCF-7 cells were transfected with 50 nM siSHARPIN or

siControl. Twenty-four h post-transfection, cells were treated with
cycloheximide (100 μM) or MG132 (10 μM). Samples were analyzed
by Western blot for p53 protein level.

Analysis of Protein Ubiquitination
HEK293 cells (107 cells) were transfected with 4 μg pCMV-myc-MDM2

together with 4 μg pCDNA3-Flag-SHARPIN. Forty-eight hours
post-transfection, cells were treated with 10 μM MG132 or ethanol for 2
hours and thereafter lysed. Modified and unmodified p53, respectively, were
detected by Western blot analysis.

RNA Sequencing Analysis
The global gene expression analysis was based on RNA sequencing

platform from BGI (Beijing Genomic Institute). The RNA sequence
data are deposited in the Gene Expression Omnibus (GEO) database
(Assessing number: GSE77261). Analysis was performed for
differentially expressed genes (P b .01 and fold change N2) by
Ingenuity Pathway Analysis (IPA).

Analysis of Gene Expression in Publicly Available Data Sets
Analysis of SHARPIN expression in 528 breast cancer samples and 62

normal breast tissues from The Cancer Genome Atlas (TCGA) was
carried out in the statistical environment R [45]. The SHARPIN survival
data were acquired from kmplot database (http://kmplot.com/analysis/).

Statistics
Student's t test, Pearson correlation coefficient, and Cox regression

analysis were used for comparisons.P b .05 was considered to be significant.
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