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In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19
pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible ðSÞ, exposed ðEÞ,
symptomatically infected ðIsÞ, asymptomatically infected ðIaÞ, quarantined ðQÞ, recovered ðRÞ, and death ðDÞ, respectively. The
next-generation matrix approach was used to compute the basic reproduction number denoted as Rcvd19 of the proposed model.
The results show that the disease-free equilibrium is globally asymptotically stable if Rcvd19 < 1. On the other hand, the global
asymptotic stability of the endemic equilibrium occurs if Rcvd19 > 1. The mathematical analysis of the model is supported using
numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would
go on a long way in reducing the COVID-19 pandemic.

1. Introduction

The world continues to battle with the coronavirus disease
2019 (COVID-19) caused by the novel coronavirus, SARS-
CoV-2, which is regarded as a highly virulent virus that tar-
gets the human respiratory system. The pandemic started
in late December 2019 with patients admitted to hospitals
with an initial diagnosis of pneumonia. The admitted
patients’ sickness was linked to the seafood and wet animal
market in Wuhan, Hubei Province, China [1]. On January
2, 2020, a total number of 41 admitted hospital patients were
confirmed to be infected with COVID-19 [2]. On January 22,
2020, 571 COVID-19 cases were reported in 25 different
provinces in China [1, 2]. On January 30, 2020, China had
about 7734 confirmed COVID-19 cases, while 90 cases were
reported in about 13 countries [1, 3], including Canada,
India, Germany, France, the United States, India, and the
United Arab Emirates. As of October 31, 2020, a total of
4,667,780 COVID-19 cases (Africa: 1,776,595 cases, Asia:
13,461,293 cases, America: 20,546,580 cases, Europe:

9,840,736 cases, Oceania: 41,880 cases, and others: 696 cases)
have been reported worldwide including 1,189,499 deaths
(Africa: 42,688 deaths, Asia: 239,675 deaths, America:
640,513 deaths, Europe: 265,565 deaths, Oceania: 1,051
deaths, and others: 7 deaths) [4].

COVID-19 is transmitted from human to human via
direct contact with contaminated surfaces and through respi-
ratory droplets’ inhalation from infected individuals [5].
Presently, there is no vaccine or antiviral treatment approved
for the prevention or management of COVID-19 [6]. To
effectively reduce the spread of COVID-19, governments
have been implementing various control measures such as
imposing strict, mandatory lockdowns and encouraging
(and in some cases strictly enforcing) other measures such
as individuals maintaining a minimum distance between
themselves (social distancing), avoiding crowded events,
imposing a maximum number of individuals in any gather-
ing (religious and social), and the use of face masks in public
[7]. To further help mitigate the spread of COVID-19, con-
tact tracing of suspected infected cases has been stepped up
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in several countries and detected cases (asymptomatic and
symptomatic) are quickly placed in isolation for prompt
treatment [7].

In Thailand, the virus was first confirmed to exist on Jan-
uary 13, 2020 [8], while the first reported local transmission
was confirmed on January 31, 2020 [9]. The number of cases
remained low throughout February, but it surged in mid-
March. The rise in the number of cases was traced to several
transmission clusters, the largest of which occurred with a
Muay Thai fight at the military-run Lumpinee Boxing Sta-
dium on March 6, 2020 [10]. Confirmed cases rose to over
a hundred per day over the following week, and public
venues and businesses were ordered to close in Bangkok
and several other provinces [11]. Bangkok businesses’ abrupt
closure prompted tens of thousands of workers to travel to
their hometowns [12]. The Prime Minister of Thailand,
Prayut Chan-o-cha, declared a state of emergency, effective
on March 26, 2020 [13], and a curfew went into effect on
April 3, 2020 [14]. All commercial international flights were
suspended from April 4, and lockdownmeasures were imple-
mented in varying degrees throughout the country. The rate
of new cases gradually dropped throughout April, and by
mid-May, locally transmitted infection rates had fallen to
near-zero, and easing of restrictions was gradually imple-
mented [15, 16].

Even though there had been no new domestic cases since
mid-May, on August 21, Thailand extended its emergency
degree until September 30 to prevent incoming aliens from
overseas in many routes. In September, a prison inmate
who had not been abroad was Thailand’s first locally trans-
mitted case in 100 days. Later in the month, Akbar Ismatul-
laev, a footballer, was infected with the virus after
completing the 14-day state quarantine since he arrived
nearly a month earlier. In October, foreign tourists entered
Thailand for the first time in seven months [17]. A French
tourist on Ko Samui in Surat Thani contracted the disease
after passing the 14-day state quarantine. She developed a
fever 17 days after arriving in the country. In October, for-
eign tourists entered Thailand for the first time in seven
months under the Special Tourist Visa program [18].

Mathematical modeling is a valuable tool to control dis-
ease spread effectively. Several useful mathematical models
have been formulated in the last few decades to study infec-
tious diseases and develop helpful strategies for the efficient
elimination of infection [19–25]. The compartmental models
and real cases are more effective in providing valuable infor-
mation about a particular disease outbreak. Several mathe-
matical models have already been formulated in various
countries to analyze the complex transmission pattern of
the COVID-19 pandemic, using ordinary differential equa-
tions [26–28], delay differential equations [29], stochastic
differential equations [30], and fractional order Caputo
derivative [31–36].

Thailand has begun opening its borders to foreigners and
with the growing cases in the USA and Europe, there is a con-
cern that COVID-19 cases in Thailand may rise soon. Hence,
this study is aimed at (i) formulating a mathematical model
to understand the dynamics of the COVID-19 pandemic in
Bangkok, Thailand, (ii) examining the impact of the control

measures currently employed in Thailand, and (iii) deter-
mining if these measures will be effective in preventing
COVID-19 cases in Thailand. The remainder of this article
is structured as follows. The proposed model is presented in
Mathematical Model Formulation and Description. The
mathematical analysis of the model is presented in Analysis
of the Model. The results obtained from numerical simula-
tions of the model are provided in Numerical Simulation.
Finally, the conclusion drawn from this study is given in
Conclusion.

2. Mathematical Model Formulation
and Description

The mathematical model of COVID-19 transmission formu-
lated in this study was motivated by the study of [26]. The
model proposed in [26] was constructed from the SEIR
model and is comprised of six compartments with the
infected compartment divided into three categories. How-
ever, in the present study, the model will be divided into
seven compartments. The total human population to be con-
sidered is denoted as NðtÞ, and at any time, it comprises of
the susceptible ðSÞ, exposed ðEÞ, symptomatically infected ð
IsÞ, asymptomatically infected ðIaÞ, quarantined ðQÞ, recov-
ered ðRÞ, and death ðDÞ compartments, respectively. The sus-
ceptible compartment comprises individuals living in the
country or who have recently returned before the border’s
closure. The individuals exposed to COVID-19 and show
signs of symptoms are moved to the symptomatic infectious
compartment. In contrast, individuals who show no sign of
symptoms are moved to the asymptomatic infectious com-
partment. There is a reduction in the risk of infection for
the individuals in the susceptible compartment since they
practice preventive measures such as social distancing, wear-
ing a mask, and refraining frommass gatherings or meetings.
Individuals move to the recovery compartment through
recovery from both the quarantined and infected compart-
ments, respectively. The parameters βs and βa, respectively,
represent the effective contact rate (contacts capable of lead-
ing to COVID-19 transmission) for individuals in the symp-
tomatically infectious and asymptomatically infectious
compartments. The proportion of individuals who wear face
masks correctly within a community is denoted as 0 < ψ ≤ 1
while 0 < ξ ≤ 1 represent the expected decrease in the risk of
infection due to the face mask’s use. The progression rate of
exposed individuals is denoted as φ. A proportion 0 < θ ≤ 1
of exposed individuals showed no clinical symptoms of
COVID-19 (and move to the compartment Ia) at the end of
the incubation period. The remaining proportion 1 − θ
shows clinical symptoms and moves to the Is compartment.
The parametersλs, λa, and λq represent the recovery rate for
individuals in Is,Ia, and Q compartments, respectively. Simi-
larly, αs and αa are the isolation rate of individuals. Finally,
the parameters δs and δq represent the COVID-19-induced
mortality rate for individuals in the asymptomatic infectious
and quarantined compartments, respectively. In this study,
the effect of social distancing and community lockdown
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measures will be measured based on the overall reduction in
the community contact rate parameter’s baseline values.

The flowchart of the formulated model using all the
above assumptions is given in Figure 1. Additionally, all var-
iables with their meaning and the parameters with their
description are provided in Tables 1 and 2, respectively.

From the above assumptions and variables, we formulate
the model with nonnegative initial conditions:

dS
dt

= ρ − βs 1 − ψξð ÞSIs − βa 1 − ψξð ÞSIa − μS,

dE
dt

= βs 1 − ψξð ÞSIs + βa 1 − ψξð ÞSIa − φ + μð ÞE,

dIs
dt

= 1 − θð ÞφE − αs + δs + λs + μð ÞIs,

dIa
dt

= θφE − αa + λa + μð ÞIa,

dQ
dt

= αsIs + αaIa − λq + δq + μ
� �

Q,

dR
dt

= λsIs + λaIa + λqQ − μR,

dD
dt

= δsIs + δqQ: ð1Þ

Since the total population is NðtÞ = dS/dt + dE/dt + dIs/
dt + dIa/dt + dQ/dt + dR/dt + dD/dt, then

N tð Þ = ρ − μN: ð2Þ

From (2), NðtÞ would approach a carrying capacity ρ/μ.
Model (1) describes the human population, and thus, the
model variables can be shown to be nonnegative for all time
t ≥ 0 and that all solutions of the model (1) will remain pos-

itive for all time t ≥ 0. Therefore, model (1) is mathematically
well-posed, and its dynamics can be considered in the region
below:

ΩCvd19 = S, E, Is, Ia,Q, R,Dð Þ ∈R7
+ : S + E + Is + Ia +Q + R +D ≤

ρ

μ

� �
:

ð3Þ

3. Analysis of Model (1)

In this section, the dynamical properties of model (1) are
qualitatively studied.

3.1. Positivity and Boundedness of Solutions. Since model (1)
illustrates the human population, it is important that
model (1) is epidemiologically meaningful and all states
of variables are nonnegative for all time t > 0. Using The-
orem 1, the positivity of solutions of model (1) is first dis-
cussed below.

Theorem 1. If Sð0Þ > 0, Eð0Þ > 0, Isð0Þ > 0, Iað0Þ > 0,Qð0Þ >
0, Rð0Þ > ð0Þ and Dð0Þ > 0, then the solutions ðSðtÞ > 0, EðtÞ

𝜃𝜑

ES

Q

D

Is Ia

R

𝜇

𝜇

𝜇

𝜇

𝜇

𝜇

𝜇

𝜌

𝛿s

𝛿q
𝜆s

𝜆q

𝜆a

𝛼a𝛼s

(1 − 𝜃)𝜑

𝛽s(1 − 𝜓𝜉) SIs + 𝛽a(1 − 𝜓𝜉)SIa

Figure 1: Flowchart of the formulated model.

Table 1: Variables and their meaning used in the model.

Variables in the
model

Meaning

S The susceptible compartment

E The exposed compartment

Is The symptomatic infectious compartment

Ia
The asymptomatic infectious

compartment

Q The quarantined compartment

R The recovered compartment

D The death compartment
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> 0, IsðtÞ > 0, IaðtÞ > 0,QðtÞ > 0, RðtÞ > 0,DðtÞ > 0Þ of the
model are positive for all time t > 0.

Proof. From the first equation of the model, we have that

dS
dt

= ρ − βs 1 − ψξð ÞSIs − βa 1 − ψξð ÞSIa − μS

≥ −βs 1 − ψξð ÞSIs − βa 1 − ψξð ÞSIa − μS:
ð4Þ

By using the technique of variable separation, dS/dt can
be reduced to

dS
dt

≥ −βs 1 − ψξð ÞSIs − βa 1 − ψξð ÞSIa − μS: ð5Þ

Then, the above equation is integrated to yield the solu-
tion below

S tð Þ ≥ S0e
−
Ð t

0
βs 1−ψξð ÞIs+βa 1−ψξð ÞIa+μð ÞdS > 0: ð6Þ

Since the initial value S0 and the exponential functions
in Equation (6) are always positive. Hence, SðtÞ is positive.
Using the same ideas to check other equations of model
(1), this shows that EðtÞ > 0, IsðtÞ > 0, IaðtÞ > 0,QðtÞ > 0, R
ðtÞ > 0,DðtÞ > 0: Next, using Theorem 2, we prove the

boundedness of the nonnegative solutions characterized by
Theorem 1.

Theorem 2. All positive solutions described in Theorem 1 are
bounded.

Proof. The addition of all equations in Equation (1) yields

dN
dt

= d
dt

S + E + Is + Ia +Q + R +Dð Þ = ρ − μN , ð7Þ

which can be rewritten as

N tð Þ = ρ

μ
−

ρ − ρN0
ρ

� �
e−μt: ð8Þ

From Equation (8), NðtÞ approaches ρ/μ as t→∞:
Hence, the positive solutions of model (1) are bounded.

3.2. The Equilibrium Points of Model. The equilibrium points
of model (1) are obtained by zeroing the right-hand side of all
equations in model (1), resulting in

ρ − βs 1 − ψξð ÞSIs − βa 1 − ψξð ÞSIa − μS = 0,
βs 1 − ψξð ÞSIs + βa 1 − ψξð ÞSIa − φ + μð ÞE = 0,

1 − θð ÞφE − αs + δs + λs + μð ÞIs = 0,
θφE − αa + λa + μð ÞIa = 0,

αsIs + αaIa − λq + δq + μ
� �

Q = 0,
λsIs + λaIa + λqQ − μR = 0,

δsIs + δqQ = 0:

ð9Þ

The simplification of Equation (9) can yield many
solutions. However, in this study, we consider two solu-
tions: the disease-free equilibrium point (DFEP) and the
endemic equilibrium point (EEP). The DFEP in this study
is denoted as χ∗

dfep = ðS∗dfep, E∗
dfep, I∗s dfep, I∗a dfep,Q∗

dfep, R∗
dfep,

D∗
dfepÞ, where

S∗dfep =
ρ

μ
,

E∗
dfep = 0,

I∗s dfep = 0,

I∗a dfep = 0,

Q∗
dfep = 0,

R∗
dfep = 0,

D∗
dfep = 0:

ð10Þ

Furthermore, the EEP is denoted by χ∗
eep = ðS∗eep, E∗

eep,
I∗s eep, I∗a eep,Q∗

eep, R∗
eep,D∗

eepÞ, where

Table 2: Parameters used in the model and their meaning.

Model
parameters

Description

ρ The recruitment rate into the susceptible
compartment

βs The effective contact rate

βa The effectiveness of social distancing

ψ The proportion of individuals who use a face mask

ξ The efficacy of face masks

1 − θ The fraction of exposed individuals who show
clinical symptoms after the incubation period

φ The rate of progression from the exposed
compartment to the infectious compartment

αs
The isolation rate for individuals in the
symptomatically infected compartment

λs
The recovery rate of individuals in the
symptomatically infected compartment

δs
The COVID-19 disease mortality rate for
individuals in the infectious compartment

αa
The isolation rate of asymptomatically infectious

individuals

λa
The recovery rate of asymptomatically infectious

individuals

λq
The recovery rate of individuals in the quarantined

compartment

δq
The COVID-19 disease mortality rate for

individuals in the quarantined compartment

μ The natural death rate of all individuals
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S∗eep =
ρ

βs 1 − ψξð ÞIs + βa 1 − ψξð ÞIa + μ
,

E∗
eep =

βs 1 − ψξð ÞIs + βa 1 − ψξð ÞIa
φ + μ

,

I∗s eep =
1 − θð ÞφE

αs + δs + λs + μ
,

I∗a eep =
θφE

αa + λa + μ
,

Q∗
eep =

αsIs + αaIa
λq + δq + μ

,

R∗
eep =

λsIs + λaIa + λqQ

μQ
,

D∗
eep = 0:

ð11Þ

3.3. The Basic Reproduction Number of Model (1). To
compute the model’s basic reproduction number (BRN),
the next-generation matrix approach is employed. In this
study, we denote the BRN of model (1) as Rcvd19, which
is defined as the number of secondary cases of COVID-
19 infection arising from one individual infected with the
COVID-19 disease. By using the notation in the study of
[37], the vectors F (denotes new infection) and V (trans-
fer of individuals between compartments) are given as fol-
lows:

F =
βsSIs 1 − ψξð Þ + βaSIa 1 − ψξð Þ

0
0

0
BB@

1
CCA,

V =
φ + μð ÞE

− 1 − θð ÞφE + αs + δs + λs + μð ÞIs
−θφE + αa + λa + μð ÞIa

0
BB@

1
CCA: ð12Þ

From vectors F and V , the Jacobian F and V are
computed below:

F =
0 βsS 1 − ψξð Þ βaS 1 − ψξð Þ
0 0 0
0 0 0

0
BB@

1
CCA,

V =
φ + μð Þ 0 0

− 1 − θð Þφ αs + δs + λs + μð Þ 0
−θφ 0 αa + λb + μ

0
BB@

1
CCA: ð13Þ

The Jacobian matrices F and V evaluated at χ∗
eep yield:

F =
0 βsS

∗
dfep 1 − ψξð Þ βaS

∗
dfep 1 − ψξð Þ

0 0 0
0 0 0

0
BB@

1
CCA,

V =
φ + μð Þ 0 0

− 1 − θð Þφ αs + δs + λs + μð Þ 0
−θφ 0 αa + λa + μð Þ

0
BB@

1
CCA:

ð14Þ

Hence, computing the Jacobian matrices F and V , the
BRN of the model is

Rcvd19 = ρ FV−1� �
=
φS∗dfep
φ + μ

βs 1 − ψξð Þ 1 − θð Þ
αs + δs + λs + μ

+ +θβa 1 − ψξð Þ
αa + λa + μð Þ

� �
,

ð15Þ

where S∗dfep is denoted in Equation (10).
From Equation (15), the BRN of model (1) can be further

simplified to Equation (16):

Rcvd19 =
βsφS

∗
dfep 1 − ψξð Þ 1 − θð Þ

φ + μ αs + δs + λs + μð Þ +
θβaφS

∗
dfep 1 − ψξð Þ

φ + μ αa + λa + μð Þ :

ð16Þ

Equation (16) comprises two reproduction numbers.
The first BRN is ðβsφS

∗
dfepð1 − ψξÞð1 − θÞÞ/ðφ + μðαs + δs +

λs + μÞÞ, and it defines the number of new COVID-19 cases
generated from symptomatically infectious human in com-
partment Is: The second BRN is ðθβaφS

∗
dfepð1 − ψξÞÞ/ðφ + μ

ðαa + λa + μÞÞ, and it defines the number of new COVID-19
cases generated from asymptomatically infectious humans
in compartment Ia. Hence, mathematically, the BRN can be
simplified to be

Rcvd19 = RIs + RIa: ð17Þ

4. Global Stability Analysis

4.1. Global Stability Analysis of DFEP. To prove the global
stability of the disease-free equilibrium, the Lyapunov func-
tion below is constructed:

L = B1E + B2Is + B3Ia, ð18Þ

where

B1 = αa + λa + μð Þ αs + δs + λs + μð Þ,
B2 = αa + λa + μð Þβs 1 − ψξð ÞS,
B3 = αs + δs + λs + μð Þβa 1 − ψξð ÞS:

ð19Þ
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From Equation (18), the derivative is given below as

∂L
∂t

= B1
dE
dt

+ B2
dIs
dt

+ B3
dIa
dt

= B1 βs 1 − ψξð ÞSIs + βa 1 − ψξð ÞSIa − φ + μð ÞE½ �
+ B2 1 − θð ÞφE − αs + δs + λs + μð ÞIs½ �
+ B3 θφE − αa + λa + μð ÞIa½ �:

ð20Þ

The expansion of Equation (20) yields

∂L
∂t

= αa + λa + μð Þ αs + δs + λs + μð Þ βs 1 − ψξð ÞSIs½
+ βa 1 − ψξð ÞSIa − φ + μð ÞE� + αa + λað
+ μÞβsS 1 − ψξð Þ 1 − θð ÞφE − αs + δs + λs + μð ÞIs½ �
+ αs + δs + λs + μð ÞβaS 1 − ψξð Þ θφE − αa + λa + μð ÞIa½ �:

ð21Þ

Then, Equation (21) becomes

∂L
∂t

= αa + λa + μð Þ αs + δs + λs + μð Þ βs 1 − ψξð ÞSIs½ �
− αa + λa + μð ÞβsS 1 − ψξð Þ αs + δs + λs + μð Þ
+ αa + λa + μð Þ αs + δs + λs + μð Þ βa 1 − ψξð ÞSIa½ �
− αs + δs + λs + μð ÞβaS 1 − ψξð Þ αa + λa + μð Þ
+ αa + λa + μð ÞβsS 1 − ψξð Þ 1 − θð ÞφE
+ αs + δs + λs + μð Þβa 1 − ψξð ÞθφE
− αa + λa + μð Þ αs + δs + λs + μð Þ φ + μð ÞE:

ð22Þ

Equation (22) can be simplified to

∂L
∂t

= αa + λa + μð Þ αs + δs + λs + μð Þ βs 1 − ψξð ÞSIs½ �
− αa + λa + μð ÞβsS 1 − ψξð Þ αs + δs + λs + μð Þ
+ αa + λa + μð Þ αs + δs + λs + μð Þ βa 1 − ψξð ÞSIa½ �
− αs + δs + λs + μð ÞβaS 1 − ψξð Þ αa + λa + μð Þ
+ αa + λa + μð Þ αs + δs + λs + μð Þ φ + μð Þ
�
�

βsS 1 − ψξð Þ 1 − θð Þφ
φ + μð Þ αs + δs + λs + μð Þ

+ βa 1 − ψξð Þθφ
φ + μð Þ αa + λa + μð Þ − 1E,

∂L
∂t

≤ αa + λa + μð Þ αs + δs + λs + μð Þ φ + μð Þ

�
�

βsS 1 − ψξð Þ 1 − θð Þφ
φ + μð Þ αs + δs + λs + μð Þ

+ βa 1 − ψξð Þθφ
φ + μð Þ αa + λa + μð Þ − 1

�
E

≤ αa + λa + μð Þ αs + δs + λs + μð Þ
� φ + μð Þ Rcvd19 − 1½ �E:

ð23Þ

Hence, ∂L/∂t ≤ 0 if Rcvd19 ≤ 1, and ∂L/∂t = 0 if E = 0: By
LaSalle’s Invariance Principle, we can conclude that the
DFEP of model (1) is globally asymptotically stable in
ΩCvd19 whenever Rcvd19 ≤ 1.

4.2. Global Stability Analysis of EEP. The global asymptotic
stability of χ∗

eep is discussed using the Lyapunov asymptotic
stability theorem. Frommodel (1), we will construct a Lyapu-
nov function by following the study of Xu et al. [38].

Theorem 3. If Rcvd19 > 1, then the endemic equilibrium point
χ∗
eep of model (1) is globally asymptotically stable in the region

ΩCvd19.

Proof. First, we defineL : fðS, E, Is, Ia,Q, R,DÞ ∈ΩCvd19 : S,
E, Is, Ia,Q, R,D > 0g→R:

Consider the function below:

L S, E, Is, Ia,Q, R,Dð Þ
= ln

h
S − S∗eep

� 	
+ E − E∗

eep

� 	
+ Is − I∗seep
� 	

+ Ia − I∗aeep
� 	

+ Q −Q∗
eep

� 	
+ R − R∗

eep

� 	

+ D −D∗
eep

� 	
+ 1

i
:

ð24Þ

This implies that L is C1 in the interior of ΩCvd19, where
χ∗
eep means the global minimum of L on ΩCvd19 and LðS∗eep,

E∗
eep, I∗s eep, I∗a eep,Q∗

eep, R∗
eep,D∗

eepÞ = 0.
The derivative of L along the solutions of the model in (1)

is given by the expression below:

_L = ∂L
∂t

dS
dt

+ ∂L
∂t

dE
dt

+ ∂L
∂t

dIS
dt

+ ∂L
∂t

dIa
dt

+ ∂L
∂t

dQ
dt

+ ∂L
∂t

dR
dt

+ ∂L
∂t

dD
dt

= dS/dtð Þ + dE/dtð Þ + dIS/dtð Þ + dIa/dtð Þ + dQ/dtð Þ + dR/dtð Þ + dD/dtð Þ
S − S∗eep

� 	
+ E − E∗

eep

� 	
+ Is − I∗seep
� 	

+ Ia − I∗aeep
� 	

+ Q −Q∗
eep

� 	
+ R − R∗

eep

� 	
+ D −D∗

eep

� 	
+ 1

� 	 :
ð25Þ
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From (2), all the solutions of (11) satisfy the equality

N∗
eep = S∗eep + E∗

eep + I∗seep + I∗aeep +Q∗
eep + R∗

eep +D∗
eep =

ρ

μ
:

ð26Þ

Also, N = e−ut+C + ρ/μ, where C is the value that satisfies
the condition N0 = ρ/μ.

Thus, L = ln ðN −N∗ + 1Þ ≥ 0. Therefore,

_L = 1
N − ρ/μð Þ + 1

dN
dt

= μ

N − ρ/μð Þ + 1
ρ

μ
−N


 �
≤ 0: ð27Þ

L = 0 and _L = 0 are satisfied if and only if N = ρ/μ.
Hence, the function _L is a Lyapunov function for model

(1), and the endemic equilibrium χ∗
eep is globally asymptoti-

cally stable by the Lyapunov asymptotic stability theorem.

5. Numerical Simulation

To support the mathematical analysis of model (1), the
numerical simulations are carried out using the deSolve pack-
age [39] with the fourth-order Runge-Kutta method in RStu-
dio programming software version 1.1.442. The simulations

are divided into three parts. Part 1 is to illustrate the numer-
ical interpretation of the disease-free and endemic equilib-
rium points. Part 2 is to explore the varying effects of face
masks. Part 3 is to find out model (1) fitting with real data.

5.1. Part 1: Illustrating the Numerical Interpretation of the
DFEP and EEP. The following initial conditions were used
in the numerical simulations:

S 0ð Þ = 2, 150,
E 0ð Þ = 1, 750,
IS 0ð Þ = 3, 930,
Ia 0ð Þ = 1, 965,
Q 0ð Þ = 94,
R 0ð Þ = 3, 766:

ð28Þ

The parameter values used for the numerical simulations
in Part 1 are provided in Table 3.

The results obtained from the numerical simulations are
presented in Figures 2 and 3, respectively.

Figure 2 depicts a rise in the number of the susceptible
population in the absence of the COVID-19 pandemic. We
also note that when there is a rise in the susceptible popula-
tion, the exposed population also increases. However, the
increase in the exposed population is lesser compared to the
susceptible population. Furthermore, no changes occurred in
the quarantined and recovered population. This can be
because in the absence of the COVID-19 pandemic (i.e., Is =
0 and Ia = 0), there will be no infected population to spread
the disease to the other compartments.

Figure 3 shows a slight rise in the number of individ-
uals in the exposed compartment and a gradual reduction
in the number of the infected population when necessary
interventions are used as a preventive measure to reduce
the spread of the COVID-19 pandemic. Additionally, there
is a rise in the number of quarantined and recovered indi-
viduals from the COVID-19 pandemic. The figure also
finds that if the interventions are strictly followed, it can
reduce the pandemic’s spread.

5.2. Part 2: The Varying Effects in the Use of Face Mask. The
numerical simulation in Part 2 examines how varying ψ value
affects the basic reproduction number computed in this
study. As earlier defined in Table 2, ψ denotes the proportion
of individuals who use face masks. The parameter values used
in the numerical simulations for Part 2 are provided in
Table 3. However, different ψ values (ψ = 0:1, 0:5, and 0:7)
are considered. By computing the basic reproduction num-
bers and using the parameter values in Table 3, the obtained
results are presented in Table 4.

From the results obtained in Table 4, it is evident that if a
larger number of people consistently use face masks in a
community, then the COVID-19 pandemic can be reduced.

5.3. Part 3: Model Fit. In this section, the real data provided in
Table 5 is fitted with model (1).

Table 3: Parameter values for the numerical simulations of the
DFEP and EEP.

Parameters
Parameter values

for DFEP
Parameter values

for EEP
Source

ρ 5 5 —

βs Assumed Assumed —

βa Assumed Assumed —

ψ 0:1 0.1 [40]

ξ 0:5 0.5 [40]

θ 0:5 0.5
[41–
44]

φ 1/6 1/6 [1]

αs 0:2 0:2 [45]

λs 1/10 1/10 [45,
46]

δs 0:015 0.015 [41]

αa 0:2 0:2 [45]

λa 1/10 1/10 [45,
46]

λq 0:05 0:05 [45,
46]

δq 0:015 0:015 [41]

μ 3:6529 × 10−5 3:6529 × 10−5 [47]

Basic
reproduction
number

Rcvd19 = 0:28738 < 1 Rcvd19 = 1:40995 > 1
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The data were grouped monthly and obtained from the
Department of Disease Control, Thailand [47]. The data span
from January 2020 to December 2020. The monthly recorded
data in Table 5 [47] were first interpolated into daily data to
easily fit the real data with the simulated data. Afterward,
model (1) was fitted to the daily interpolated data using a step
size of 0.01. The result of the model fit is presented in
Figure 4.
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Figure 2: Simulation results of the DFEP for model (1) at different initial conditions and parameter values in Table 3 when Rcvd19 =
0:28738 < 1.

Table 4: Numerical simulation of the varying effects of the
parameter ψ.

Parameters Parameter value Rcvd19
ψ 0.1 (10%) 1:40995 > 1
ψ 0.5 (50%) 0:62111 < 1
ψ 0.7 (70%) 0:00332 < 1

Table 5: Number of recorded COVID-19 cases in Bangkok,
Thailand, from January 2020 to December 2020.

Month Number of infected population recorded

January 2020 19

February 2020 23

March 2020 1609

April 2020 1303

May 2020 127

June 2020 90

July 2020 139

August 2020 102

September 2020 152

October 2020 216

November 2020 218

December 2020 1509

0
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Figure 3: Simulation results of the EEP for model (1) at different initial conditions and parameter values in Table 3 when Rcvd19 = 1:40995 > 1.
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From Figure 4, it can be seen that the real data have two
peaks which occurred on days 360 and 1,073. The model pro-
posed in this study was able to generate the peaks obtained in
the real data.

6. Conclusion

In this study, the nonlinear mathematical model was pro-
posed and analyzed to understand the dynamics of the
COVID-19 pandemic in Thailand. The equilibrium point
relating to the formulated model was computed. Using the
next generation matrix approach, the basic reproduction
number denoted as relating to the model was also computed.
Moreover, this study also showed that if the BRN is denoted
as Rcvd19 < 1, then the pandemic will die out. However, if
Rcvd19 > 1, then the pandemic will remain in the population.

Additionally, the global asymptotical stability of the
disease-free and endemic equilibrium points has been
proved. Numerical simulations were carried out to support
the model analysis. The real data were also fitted to the
model for predicting the infected population cases in real
life. The varying effects of the use of face masks were also
explored in this study, and it was found that the continuous
and appropriate use of face masks can prevent the spread of
the COVID-19 pandemic. Presently, the research on a vac-
cine to prevent the COVID-19 pandemic has yielded excel-
lent results, with Pfizer announcing that their vaccine has a
95% efficacy. However, it will take a while before the vac-
cines are made readily available in all countries worldwide.
Therefore, the use of face masks should be made compulsory
till the vaccines are available for everyone. We propose that
future researchers implement the model proposed in this
study to the second wave of infected cases in Thailand to

explore the efficiency of the current measures used to pre-
vent COVID-19.

Data Availability

The data used to support the findings of this study are
included within the article.
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