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Abstract: The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew
to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet
full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally
expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF
retrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogate
models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation
concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like
SIF output directly based on radiance data while minimizing the loss in precision as opposed to SFM-
based SIF. To do so, we implemented a double principal component analysis (PCA) dimensionality
reduction, i.e., in both input and output, to achieve emulation of multispectral SIF output based
on hyperspectral radiance data. We then evaluated systematically: (1) multiple machine learning
regression algorithms, (2) number of principal components, (3) number of training samples, and
(4) quality of training samples. The best performing SIF emulator was then applied to a HyPlant
flight line containing at sensor radiance information, and the results were compared to the SFM SIF
map of the same flight line. The emulated SIF map was quasi-instantaneously generated, and a good
agreement against the reference SFM map was obtained with a R2 of 0.88 and NRMSE of 3.77%.
The SIF emulator was subsequently applied to 7 HyPlant flight lines to evaluate its robustness and
portability, leading to a R2 between 0.68 and 0.95, and a NRMSE between 6.42% and 4.13%. Emulated
SIF maps proved to be consistent while processing time was in the order of 3 min. In comparison, the
original SFM needed approximately 78 min to complete the SIF processing. Our results suggest that
emulation can be used to efficiently reduce computational loads of SIF retrieval methods.

Keywords: emulation; machine learning; sun-induced fluorescence; sif; spectral fitting method (sfm);
principal component analysis

1. Introduction

Essential indicators related to the plant’s actual health status can be derived by retriev-
ing sun-induced fluorescence (SIF) from remotely sensed hyperspectral radiometric data,
as seen in [1]. To this end, for the last few decades multiple SIF retrieval methods have
been developed, most of them focusing on the retrieval of a single SIF estimate in specific
absorption features such as Fraunhofer lines or in oxygen absorption regions (see [1–3] for
reviews). More recently, full-spectrum methods such as the spectral fitting method (SFM)
or PCA-based full-spectrum spectral fitting method (F-SFM) have been widely adopted
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to retrieve a range of values of the spectral signature in the range of the O2 A and O2B ab-
sorption features coming from hyperspectral radiance data [4–7]. The main problem is that
the SFM method applied to images is time-consuming because of the high computational
demand of radiative transfer model simulations, the large number of per-pixel iterations,
and the high number of pixels involved. For this reason, as for any other time-consuming
processing step, there is a high demand for faster alternatives providing similar accuracy.

In this respect, with the purpose of bypassing the computational burden of intensive
image processing steps, recently a computationally effective surrogate technique has been
proposed by making use of machine learning regression algorithms (MLRAs) [8]. The
aim of this work is approximating the original input–output relationships by a statistical
learning model, which is less computational intensive, also referred to as a meta-model or
emulator [9–12]. Emulation recently emerged as an acceleration technique in imaging spec-
troscopy applications such as synthetic scene generation [13] and in atmospheric correction
routines [14,15]. The core idea is that, once trained, it is expected that the emulator allows
generating SIF outputs quasi-instantaneously while high precision can be maintained. Pur-
suing this idea, in principle it should be possible to apply emulation to radiance-based SIF
retrieval. Yet its feasibility and performances remain to be tested. For instance, among the
challenges in developing such emulators, the question is how to deal with the hyperspectral
nature of input, i.e., radiance data, and output data, i.e., multispectral SIF data. Earlier
emulation studies dedicated to the generation of hyperspectral data suggested that this can
be achieved with dimensionality reduction (DR) techniques, followed by the reconstruction
of the output spectra [8,11–13,16]. Proceeding along this line, emulation has been mostly
applied to achieve a fast input–output approximation of a deterministic radiative transfer
model (e.g., [8,10–12,16]); however, when sufficient training data are available, emulators
can be likewise developed based on experimental data, although it comes paired with
some loss in accuracy. A first attempt in emulating experimental data was explored by
[17], where a synthetic hyperspectral scene was emulated based on Sentinel-2 vegetation
products. Nevertheless, the possibility of developing an emulator that converts one type
of (hyper)spectral input data into another type of (hyper)spectral output data has not yet
been explored. The concept can be appealing: if sufficient accuracy can be achieved, such
emulators could serve as a computationally efficient image processing method to transform
spectral data into a meaningful other spectral product.

Accordingly, with the purpose of offering a fast alternative for the rendering of
SFM-like SIF maps, for this study, it was of interest to investigate the possibilities of
emulating SFM-based SIF outputs in the range of the O2 A absorption feature directly from
hyperspectral radiance data. To fully exploit this proof of concept, this study evaluated
multiple emulation strategies, i.e., analyzing the role of MLRAs, size and sampling strategy
of training data, and tuning the dimensionality reduction step. Eventually, the optimized
emulator is applied to radiance images that were recorded from the airborne imaging
spectrometer HyPlant for fast generation of SIF maps. Validation against the reference SIF
product formed the final step to verify the suitability of this acceleration technique.

The following sections starts with methods and materials. This section covers a theo-
retical framework, introduces the used experimental radiance and SIF data, the machine
learning algorithms applied to build up emulators, and then is followed by the description
of the experimental setup (Section 2). Section 3 provides the presentation of the achieved
results. Finally, the main findings are discussed in Section 4 and Section 5 concludes the
presented study.

2. Methods and Materials
2.1. Principles of Hyperspectral Data Emulation

Emulation is a statistical learning technique used to approximate model simulations
when the model under investigation is too computationally costly to be run many times [9].
Emulators are based on machine learning and use a dataset made up of input–output pairs
for training. In this way, the emulator is able to infer the statistical relationships on which
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the original complex model is based and thus imitate the behavior of the original model
with a much lower computational cost. These data pairs should ideally cover the maximum
multidimensional input space. Once the emulator is built, it is not necessary to perform
any additional training of the model [9].

The challenge of emulating hyperspectral data, however, lies in predicting multiple
spectral bands. Only a few MLRAs allow generating models that result in multiple outputs
that represent the spectral profile. One approach to cover the large number of spectral
bands involves to take advantage of the Hugens phenomenon, which shows the existence of
spectral redundancy [18]. It implies that such data can be converted to a lower-dimensional
space through DR techniques. Accordingly, spectroscopy data can be converted into
components, which are only a fraction of the original amount of bands [16]. The classical
principal component analysis (PCA) [19] is the most popular method and has shown
its suitability to reconstruct satellite data and speed-up atmospheric RTMs [12,20–22].
Additionally, other DR methods can also be considered, such as partial least squares
discriminant analysis [16].

When applied to spectral data, the first step in PCA consists of projecting the output
spectra onto the first principle components (PCs), p� B, where p is the number of selected
components, and B is the number of original bands of the spectra. This is performed
by obtaining the eigenvectors and eigenvalues of the estimated covariance matrix of the
spectral inputs X. The eigenvectors matrix, U, is then used as a projection matrix that
allows us to obtain the so-called X-scores, simply by W = UX. As U is an orthogonal
matrix the reconstruction of X providing the scores is obtained by X = U>W. Hence, the
spectra is reconstructed. By sorting the PCs from highest to lowest representation, we
can vary the number p and evaluate the performance for PC. In this way, considering
only a small number of PCs (low p value) will lead to a poor representation of the feature
space and consequently model performance will be low. By increasing the number of PCs
reconstruction of the feature space will improve, and at the same time, model performance
increases. The goal is to find the optimal number of PCs that allows us to reduce the
dimensionality of the input data (p� B) while preserving the main spectral features. Thus,
the MLRA first predicts the PCs, and afterwards the data are transformed back from the
PCA domain (inverse PCA) to obtain the reconstructed output spectra at expenses of some
loss in accuracy. Although this techniques requires iterative training, it is distinctly faster
than train a MLRA with hyperspectral data without applying a DR. [5,8,12,16,23].

While DR methods are currently only applied to emulate hyperspectral output data
based on a limited set of input variables (e.g., see [8,12,13,16]), in this work the challenge
instead is the conversion of hyperspectral radiance input data into multispectral SIF output
data. To enable such a spectrum-to-spectrum conversion, it is proposed to apply DR
methods to both input and output data. Hence the same DR procedure as described above
was applied to the input data only without applying the inverse PCA transformation. Thus,
the developed emulator is based on a regression model that is calibrated with PCs of the
hyperspectral input (radiance) and multispectral output variable (SIF). Finally, the output
variable needs to be transformed back to the spectral feature space using an inverse PCA.
This new strategy using PCAs to reduce the spectral dimension of the input and output
variable of a regression model not only simplifies and accelerates the training phase, but
also enables the development of an emulator, which has the capability to convert one type
of (hyper)spectral data into another one.

A conceptual illustration of the developed emulation scheme is shown in Figure 1.
The illustration starts with plotting some input hyperspectral data, here radiance data. In
the example, we first applied a PCA to the input data and keep only the first 5 components.
We also applied a PCA to the output spectral data, referred to as SIF bands, and again
keep the first 5 components. We then trained the dataset with the input and output PC
values to predict output PCs. Depending on the MLRA, two pathways are offered. For the
single-output MLRAs the training phase loops over each output PC to train individuals
models with the input PCs, thus leading to 5 models. Alternatively, some MLRAs have the
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capability of predicting multi-output, i.e., the model is trained only one time to produce
all output PC at once. Finally, the predicted components were inverted to reconstruct the
spectral output, i.e., SIF bands.

Figure 1. Diagram of the dimensionality reduction and reconstruction processing steps of the emulator.

2.2. HyPlant Data and SIF Retrieval Using the Spectral Fitting Method

The SIF emulator concept was developed and tested using a dataset recorded by the
airborne imaging spectrometer HyPlant. The HyPlant sensor system consists of the two
modules DUAL and FLUO. In this, only the FLUO module was used, which has been
specially designed to measure SIF. It covers the spectral range from 669.5–781.9 nm with a
spectral sampling interval (SSI) of 0.11 nm, resulting in 1024 spectral bands [24].

The HyPlant FLUO dataset was recorded during the 2018 ESA FLEXSense campaign.
The main aim of this FLEX preparatory campaign was to collect high-resolution airborne
measurements of TOC reflectance and SIF across representative European monitoring sites
located in Italy, Germany, France, Spain, and Switzerland, accompanied by ground-based
measurements of important vegetation and atmospheric properties in parallel to Sentinel-3
satellite overpasses.

On the 26th of June 2018, HyPlant FLUO data of an area of approximately 15 × 10 km
were acquired around the city of Jülich in the western part of Germany. The area is part of
the Rur catchment and mainly consists of intensive agricultural fields and a large lignite
open pit mine. In total, 7 flight lines, each of them having a spatial resolution of 3 m, were
recorded from 1800 m above ground level.

The recorded HyPlant FLUO data were first converted from raw digital numbers to
at-sensor radiance using coefficients provided by the sensor manufacturer and afterwards
the SFM was applied to retrieve far-red SIF from the O2 A absorption feature. While most
SIF retrieval methods only determine a unique scalar value for the O2 A absorption band,
which will coincide with the maximum absorption wavelength (∼760 nm) [25–28], the SFM
provides SIF estimates for a specific spectral range around the O2 A absorption feature.

The observed radiance at sensor level, is affected by atmospheric transmittance be-
tween the TOC target and the sensor. For this reason, the varying atmospheric optical
path must be also included in the transmittance compensation strategy. However, these
techniques cannot be extrapolated to airborne or satellite level, where the atmospheric
path radiance (L0) and spherical albedo (S) must be included in the atmospheric correction
scheme [29]. A combined surface–atmospheric radiative transfer model is used within
the SFM approach to generate at-sensor radiance spectra around the O2 A absorption
band. The atmospheric spectra are computed by means of MODTRAN5 [30], in which
the model input parameters are derived from sun photometer measurements (i.e., aerosol
optical thickness (AOT) at 550 nm, water vapor column (WVC), and surface pressure) and
geometry parameters derived from the navigation data of a HyPlant image cube. The
Spectral Fitting uses general mathematical functions to model the canopy fluorescence and
reflectance at different wavelengths within spectral window centered on the oxygen ab-
sorption feature (750–780 nm for the O2-A) [7]. With successful fitting, SIF and reflectance
are then decoupled [6]. The resulting dataset provides information on SIF in 27 spectral
bands covering the spectral range from 751-77 nm. A detailed description of the HyPlant
FLUO processing scheme can be found in [7]. The PC used for SFM processing has the
following characteristics: Windows 10 Pro 64-bit OS, Intel i7-6850K, 3.60 GHz, 32 GB RAM,
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using 6 real cores for the processing. With this computer, the SIF retrieved from HyPlant
radiance data takes approximately 1.56 seconds for 1000 samples.

2.3. Machine Learning Algorithms for Emulation

The core machinery of an emulator is a trained machine learning regression algorithm
(MLRA). A diversity of powerful MLRAs has been developed during the last few decades,
and in numerous applications have proven their use of dealing efficiently with spectral
data (see [17] for a review). MLRAs are well capable of capture the non-linear relationships
that exist between datasets, and can therefore perfectly serve as candidates for developing
an accurate emulator to convert one type of spectral data into another type. Based on
experience in earlier emulation papers where MLRAs were systematically evaluated on
their ability to reproduce spectral output [8,12,17], six advanced MLRAs were chosen that
possess sufficient flexibility to convert hyperspectral radiance data into multispectral SIF
data. They belong to the families of neural networks and kernel-based MLRAs. A brief
description of the selected MLRAs is provided in Table 1.

Table 1. List of selected MLRAs used for emulation implemented in ARTMO toolbox.

Algorithm Brief Description References

Neural Networks (NN)

NN are an interconnected group of nodes. Each node represents an artificial
neuron with a connection from the output of one neuron to the input of another.

Using the training dataset, weights are established for each neuron and the
model is able to capture the non-linear relationships of the model. NN is

multi-output.

[31]

Kernel ridge regression
(KRR)

KRR minimizes the squared residuals in a higher dimensional feature space and
can be considered as the kernel version of the regularized linear regression. KRR

is multi-output.
[32,33]

Multioutput Support
Vector Regression

(MOSVR)

MOSVR extends the single-output SVR by taking into account the nonlinear
relations between features but also among the output variables, which are

typically inter-dependent. MOSVR is multi-output.
[34]

Gaussian process
regression (GPR)

GPR is a nonparametric, Bayesian approach to regression. GPR has the ability to
provide uncertainty measurements on the predictions. GPR is single-output. [35,36]

Matlab Gaussian process
regression (GPRM)

GPRM is similar to GPR but with the option to change multiple kernels
https://es.mathworks.com/help/stats/kernel-covariance-function-options.

html?lang=en, accessed on 29 October 2021. These kernels were initially tested,
and the evaluated best trade-off between accuracy and speed was for “Squared

Exponential”. GPRM is single-output.

[35]

Variational
Heteroscedastic Gaussian

Process Regression
(VHGPR)

VHGPR is an anisotropic RBF kernel that has a scale, lengthscale per input
feature, and a input-dependent noise power parameter as hyperparameters.

VHGPR is single-output.
[37]

2.4. Experimental Setup

Contrary to earlier emulation studies where the focus was on developing a surrogate
model of a simulator, this study aimed to develop an emulator that converts experimental
hyperspectral input data into multispectral output data for fast production of meaningful
SIF output. The key steps of the pursued experimental setup are explained below.

The emulation and assessment experiments are based on relationships between spec-
tral signatures of at-sensor radiance and the corresponding retrieved SIF spectral signatures
in the spectral region of O2 A absorption band. To obtain these training data, the HyPlant
flight lines have been sampled by choosing random pixels distributed throughout the
image, with the aim that the available spectral variability can be sufficiently captured. By
training with experimental data, it is expected that the set of random values is represen-
tative of the entire variability of the complete input spectral space and, therefore, assures
that the developed emulator will be able to reconstruct the correct spectral output for

https://es.mathworks.com/help/stats/kernel-covariance-function-options.html?lang=en
https://es.mathworks.com/help/stats/kernel-covariance-function-options.html?lang=en
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most spectral signatures. An important aspect hereby is that the training database size is
known to influence the predictive power of the emulator [8,12], as a larger training dataset
can capture more spectral heterogeneity. However, an increasing number of samples also
results in longer training times and, to a lesser extent, runtime. At the same time, the
database size can also cause problems due to random access memory (RAM) limitations in
the training phase of the emulators. Given this all, in the analysis presented here, we built
training databases with different numbers of samples to study the effect of database size on
the accuracy, while keeping an acceptable compromise regarding the computation time
and memory constrains.

The distribution of the training samples is another important aspect. When relying on
image-based data, an undesirable consequence could be that in the training image one land
cover type is highly represented covering a large part of the image, while another kind of
surface is barely represented in this subset. This could cause an overfitting of the model
to the training image. Moreover, when applying the emulator to other images, the land
covers may not be equally distributed as in the training image. Spreading training pixels
equal across land cover classes could provide robustness to the model and allow good
performance on images that have not been used for training. Depending on the land cover
heterogeneity in the image, a spatially uniformly distributed dataset will not necessarily
be spectrally uniformly distributed. Consequently, in the case that in the training image
a land cover is more spread than another, a spatially uniform distribution of the pixels
would result in a feature space cluster distribution with a higher density of points in
the areas corresponding to the dimension space of the land cover with the largest area
covered in the image. In turn, there may be areas of the input dimensional space with
a low sample density, corresponding to covers that spread small areas of the image. A
possible solution to the problem at hand is to segment the image using an unsupervised
classification method, and then to weight the training points based on the size of the area of
the identified segments. Given these classes, three different sampling strategies have been
followed, i.e., (1) random sampling without classification, and then segmented sampling
according to (2) absolute number of pixels per class, and (3) with relative number of pixels
per class. In the first strategy, the samples are distributed randomly in the image. In
the second strategy, each class will have the same quantity of samples regardless of the
area covered. In the third strategy, each class was represented by a number of samples
proportional to the area it covers in the image. The segmentation is achieved by means of a
k-means unsupervised classification method. K-means is a cluster method, which aims to
partition a set of n observations into k groups in which each observation belongs to the
group whose mean value is closest. The algorithm uses an iterative technique, given an
initial set of k-random centroids, the algorithm assigns each point to the group with the
closest mean and calculates the new centroids as the centroid of the observations in the
group, these iterations are repeated until the algorithm converges to assignments that no
longer change [38]. The number of classes of the two methods has been varied from 1 to 50
to analyze the effect of the number of classes on the the model accuracy.

The data used to train the emulator have been collected from a subset of a flight line
(700 × 1500 pixels in size) that was acquired on 26 June 2018 at 13:46 (local time) from
1800 m above ground level (L2 Subset). The dataset used for the sampling scheme has
been obtained from the training subset image (see Figure 2).This subset was favored given
a great variety of land cover types, ranging from bare soil types, croplands, buildings,
water to forest areas. Vegetation surfaces cover about the 61% of the image. Although
non-vegetated surfaces do not have a SIF contribution, they can be useful to include in
training to expand the feature space and so the robustness to the model. Given the above-
described sampling scheme, a sensitivity analysis has been conducted to find the optimal
SIF emulator. Details about the investigated settings are given below.
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Figure 2. (a) Location of the study area in the western part of Germany. (b) RGB composite
(700.1/754.4/674.4 nm) of the HyPlant FLUO mosaic consisting of seven flight lines (black framed
areas) with the subset of flight line L2 used to build the emulator (red framed area). (c) Enlarged
view of the subset of flight line L2.

1. The selected MLRAs have been evaluated using the training dataset. The default
training settings were: 1000 random training samples, 20 PCs for the input, and 5 PCs
for the output data.

2. PCAs were applied to the input and output data to reduce the feature space of both
variables. To determine the optimal number of components, we varied the number of
PCs in the input (from 1 to 50 PCs in steps of 5 while keeping the number of PCs in
the output data constant at 5) and output data (from 1 to 10 PCs in steps of 1 while
keeping the number of PCs in the input data constant at 20).

3. To investigate the effect of the number of samples on emulator performance we varied
the number of samples from 200 to 7000 (200, 500, 700, 1000, 1500, 2000, 3000, 4000,
5000, 7000) while we fixed the number of PCs in the input and output data to 20 and
5, respectively.

4. The effect of the three different sampling strategies on emulator performance has
been analyzed: (1) random sampling without classification, and segmented sampling
according to (2) absolute number of pixels per class, and (3) relative number of pixels
per class. Additionally, the impact of the number of classes used in unsupervised
classification has also been tested by varying it from 1 to 50 classes (1, 2, 5, 10, 15, 20,
30, 40, 50).

This systematic analysis allowed to identify the optimal emulator, which eventually
enabled to accurately predict SIF from HyPlant FLUO data. The entire procedure is
illustrated in the work flow in Figure 3. It summarizes the followed steps. First, multiple
MLRAs were evaluated. The second step involved evaluation the effect of the number
of PCs in input and output. In the third step, the size of the dataset was ranged to
evaluate the effect in performance. Following, three sampling strategies were analyzed:
random sampling and two kinds of segmented sampling with absolute and relative number
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of samples per class. Lastly, with the obtained optimal parameters, the final emulator
was trained.

Figure 3. Flow chart showing the different parameters that were investigated to identify the optimal
emulator. The grey boxes represent the analyzed parameters while the white ellipses indicate the
different options tested for each parameter. The dark grey box represents the final emulator obtained
with the optimal parameters of the analysis.

2.5. Emulation Validation

Since emulators are trained to mimic the original input–output relationship, they can
only provide an approximation of this relationship and possibly introduce a source of
uncertainty referred to as "code uncertainty" associated with the emulator [9]; therefore,
an essential step prior to applying an emulator is to evaluate its prediction accuracy. First,
a verification has been carried out as a function of wavelength to provide a first quick
analysis of different MLRA emulator performance. To keep processing time low, similar
to as in [11], a single random split was applied to the data using 70 % of the samples
to train and the remaining 30 % to validate the emulator. The following goodness-of-fit
statistics as a function of wavelength were calculated to evaluate the emulator performance.
The root-mean-square-error (RMSE) and the normalized root-mean-square-error (NRMSE)
were calculated per wavelength as:

RMSE =

√
1
n

n

∑
i=1

[ f̂ (xi)− f (xi)]2, (1)

NRMSE = 100
RMSE

fmax − fmin
, (2)

where n is the number of samples in the validation subset, f̂ and f , respectively, the
emulated and SFM reference SIF spectral values evaluated at the input point xi, and fmax
and fmin are the maximum and minimum values of the n spectra in the reference dataset,
respectively. Furthermore, in order to inspect the emulators accuracy and compare their
performances along the spectral range, the spectral NRMSEλ is also plotted as a function
of wavelength.
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Another statistic of the performance of the models used is the R2, which determines
the linear correlation between the two measured variables (see Equation (3)):

R2 = 1− ∑n
i=1( f (xi)− f̂ (xi))

2

∑n
i=1( f (xi)− f̄ (xi))2 , (3)

where n is the number of samples in the validation subset, f̂ and f are the emulated and
SFM reference SIF spectral values evaluated at the input point xi and f̄ is the mean of SFM
reference SIF values, respectively.

2.6. Mapping Emulated SIF

The optimal emulator was first applied to the the same subset of flight line L2
(700 × 1500 pixels) that was used to sample the training pixels. A scatter plot provid-
ing information on the agreement of the emulated SIF map and the reference SFM SIF
map at 760 nm together with the goodness-of-fit statistics were used to evaluate model
performance. SIF at 760 nm was selected because the SIF community is probably more able
to see the map at 760 nm where the oxygen absorption is at minimum. Additionally, a map
providing information about the absolute error between both SIF maps was calculated to
enable a more detailed analysis of the emulator’s prediction capability for the different land
cover types. The optimal emulator was also applied to the entire flight line L2 to examine
if the results are also reasonable for areas that were not included in the development of the
emulator. Furthermore, the spatial transferability of the emulator was tested by applying it
to the neighboring flight line L4 that covers a slightly different area and was recorded 16
minutes ealier. The same validation statistics were calculated to compare the emulated SIF
map of flight line L4 to the corresponding reference SIF map retrieved with the SFM. Finally,
the emulator performance was additionally evaluated for the entire area of interest by
generating a SIF map based on the HyPlant FLUO mosaic consisting of seven flight lines.

2.7. Developed Software for Emulation Applications

The PC used for processing has the following characteristics: Windows 10 Enterprise
v.19041.572 64-bits OS, Intel i7-9700K CPI 3.60 GHz, 32 GB RAM. All processing and
evaluation steps were conducted within the in-house developed ARTMO (Automated
Radiative Transfer Models Operator) software framework [39]. ARTMO is a scientific
modular package developed in Matlab that provides tools and toolboxes for running a
suite of leaf, canopy, and atmosphere RTMs and for post-processing applications such
as the emulator toolbox [8]. As part of the ARTMO software package, the Emulator
toolbox enables the evaluation of regression algorithms on their capability to approximate
RTM outputs as a function of input variables [8,11]. Essentially, the emulator toolbox
encompasses a suite of methods from the simpleR library [36] that can be combined with
dimensionality reduction methods (e.g., PCA) in order to train statistical models that
produce spectral outputs. While in earlier versions the focus of the Emulator toolbox was
to train emulators based on RTM input variables to produce spectra as output, in its latest
version (v.1.14) a new option is provided to insert a text file of (hyper)spectral data as input
and output.

Moreover, in the here presented latest ARTMO version (v.3.28), the so-called new
“LabelMe” tool has been introduced. This tool allows selecting pixels in one loaded image
(e.g., radiance) and at the same time selects the corresponding pixels in a spatially related
loaded image (e.g., SIF). Pixel selection can be performed manually, i.e., based on visual
inspection, but also some automated selection options are provided, e.g., random or
stratified sampling by means of k-means classification.

Finally, the selected samples can then be exported and used as LUTs to train our
emulator models. The ARTMO toolboxes are freely downloadable at www.artmotoolbox.
com, accessed on 29 October 2021.

www.artmotoolbox.com
www.artmotoolbox.com
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3. Results
3.1. Analysis of SIF Emulation Strategies

The predictive power of six MLRAs was evaluated to identify the optimal SIF emulator.
The initial settings were: 1000 samples, 20 PCs for input, and 5 PCs for output data. A total
of 70% of the collected samples were used to train the models while the remaining 30%
were used for model validation. Validation results as well training time are provided in
Table 2. The MLRA that led to the most accurate prediction of SIF was KRR, with a NRMSE
lower than 6.1%. Additionally, KRR needed substantially less training time than any of
the other algorithms. The accuracy of the different MLRAs for the investigated spectral
range were calculated and are shown in Figure 4. Because the SIF signal in the O2 A region
is spectrally smooth, it results into a stable NRMSE over the 27 wavebands. Given KRR’s
superior performance in both accuracy and speed to predict SIF, it was decided to continue
with KRR in the further optimization steps.

Figure 4. Spectral NRMSE (in %) results for the regression algorithms performance assessment
as function of the five best regression algorithms, using (1000 samples, 20 PCA input, and 5 PCA
output).

Table 2. Statistics obtained from the performance of the models used. RMSE is in
(mW m−2 sr−1 nm−1).

MLRA RMSE NRMSE (%) Time Train (s)

Kernel ridge Regression 0.30 6.09 0.57
Gaussian Processes Regression-Matlab 0.30 6.71 10.55

Neural Network 0.31 6.80 7.61
VH. Gaussian Processes Regression 0.31 6.95 80.14

Gaussian Processes Regression 0.31 6.96 23.80
Multioutput Support Vector Regression 0.32 7.08 12.33

Second, the influence of the DR method used to represent the input and output data
was analyzed. Initially, PCAs with varying numbers of PCs were applied to the input
dataset. The variation of computed NRMSE as a function of the number of PCs to the input
data was analyzed to determine the optimal number of components that preserves most of
the information content of the original radiance data. As expected, an increased number of
PCs led to a more accurate emulator. The NRMSE continuously decreased, in the step from
10 to 15 the NRMSE decreases by 4.5% and in the step from 15 to 20 it decreases by 0.4%.
From 20 PCs onwards the NRMSE variations are less than 0.6% reaching a stable value
of approximately 6.7%. We therefore decided to use 20 PCs for the input data in further
analysis.

In case of the SIF output the NRMSE hardly varied along the wavebands. For all ap-
plied numbers of PCs the NRMSE was at a similar level of approximately 6.74% (Figure 5).
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This was not surprising since the 27 bands covering the O2 A absorption feature are highly
correlated Figure 1. Hence, we decided to use five PCs to represent the output data in
further analysis. Since KRR is a multi-output algorithm, the model is only one time trained
to deliver all the output PCs from the input PCs. It is important to note that although the
training time normally increases with an increasing number of PCs, the time required for a
higher number of PCs is not simply rising and sometimes behaves erratic. This is due to
the fact that the processing time does not only depend on the used algorithm, but also on
the uncontrollable internal processes of the used computer, which are not related to the
required training time of the emulator.

Figure 5. NRMSE (in %) (blue axis) and process time (orange axis) results for the KRR emulator
performance assessment varying number of PCs in PCA input conversion (1000 samples, 5 PCA
output) (a), and PCA output conversion (1000 samples, 20 PCA input) (b).

Third, the effect of the training database size on the emulator’s performance was
analyzed. Using the previously identified optimal number of 20 PCs for the input and
5 PCs for the output data the performance of the KRR model was studied by randomly
increasing the number of training samples (Figure 6). Increasing the training sample
size had the greatest effect on model performance. The NRMSE decreased from 7 to
approximately 4% and leveled off when 3000 or more training samples were used. Adding
more training samples, however, is accompanied by an increased time for model calibration.
Hence, we strive to reach a reasonable trade-off between the number of samples and the
associated time required for model training. Since the model trained with 3000 samples
was identified as the best compromise of sample size and processing time, it was chosen to
train the final emulator.

Figure 6. NRMSE (in %) (blue axis) and associated processing time (orange axis) of the KRR emulators
(20 PCA input, 5 PCA output) built with a varying number of training samples.

Under these premises, a study of the performance of the model has been conducted
in three different sampling distributions: (1) ordinary random sampling, (2) forcing a
relative sampling related to the land cover class area, and (3) absolute sampling per
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class. To evaluate the robustness of the sampling strategies, it must be ensured that
model performance is similar for the training dataset and areas that were not included in
model training (e.g., the full flight line). This provides information about the robustness
of the emulator when applied to unknown data. The optimal settings (PCs input = 20,
PCs output = 5, samples = 3000) were used to build emulators based on the subset of L2.
The number of classes used within the three methods was varied to analyze the effect on
model accuracy. The achieved results suggested that a variation of the class number within
the different sampling strategies only has a low effect on model performance when 30%
of the samples were used for validation. In case of using the entire flight line for model
evaluation, the NRMSE leveled off at approximately 4% when using 40 classes for both
sampling strategies.

We subsequently evaluated the robustness of the models based on the different sam-
pling strategies when transferred to unknown image data. Emulators based on 40 classes
were applied to the flight lines L3 and L6. Both flight lines were characterized by a different
distribution of the land cover classes compared to flight line L2. The results are shown
in Table 3. The results show that the model based on the absolute sampling provides the
lowest NRMSE for both flight lines (L3 and L6).

Table 3. Determined model performance for unknown flight lines based on different sampling
strategies. RMSE is provided in the unit of SIF (mW m−2 sr−1nm−1).

Sampling Flight Line RMSE NRMSE (%) R2

Random L3 1.14 8.16 0.81
L6 0.98 5.72 0.87

Relative L3 1.22 8.76 0.78
L6 1.19 6.92 0.79

Absolute L3 1.09 7.83 0.80
L6 0.90 5.28 0.87

Eventually the best evaluated emulator settings (20 PCs for the input data, 5 PCs for
the output data, sample size = 3000, absolute sampling per class with 40 classes) were used
in the further course of the study. For each parameter, the value from which leveled off the
NMRSE was chosen, so higher values do not obtain an appreciable improvement moreover
the computational cost increases substantially.

3.2. Application of the Emulator to a Subset of a Flight Line

The trained emulator based on the optimal settings to estimate SIF from HyPlant
FLUO at-sensor radiance data was applied to the subset of L2. The emulator allowed
generating the O2 A SIF product including all 27 spectral bands covering the spectral range
from 751–777 nm with a spectral resolution of 1 nm. The emulated SIF map at 760 nm was
then compared against the corresponding SFM-retrieved SIF map (Figure 7). The scatter
plot illustrates the high agreement between the L2 SIF maps retrieved by SFM and the
emulated SIF product. Most of the values are close to the one-to-one line (R2 = 0.86) and
the scattering is relatively low (NRMSE = 3.31%).
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Figure 7. Scatter plot of the SFM SIF map retrieved at 760 nm and the corresponding map emulated
with the developed KRR model for the subset of flight line L2. The x-axis represents the SIF values
retrieved with the SFM while the y-axis shows the SIF values estimated by the emulator. The dashed
line represents the 1:1-line. Units are in (mW m−2 sr−1 nm−1).

To analyze the performance of the SIF emulator over different land cover types, both
the SFM and emulated SIF maps and the absolute error between the SFM and emulated SIF
map are shown in Figure 8. Both SIF maps show a similar spatial distribution of values and
cover the same data range. The absolute errors are homogeneously distributed throughout
the image, suggesting that the model was correctly adjusted to all the investigated classes.
The absolute error map indicates a precise emulation of SIF for agricultural with few
artifacts for small-scale heterogeneous areas such as forest or buildings where the shadows
are more present. The absolute error distribution shows that the absolute error values are
centered in a median of −0.003 and the 25th and 75th percentiles are in −0.19 and 0.19,
respectively, see Figure 9.
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Figure 8. L2 SFM (a) and emulated SIF map at 760 nm (b) as well as the absolute error map
(c) calculated as the difference of both maps.



Remote Sens. 2021, 13, 4368 14 of 23

Figure 9. Histogram and boxplot of the absolute error. Lower and upper box boundaries are the 25th
and 75th percentiles, respectively; red line medians are the lower and upper whiskers 2th and 98th
percentiles, respectively; red crosses are data falling outside the whiskers.

3.3. Application of the SIF Emulator to an Entire Flight Line and Adjacent Flight Lines

Subsequently, the SIF emulator was applied to the entire HyPlant FLUO flight line L2
to evaluate its performance for areas, which were not included in the training dataset. To
validate the emulation result the same statistics as in the previous section were calculated
by comparing the emulated SIF map to the reference SIF map retrieved with the SFM. Most
of the values in the scatter plot in Figure 10 (left) show a high agreement and fit well to
the 1:1-line. This is underlined by the high R2 of 0.88 and the low NRMSE of 3.77%. This
consistency demonstrates the capability of the emulator to accurately predict SIF directly
from at-sensor radiance data with low computational costs.

Figure 10. Scatter plot of the SFM SIF map retrieved at 760 nm and the corresponding map emulated
with the developed KRR model for the entire flight line L2 (left) and flight line L4 (right). The x-axis
represents the SIF values retrieved with the SFM while the y-axis shows the SIF values estimated by
the emulator. The dashed line represents the 1:1-line. Units are in (mW m−2 sr−1 nm−1).

The SIF emulator was then applied to HyPlant FLUO image data of adjacent flight
lines recorded close in time to the flight line L2 that the emulator was trained with. By doing
this, it was possible to analyze the robustness and spatial transferability of the emulator.
Figure 10 right shows the scatter plot of the SIF maps at 760 nm derived with the SFM and
the emulated product. Overall, the SFM and corresponding emulated SIF values have a
high level of agreement and show a good fit to the 1:1-line; however, the emulator slightly
underestimates SIF values higher than 5 mW m−2 sr−1 nm−1. This underestimation is
due to the fact that the model has been trained with pixel values collected from the subset
of flight line L2, which only covered the data range between −5 and 6 mW m−2 sr−1

nm−1. Hence, it appeared that the emulator was not trained with very high SIF values
and therefore the prediction of such values is uncertain. We can also observe a group of
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pixels for which the SFM provided values of around 4 mW m−2 sr−1 nm−1 and the SIF
emulator estimated values of around 7 mW m−2 sr−1 nm−1. When inspecting the origin of
these data, it appeared to be the sludge of a sewage plant, i.e., a land cover type that was
not included in the training data. Except for a few small areas, the emulator was able to
accurately estimate SIF, which is indicated by the very high R2 of 0.97 and the low NRMSE
of 2.56%. These results underline the potential of the emulator to predict SIF from at-sensor
radiance data of areas that were not included in model training.

3.4. Application of the SIF Emulator to All Flight Lines

When finally running the SIF emulator over all investigated flight lines it became clear
that SIF of flight lines recorded before and after the training flight line are affected by over-
and underestimated SIF values, respectively. The performance of the emulator strongly
depends on the image acquisition time. The main reason for the over- and underestimation
of SIF is that the image acquisition time directly affects the total radiance received by the
sensor. Although data acquisition of the investigated flight lines was performed in a period
of 13:06–14:01 in local time (LT), incoming radiation is continuously changing and even
small differences have a strong impact on the recorded radiance and thus on the SIF signal.
To overcome this problem, an improved SIF emulator was built with training data collected
from three different flight lines (L1, L3, and L4) to take into account the variability in
recorded radiance caused by the different time points of data acquisition for the single
flight lines. This SIF emulator was built with 3000 samples, 1000 from each of the three
flight lines, using the absolute sampling per class strategy. The different flight lines were
recorded either in north (L1, L3) or south direction (L4) to ensure that the heading of the
aircraft during data acquisition is also considered in the training of the emulator. Once
the emulator was trained with the optimal parameters, it was applied to the entire set of
flight lines and the results were evaluated by comparing them to the SFM maps in the same
way as in the previous sections. Table 4 shows the quality statistics for the seven flight
lines. Overall, the SIF emulation of the flight lines reveal a good agreement. However, L7
obtained a much lower R2 (0.68) than the other flight lines, which can be explained by the
smaller size of the recorded area and the presence of buildings. As reported in the table, for
all the emulated SIF maps R2 values of higher than 0.68 were achieved with the highest R2

of 0.95 for L4. The NRMSEs of all flight lines were lower than 6.5% with the lowest value
of 4.13% obtained for L6. On average R2 for all flight lines is 0.84 and NRMSE 5.18%.

Table 4. Goodness-of-fit statistics obtained for the emulated SIF maps of all flight lines. The evaluation has been carried out
by comparing the emulated SIF values with the corresponding values of SFM SIF maps on pixel basis.

Acquisition
Time (LT) Direction Num Pixels

(Milions)
Processing

Time (s) RMSE (mW m−2 sr−1 nm−1) NRMSE (%) R2

L1 13:54 N 2.3 185.50 0.62 5.19 0.85
L2 13:46 S 2.3 182.93 0.73 6.42 0.82
L3 13:38 N 2.3 187.17 0.69 5.13 0.81
L4 13:30 S 2.3 185.87 0.81 5.19 0.95
L5 13:22 N 2.3 188.52 0.80 5.06 0.91
L6 13:14 S 2.3 186.25 0.68 4.13 0.88
L7 13:06 N 1.3 68.00 0.58 5.57 0.68

Lastly, a mosaic was made from the emulated SIF maps of all flight lines. A subset
of the mosaic is presented in Figure 2. The optimal emulator was used to obtain the SIF
value in the image (Figure 11, left) and an absolute error map was provided by comparing
the reference image with the image obtained by means of the formulator (Figure 11, right).
The emulated SIF map accurately captures the variability of crop values. By calculating the
absolute error of the two images, a small bias for some flight lines can be observed, but in
general, low absolute error values were obtained throughout the complete image.
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Figure 11. Subset of the emulated SIF mosaic at 760 nm using all investigated flight lines (left).
Absolute error map calculated for the emulated and the SFM SIF mosaic at 760nm (right).

4. Discussion
4.1. Interpreting SIF Emulator Results

Building upon previous studies where simulators were successfully approximated
with statistical learning [8,10–12], here the concept of statistical learning was applied to
emulate SIF at multiple wavelengths retrieved from HyPlant FLUO at-sensor radiance
data. To optimize the predictive power of the developed emulator, key parameters were
systematically analyzed, including: (1) different machine learning regression algorithms
(MLRAs), (2) PCA as dimensionality reduction method with a varying number of compo-
nents, (3) size of the training database , and (4) type of sampling scheme. The impact the
different parameters had on the achieved results are discussed below.

The first analysis involved an accuracy assessment of several MLRAs. From the six
investigated algorithms, KRR consistently achieved the highest accuracies. Additionally,
KRR in comparison to other MLRAs has the advantage of low computational costs for both
model training and application. On the one hand, KRR is characterized by a high efficiency,
and on the other hand, it is relatively simple since only one hyperparameter needs to
be optimized during model training. This excellent trade-off of good performance and
low processing time KRR provides has previously been observed in other studies [8,13].
However, in earlier emulation studies that focused on approximating RTMs (e.g., PROSAIL,
MODTRAN), GPR systematically outperformed KRR and other MLRAs [11,12,16] when
simulated data were used for validation. These studies suggest that GPR is better suited
for approximating deterministic models. In turn, when the data are more erratic, as the
experimental data used in this study, KRR seems to be better suited, although the achieved
accuracies were lower in comparison to deterministic models used to emulate RTM data.
One reason for the superior performance of KRR in dealing with experimental data could
be that only one hyperparameter needs be tuned, while GPR has three hyperparameters
that potentially can be modified. KRR is therefore less able to specialize based on the
training than GPR, likely leading to an advantage when applied to erratic validation data.
Additionally, it must be noted that other popular MLRAs such as random forest and
support vector regression have also been tested (results not shown). Both MLRAs did not
reach the degree of accuracy as the methods presented in this study.

The second analysis focused on evaluating the DR method PCA and the number of
PCs used to build emulators. DR is essential in the emulation of multi-input–multi-output
data models, since it allows compressing spectral signatures with high spectral resolution.
This greatly reduces the computational cost without losing information of the original data.
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We only analyzed the DR method PCA, which solves the multicolinearity problem in the
model outputs without considering the correlations between dependent (outputs) and
independent (inputs) variables. PCA is straightforward and allowed the fast training of
emulators, even if a higher number of components was used. In principle, also alternative
DR methods can be applied to improve the reconstruction of the output variables (e.g., [40]).
For instance, partial least squares (PLS) [32] is another promising DR method, which takes
into account the potential correlations of the input and output variables. PLS and PCA are
mathematical identical in our scenario and in our case and results showed a similar but
lower accuracy for PLS. For this reason, only PCA was analyzed in our study. In reality, we
are not aware of other DR methods applied in other emulation studies. Since PCA was used
as DR method in combination with KRR to develop emulators, the impact of the the number
of PCs on model performance has been analyzed in detail. An increase in the number of
components is expected to produce a more accurate representation of the initial spectral
data and therefore a more accurate prediction model. Our results suggest that using more
than 20 PCs to represent the input radiance data does not further reduce the error (NRMSE)
of the model significantly. Hereby, it is well realized that this number depends on the
complexity of the input data. As radiance data are characterized by specific absorption
features, it is crucial to be sure that the number of PCs chosen are enough to represent
the spectral variability. In comparison, typically about 20 components are sufficient for
spectrally smoother reflectance data [11,41,42]. The same is true for the reduction and
reconstruction of the SIF output data. SIF in the O2 A region is spectrally smooth, implying
that already one component captures the full variability. In fact, this would suggest that
the emulator can be further simplified and accelerated by relying on one component, yet
we preferred to stay with five components to ensure robustness and high speed.

A third analysis focused on evaluating the role of quantity and quality of the training
database. Based on the usage of traditional interpolation methods, it was initially expected
that larger training databases would lead to more accurate emulators. The results show
that varying this parameter had the largest impact on model accuracy, leveling off from
3000 samples. One explanation is that adding more samples in the same input feature
space does not add new information to the statistical model. With a few samples, the KRR
emulator is able to mimic the SFM retrieval method to obtain the SIF spectrum from the
radiance recorded by the sensor. It is also noteworthy that a higher number of samples in
model training goes along with an increased processing time.

The last analysis was aimed to investigate the distribution of the training and val-
idation samples (pixels) within the scene. Since the data used for model training and
validation were composed of randomly chosen pixels from one flight line, the uniform
distribution of samples in the input spatial space can lead to a non-uniform distribution
in feature space and compromise the model accuracy. In the ideal case in which a model
is trained with a large number of samples, the sample distribution assumed to be propor-
tional to the area covered in the image by each of the land over classes. However, from a
stochastic point of view, using a number of samples distinctly lower than the total number
of pixels within the training image can lead to an unequal distribution of samples for the
individual classes and thus to an over or under representation of single land cover classes
characterized by a specific radiance and SIF signal. In the case of LUTs generated by RTMs,
it is possible to evenly sample the entire input feature space, e.g., with the Latin hypercube
sampling method [43], which is a commonly used sampling strategy for RTMs [16,44,45].
Additionally, alternative sampling strategies have proven to be more efficient than LHS.
These might prove an important area for future research in emulation research [46,47].
However, if we obtain the training data from an experimental dataset such as an image,
the spatial representativeness of the samples will be strongly determined by distribution
and size of the land cover classes within the image. For instance, a spatially uniform
distribution of the pixels would result in a cluster distribution with a higher density of
points in the areas corresponding to the dimension space of the class with the largest area
covered in the image; although, there may be areas of the input dimensional space with
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a low sample density, corresponding to land covers that are spread across small areas
of the image. One way to overcome this problem is to classify the image first and then
apply a random sampling in each land cover class separately. This will ensure a uniform
distribution of samples so that each class is equally represented in the training dataset.
For this reason, a segmentation was conducted to classify the image into various land
cover classes to enable a stratified sampling with a similar number of samples in each class.
As a third sampling strategy, pixels of each class were randomly selected proportional to
the area the class covers in the training image, i.e., relative stratified sampling. From the
three tested sampling strategies stratified sampling, which uses a fixed number of training
samples per class, provided the best results, especially when the model was applied to
unknown image data, which was not included model training.

MLRA models tend to optimize fitting to the training dataset, and thus provide high
prediction accuracies for the entire image where training data were selected from [33].
However, if a model is applied to a dataset that was not included in the training phase,
such as adjacent flight lines in this study that had slightly different acquisition times and
were partly recorded by the aircraft flying in the opposite direction, model accuracies are
distinctly lower. Such small differences can directly affect the total radiance received by
the sensor. If an emulator is applied to images with different illumination geometries
and irradiance intensities, it is important to include this variability by selecting training
samples from all available image datasets to make the model more generally applicable. To
overcome this problem, the final model was trained with samples collected from three flight
lines, which were acquired at different times and had different data acquisition directions.
Thus the emulator could adapt better to the different radiance intensities received by the
sensor and provided higher SIF prediction accuracies.

In practice, each image may be acquired at different conditions and a bias may appear
in the SIF output. (see Figure 11). Accordingly, to achieve a generally applicable and robust
emulator, it is recommended to use a training dataset that includes multiple images taken
with a broad range of characteristics [48]. In this study, airborne images acquired under
clear sky conditions on a sunny day were used, so that atmospheric conditions only played
a negligible role. Likewise, in future studies, emulators can be just as well trained based on
radiance data coming from satellite images, e.g., as will be provided by FLEX [49]. The key
is to include training data recorded at different geographic locations and under varying
meteorological and atmospheric conditions. Altogether, regardless of what type of spectral
data is to be emulated, one must always strive to make the emulator closely match with the
images to be processed. While a sufficiently balanced training dataset is required to ensure
production of accurate emulated output, at the same time, here also lies the weakness of the
emulation technique, i.e., being dependent on training data. If the training data deviate too
much from the image under study, the emulator will fail. One way to evaluate the success
of an emulator over an image would be through per-pixel quantification of associated
uncertainties. Although here KRR was evaluated as best performing both in accuracy and
speed, when aiming to evaluate the quality of the emulator spatially, then GPR would be
an attractive alternative. GPR, trained in a Bayesian framework, offers the advantage of
delivering a standard deviation along with the mean estimate [50], so enabling inspecting
the success of the emulated output map.

4.2. Opportunities for Emulation of Spectral Products

Emulators are increasingly used to approximate deterministic models of large com-
putational burden. In this study, emulators are analyzed to convert one type of spectral
data (here radiance) into another (here SIF). The final optimized emulator was able to
generated SIF maps that proved to be consistent with SIF maps derived using the SFM
approach. In terms of accuracy, the mean NRMSE was 5.18% in the O2 A region. In terms
of computational efficiency, the SIF emulation with KRR had a processing time of three
minutes per flight line, while the SFM retrieval of the same images took around 78 minutes.
The tremendous speedup in processing is fundamental in remote sensing image processing,
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where models face the challenge to process a massive amount of data at a high speed [12].
Finally, the memory consumption of an emulator is low, i.e., a KRR model is a few MBs
in size, while RTM-based training data typically used in retrieval applications can rise to
several GBs. Consequently, emulators can serve as an appealing alternative to a diversity
of tedious remote sensing applications relying on RTMs. For instance, recent studies have
demonstrated the efficiency of emulators in the context of atmospheric correction of remote
sensing data [15,42], and here the potential of emulators to mimic the retrieval of SIF from
at-sensor radiance was presented.

More generally, as the processing of optical remote sensing data from raw images to
final products is a procedure that consists of several steps, some of those steps could be
bypassed by emulators, i.e., radiometric correction: from digital numbers to radiometric
data, and atmospheric correction: from radiometric data to reflectance data. Particularly,
atmospheric correction can be time-consuming, and often requires specific software [51–54].
Alternatively, when properly trained, emulators can provide a fast approximation of the
rigorous processing steps involved. Progress in this direction is expected e.g., with deep
learning, with further acceleration and thereby improving the computational efficiency,
accuracy, and physical awareness of the emulator [14]. Our work underlines the importance
of different steps in model training to build a robust emulator, which is able to produce
accurate SIF maps from radiance data of different flight lines recorded under changing
illumination conditions. When aiming to further explore the potential of emulators for
other fields of application in remote sensing, e.g., atmospheric correction, it is important
to include a wide variability of scenarios under which the data were recorded, since even
small changes in the external conditions can strongly affect the recorded spectral signal.
From a practical perspective, we have expanded ARTMO’s emulator toolbox to enable
such conversions, e.g., radiometric data to SIF or reflectance data. To analyze this proof
of concept, follow-up studies are in preparation, e.g., to verify whether emulation can
simplify the atmospheric correction step of the imaging spectroscopy sensor HyPlant, as
well within the FLEX framework.

5. Conclusions

While the spectral fitting method (SFM) enables retrieval of multispectral SIF output
in the O2 A absorption band from TOA radiance data, the method is computationally
costly given the many iterations involved. To bypass this computational burden, here
we evaluated the idea of statistical learning, i.e., emulation, to approximate SFM-like
multispectral SIF output coming directly from at-sensor radiance data. Experimental data
came from the 2018 FLEXSense campaign where, from hyperspectral HyPlant acquisitions,
the SFM method was applied for the retrieval of SIF outputs. Dimensionality reduction
techniques were introduced to both input and output data to enable conversion of radiance
to SIF data; these techniques have shown an excellent preservation of the original data
quality. With the purpose of evaluating the accuracy that emulation can reach, multiple
optimization strategies were systematically analyzed against a reference dataset, including
the role of: (1) machine learning regression algorithms, (2) PCA dimensionality reduction,
and (3) sampling strategy. Best accuracies were obtained with kernel ridge regression and a
training dataset of 3000 samples, 20 PCs input, and 5 PCs output, with normalized RMSE of
4.16% This final emulator was subsequently applied to HyPlant flight lines to convert them
into SIF output. It took a mere 3 minutes to process the 6x106 pixels on a contemporary
PC. SIF emulation accuracy were in the order of 5.18%, with the remark that flight line
direction also influenced the emulation quality.

Summarizing, emulation offers a fast surrogate alternative to bypass the computa-
tional load of the SFM-based multispectral SIF retrieval method, although in the conducted
experiments not all pixels of the HyPlant flight lines achieved a perfect reconstruction of
SFM-like SIF output. When tolerating this trade-off in speedup at the cost of some loss
in precision, the technique opens opportunities to convert any type of spectral data into
another in a quick, computationally efficient way. Moreover, advances in machine learning
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and training strategies are expected to further improve the predictive power of emulation.
To the benefit of the community, a GUI emulator toolbox has been developed that facilitates
exploring further emulation applications.
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