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Background. Prostate cancer (PCa) is a malignant tumor in males, with a majority of the cases advancing to metastatic
castration resistance. Metastasis is the leading cause of mortality in PCa. The traditional early detection and prediction
approaches cannot differentiate between the different stages of PCa. Therefore, new biomarkers are necessary for early
detection and clear differentiation of PCa stages to provide precise therapeutic intervention. Methods. The objective of the
study was to find significant differences in genes and combine the three GEO datasets with TCGA-PRAD datasets (DEG).
Weighted gene coexpression network analysis (WGCNA) determined the gene set and PCa clinical feature correlation
module utilizing the TGGA-PRAD clinical feature data. The correlation module genes were rescreened using the biological
information analysis tools, with the three hub genes (TOP2A, NCAPG, and BUB1B) for proper verification. Finally,
internal (TCGA) and external (GSE32571, GSE70770) validation datasets were used to validate and predict the value of
last hub genes. Results. The hub gene was abnormally upregulated in PCa samples during verification. The expression of
each gene was favorably connected with the Gleason score and TN tumor grade in clinical samples but negatively
correlated with the overall survival rate. The expression of these genes was linked to CD8 naive cells and macrophages,
among other cells. Antitumor immune cells like NK and NKT were favorably and adversely correlated with infiltrating
cells, respectively. Simultaneously, the GSCV and GSEA indicated that the hub gene is connected with cell proliferation,
death, and androgen receptor, among other signaling pathways. Therefore, these genes could influence the incidence and
progression of PCa by participating in or modulating various signaling pathways. Furthermore, using the online tool of
CMap, we examined the individual medications for Hughes and determined that tipifarnib could be useful for the clinical
therapy of PCa. Conclusion. TOP2A, NCAPG, and BUB1B are important genes intimately linked to the clinical prognosis
of PCa and can be employed as reliable biomarkers for early diagnosis and prognosis. Moreover, these genes can provide
a theoretical basis for precision differentiation and treatment of PCa.
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1. Introduction

PCa is one of the most frequent cancers in males and has the
highest prevalence of male malignant tumors among the 112
nations in the global cancer statistics in 2020. Moreover, the
fatality rate is second only to lung cancer patients [1].

The Gleason grading system [2] determines the aggres-
siveness of prostate cancer and judges the prognosis of
patients [3, 4]. Prostate-specific antigen (PSA) and needle
biopsy are the most common early screening methods.
PSA can detect well-differentiated prostate cancer, although
the difference between poorly differentiated and advanced
prostate cancer is murky. In addition, PSA is also boosted
by benign prostatic hyperplasia and prostatitis conditions.
Thus, the occurrence of this gray zone creates a challenge
in prostate cancer diagnosis.

The increase or decrease in prostate cancer mortality due
to PSA screening does not accurately represent the survival
rate of patients [5]. Furthermore, the Gleason score is sub-
jective and inaccurate [6], and the biopsy scores of different
pathologists could vary by 30-50% [7]. PSA and Gleason
scores have not depicted correct differentiation or excellent
predictive effects in these disorders. Therefore, finding early
diagnostic and prognostic biomarkers, precisely distinguish-
ing the various stages of PCa, and determining the exact
therapy for PCa is critical.

The cumulative analysis of multiple data, numerous plat-
forms, and substantial sample sizes has revealed certain
advantages in screening various tumor markers due to the
fast development and deployment of gene chips and
second-generation sequencing technologies.

The current work utilized GEO and TCGA gene chip
datasets to filter DEG and used the WGCNA, the Cytoscape
software, and the cytoHubba plug-in the MCC technique to
identify BUB1B, NCAPG, and TOP2A as hub genes. In
addition, the HIPLOT online tool was used to study the
potential biological functions of genes: the Gene Enrichment
Analysis (GSEA), Gene Variation Analysis (GSVA), and
Tumor Immune Infiltration Analysis (GSCA). The Cancer
Genomics Database (cBioPortal) was used to study genetic
changes of genes, and the Pharmacogenomics Database
(CMAP) was used to screen prostate cancer-related small-
molecule drugs.

2. Materials and Methods

2.1. PCa Gene Expression Dataset and Related Clinical
Information. The GSE38241, GSE3325, and GSE46602
microarray datasets (Supplementary Table 1) were
downloaded from the NCBI GEO dataset containing
the tumor and normal prostate samples. In addition,
the statistics and clinical information were downloaded
from the TCGA database for TCGA-PRAD (RNA-seq)
counts, including 498 tumor and 52 normal prostate
samples.

2.2. Preliminary Screening of Candidate DEGs. Using the
NCBI web analytical tool “GEO2R” (https://www.ncbi.nlm
.nih.gov/geo/geo2r/), the differences between the selected

GEO datasets were aggregated and evaluated to produce
the differential gene expression data matrix
(P ≤ 0:05 ∣ LogFC ∣ ≥1).

In addition, the “edgeR” (http://sangerbox.com/) tran-
scriptome count data difference program evaluates differen-
tially expressed genes between normal and tumor samples
using the TCGA-PRAD RNA-seq counts data (TCGA_
DEG P ≤ 0:05 ∣ Log FC ∣ ≥1).

The distinct genes from the four datasets were inter-
sected and visualized using a Venn diagram.

2.3. WGCNA Analyzes Candidate DEGs and Identifies Vital
Modules. The WGCN analysis established the relationships
between distinct sample groups, gene modules, and genes
having similar expression patterns.

The current analysis utilizes the TCGA-PRAD dataset.
The WGCNA online analysis tool (http://sangerbox.com/)
examined the candidate DEGs for hub genes associated with
clinical feature-related modules. The soft threshold was set
at 12 (scale-free R2 = 0:85), and the smallest module was
set to three.

2.4. Hub Gene Protein Network Interaction. Using the
Cystoscape v3.8.2 [8] software, a protein interaction net-
work diagram was developed with the cytoHubba plug-in
based on the best MCC by selecting the module having
the highest association with clinical features (maximal cli-
que centrality) [9]. The screening approach chose the top-
ranked PPI hub gene while screening MMTC-hub gene for
TC > 0:25 and MM> 0:4. Then, as the final hub gene, the
overlapping parts of PPI hub gene and MMTC-hub gene
were combined.

2.5. Hub Gene Clinical Characteristic Analysis. After screen-
ing the last hub genes, internal validation (TCGA dataset)
and external validation (GSE70770 and GSE25371 dataset)
were performed, respectively.

The HIPLOT online tool, named Between stats
(https://hiplot.com.cn/), was used in conjunction with the
TCGA-PRAD data to ascertain the differential expression
of the hub genes between PCa and normal prostate tissue
at varied Gleason scores and tumor TNM staging [10].
Analysis of variance (ANOVA) or Student’s t-test was
used to determine the statistical significance of the calcu-
lated findings.

Survival analysis, ROC curve drawing, and AUC calcula-
tion were conducted by The HIPLOT online tool to evaluate
the diagnostic value of hub gene.

2.6. Prognostic Analysis of Hub Genes. The online tool for
univariate survival analysis (http://sangerbox.com/) gener-
ated the KM survival curve, the ROC curve, and the area
under the ROC curve (AUC) for evaluating the diagnostic
value of the hub genes.

2.7. GSEA and GSVA. The 498 PCa samples in the TCGA-
PRAD RNA-seq data were subdivided into the high-
expression and low-expression groups based on the median
expression of each hub gene, using the GSEA software [11]
(GSEA3.0 https://www.gseamsigdb.org/gsea/index.jsp). The
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“c2.cp.kegg.v6.2.symbols.gmt” was used as the reference
gene set (download from MSigDB [12]) for analysis. P ≤
0:05 was considered statistically significant.

In addition, the internet database (http://bioinfo.life.hust
.edu.cn/) was utilized in the RPPA (Reverse Protein Chip
High-throughput Antibody Technology) [13], using the
“GSVA” [14] R package. In the center, the pathways associ-
ated with PCa were scored, and the most related pathway to
the hub gene was determined.

2.8. Analysis of Tumor-Infiltrating Immune Cells. The system
examined the immune infiltration situation of the hub genes
in PCa with the web tool GSCA [15] (http://bioinfo.life.hust
.edu.cn/), and 550 samples in the TCGA PRAD data were
retrieved. In addition, the expression of hub genes and 24
tumor-infiltrating immune cells (B cells, CD4 and CD8 T
cells, NK cells, NKT cells, gamma delta T cells, neutrophils,
macrophages, monocytes, and dendritic cells) were analyzed
using the online tools.
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Figure 1: Screening candidate DEGs. (a) Number of the intersection from the GSE46602 (green circle), GSE38241 (red circle), and GSE3325
(blue circle) datasets. (b) Number of the intersection from the GSE-DEG (green circle) and the TCGA-PRAD (red circle) counts data. (c)
Volcano plot of the integrated microarray of GSE46602, GSE38241, and GSE3325. The red nodes represent the upregulated DEGs, and the
green node indicates downregulated DEGs. (d) Volcano plot of the integrated microarray of the top 100 TCGA-PRAD counts data. The red
nodes represent upregulated DEGs, and the green node indicates downregulated DEGs.
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2.9. Genetic Changes in the Hub Gene. The cancer genomics
database cBioPortal (http://cbioportal.org) [16] utilized can-
cer genomics to study genetic changes related to hub genes.

2.10. Small-Molecule Drug Screening. CMAP online database
(https://clue.io) analyzed the potential relationship between
the hub genes and related drugs [17, 18].

DEGs of the green module were compared to CMap data
to propose small-molecule therapies that could reverse the
biological state of PCa. The standardized connection score
of CMap ranged from –100 to +100. A positive link score
meant the medicine could create signal biology in a specific
disease, whereas a negative connection score indicated that

the drug could prevent the signal biology. In general, the
screening requirements for future study are points greater
than or equal to +90 or points less than or equal to –90.

Touchstone and PCL screen genes were used from the
same gene family or genes targeted by the same substance
to find the best related small-molecule medications.

3. Results

3.1. Screening Candidate DEGs. We obtained 115 DEG
(P ≤ 0:05 ∣ LogFC ∣ ≥1) from the intersection between
GSE46602, GSE3325, and GSE38241 datasets (Figure 1(a)),
including 108 upregulated and seven downregulated genes,
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Figure 2: Construction of coexpression network and hub gene screening. (a) Analysis of the scale-free fit index (R2) and the mean
connectivity with different soft-thresholding powers. At R2 > 0:8, the mean connectivity close to zero was considered an appropriate soft
threshold. When we choose eight as our power, R2 = 0:85. (b) WGCNA module depicting the gene trait correlation plot showing the
clustering dendrograms of genes. The clustering was based on 471 samples of TCGA-PRAD RNA-seq data. The color intensity varies
positively with PSA, Gleason score, and T, N, and M stages. (c) The WGCNA module trait correlation plot. Overview of the modules
generated by the WCGNA and their relationship with module eigengenes and the clinical traits of PCa. Each row represents a module,
and each column represents a trait attribute. The blue color represents a negative correlation, and the red represents a positive
correlation. (d) The gene expression in the green module.
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to assess the DEG between PCA and normal tissues
(Figure 1(c), Supplementary Figure 1.1). Supplementary
Table 2 shows the details of the three DGE datasets.

The DEG of the TCGA_PRAD dataset yielded 3010
DEG (P ≤ 0:05 ∣ LogðFCÞ ∣ ≥1), with 1277 upregulated and
1733 downregulated genes. Therefore, the top 100 genes
were selected for thermographic analysis (Figure 1(d), Sup-
plementary Figure 1.2, Supplementary Table 3).

Finally, 62 common genes derived from the intersection
of GEO-DEGs and TCGA-DEGs as potential DEGs were
employed (Figure 1(b), Supplementary Table 4).

3.2. Candidate DEG WGCNA Analysis and Identification
Key Modules.We performed WGCNA analysis on candidate
DEGs to find the critical gene modules most relevant to the
clinical characteristics of PCa based on the TCGA-PRAD
dataset (Figures 2 and 3). Among them, the clinical charac-
teristics of PCa matching the candidate DEGs mainly
included the Gleason score, PSA, and TNM grades
(Figure 2(b)). The soft parameter threshold was 12 (scale-
free R2 = 0:85), the cluster height was 0.25, and the gene
clustering method for similar expression profiles was the
dynamic tree cut algorithm (Figure 2(a)). Finally, five mod-
ules were determined (Figures 2(b) and 2(c)); each branch
within the hierarchical tree or the vertical line in the colored
bar represents a gene. The genes not attributed to any mod-
ule are gray. The module-feature correlation heatmap
depicted that the green module correlated with clinical fea-
tures. The Gleason score was the most significant (Person
correlation value = 0:38, P = 2:66E − 18, Figure 2(c)). The

gene expression in the green module developed a heatmap
(Figure 2(d)), and there was a close relationship between
these genes.

3.3. Key Modules MMTC and PPI Network to Screen Hub
Genes. We selected 10 pivot genes from the green module
by establishing the membership degree of the green module
toMM> 0:4 and TC > 0:25 (Figure 3(b)). Then, we created a
protein-protein interaction network (PPI network) for each
module DEG based on the matching protein interaction net-
work of the green module in Cytoscape software using the
CytoHubba plug-in and the MCC screening approach [9]
(Figure 3(a)). The first 12 hub genes are listed in Figure 3(c).
Finally, 10 hub genes were generated by combining the MM/
TC and PPI networks (EZH2, BUB1B, MK167, CENPF,
NCAPG, TK1, CENPU, TOP2A, BIRC5, and RRM2;
Figure 3(d)). We selected TOP2A, NCAPG, and BUB1B
among the 10 hub genes listed above as the final important
genes by combining MCC scores (Supplementary Table 5).

3.4. Internal and External Validation of Last Hub Gene
Expression. Among the 10 central genes screened above, we
selected 3 genes (TOP2A, NCAPG and BUB1B) as impor-
tant central genes for the next step.

More significantly, three hub genes were validated using
internal (TCGA) and external (GSE32571, GSE70770) vali-
dation datasets.

Based on the clinical samples, the expression of these
genes was significantly higher in the cancer group than in
the matching normal control group, with P values of 3:6E
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Figure 3: Construction of coexpression network and hub gene screening. (a) The protein-protein interaction network (PPI network) from
each DEG module. (b) Scatterplot for ME magenta reveals the correlation between the module membership (MM) and the gene TraitCor
(TC). The genes were selected from the green module by setting the membership degree of the green module toMM> 0:4 and TC > 0:25. (c)
The first 12 hub genes are listed by using the Cytoscape software. (d) The generated 10 hub genes by combining MM/TC and PPI networks.
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Figure 4: Continued.
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− 07, 0.00021, and 9:3E − 13, respectively (Figures 4(a)–
4(c)). In addition, TOP2A, NCAPG, and BUB1B were differ-
entially expressed in different Gleason scores, T grades, and
N grade PCa samples, and their expression levels were pro-

portional to the sample Gleason score and T and N grades,
P < 0:001 (Figures 4(d)–4(l)).

In addition, similar results were observed in external val-
idation, the expression of 3 hub genes was significantly
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Figure 4: Validation of the gene expression levels of TOP2A, NCAPG, and BUB1B, by different datasets through various aspects. (a–c)
TOP2A, NCAPG, and BUB1B gene expression levels between tumor and normal samples in the TCGA-PRAD dataset (internal
validation dataset). (d–f) The correlation of TOP2A, NCAPG, and BUB1B with different Gleason scores (6, 7, 8, 9, and 10) in the
TCGA-PRAD dataset (internal validation dataset). (g–i) The association between TOP2A, NCAPG, and BUB1B expressions and the
different T stages (T2, T3, and T4) in the TCGA-PRAD dataset (internal validation dataset). (j–l) The expression of CCNA2, CKAP2L,
NCAPG, and NUSAP1 in PCa samples with diverse T stages (N0, N1) in the TCGA-PRAD dataset (internal validation dataset). One-
way analysis of variance (ANOVA) and Student’s t-test was utilized to calculate statistical differences in these datasets.
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Figure 5: Continued.
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Figure 5: External validation of TOP2A, NCAPG, and BUB1B gene expression levels by different GEO datasets. (a) Gene expression levels
of TOP2A, NCAPG, and BUB1B between PCa and normal samples in in the GSE32571 dataset. (b) TOP2A, NCAPG, and BUB1B gene
expression differences between PCa and normal samples in the GSE70770 dataset. (c) Correlation of TOP2A, NCAPG and BUB1B with
different Gleason scores (5, 6, 7, 8, 9, and 10) in the GSE70770 dataset. (d) Association between TOP2A, NCAPG, and BUB1B
expressions and different T stages (T1, T2, and T3) in the GSE70770 dataset. Mann–Whitney and Kruskal-Wallis tests were utilized to
calculate statistical differences in these datasets.
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higher in the cancer group than in the matching normal
control group (Figures 5(a) and 5(b)). The expression levels
of 3 hub genes were proportional to the sample Gleason
score and T grades (Figures 5(c) and 5(d)).

Furthermore, the KM and ROC curves based on the
TCGA-PRAD dataset demonstrated that these genes were
closely associated with clinical prognosis, having overall sur-
vival (Figure 6(a)) and TOP2A AUC = 0:76, NCAPG AUC
= 0:80, and BUB1B AUC = 0:85 (Figure 6(b)), demonstrat-
ing their significant diagnostic and prognostic potentials as
PCa biomarkers.

In addition, based on the UCAN online database, pro-
tein levels of these 3 genes were significantly higher in tumor
tissues than in normal tissues and were positively correlated
with Gleason score and T and N stages of PCa (Supplemen-
tary Figure 2).

3.5. Hub Gene GSVA and GSEA. GSVA and GSEA were uti-
lized to investigate and evaluate the potential activities of the
hub genes. According to the GSVA analysis, apoptosis, cell
cycle, DNA damage, epithelial-mesenchymal transition

(EMT), androgen receptor (hormone AR) pathways, among
others, were associated with the hub genes in prostate cancer
(Figure 7(a), Supplementary Table 6). Furthermore, the
expression of these genes was positively correlated with the
activation of the above pathways (Figure 7(b),
Supplementary Table 7). Therefore, it was hypothesized
that these hub genes could be linked to PCa and CRPC
proliferation and medication resistance.

Furthermore, the GSEA analysis of hub genes based on
the TCGA data revealed that metabolic pathways, including
“apoptosis” and “cell Cycle,” had higher enrichment scores
in the high-expression group. Therefore, these genes were
associated with the proliferation activation process and con-
nection (Figures 8(a)–8(c), Supplementary Figure 3).

3.6. Hub Gene and Tumor Immune Infiltration Analysis.
Previously, the relationship between hub gene expression
and the metabolic pathways participating in prostate cancer
was analyzed. Next, the association between hub gene
expression and the relevant immune infiltrating cells in the
sample was evaluated. The results showed that the
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Figure 6: Validation of TOP2A, NCAPG, and BUB1B using survival analysis and ROC curve. (a) The correlation between TOP2A, NCAPG,
and BUB1B overall survival time is based on the best separation in the TCGA-PRAD dataset (internal validation dataset). (b) Receiver
operating characteristic (ROC) curves and area under the curve (AUC) statistics were undertaken to evaluate the ability of hub genes to
distinguish PCa from normal samples with significant specificity and sensitivity in the TCGA dataset.
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expression of BUB1B, NCAPG, and TOP2A in the B cells,
CD8_naive cells, monocytes, macrophages (macrophage),
dendritic cells (DC), natural regulatory T cells (n T-regs),
and the infiltration level induction of adaptive regulatory T
cells (i T-regs) were positively correlated. However, it was
negatively correlated with antitumor natural killer cancer
cells (NK), NKT cells, Gamma_delta cells, exhausted cells,
and CD4 T cells. The cell relationship was not apparent
(Figure 8(d), Supplementary Figure 4).

3.7. Hub Gene Mutation. We analyzed the TCGA-PRAD
mRNA expression data from the cBioPortal database and
identified that the mutation types of the three hub genes were
mostly AMP, diploid, and deep deletion. BUB1B had the high-
est mutation rate (6%), whereas NCAPG and TOP2A had a
4% mutation rate. Furthermore, 47 (9%) of all the three hub
genes were mutated in 498 individuals (Figures 9(a) and 9(b)).

3.8. Hub Gene-Related Small-Molecule Drug Screening. We
utilized the CMap online database to assess DEGs in the
green module to screen small-molecule medicines closely

associated with PCa. There were 90 small-molecule medi-
cines with a connection score (∣CS ∣ >95) and an n‐sample
≥ 3 in the analysis results (Supplementary Table 8). Since
all indicated a negative link, it was assumed that PCa could
be slowed or stopped. A small-molecule medication (MDM
inhibitor) was chosen for further investigation with a
connection score of –99 and a target protein of MDM2/
TP53. Using the PCL filtering approach and the PC3 and
VCAP prostate cancer cell lines, the four small-molecule
medications closely related to the MDM inhibitor (median
tau score > 90) were finally obtained using the Touchstone
software: farnesyltransferase, an angiogenesis inhibitor, and
apoptosis; tipifarnib, an apoptosis promoter;
aminomethyltransferase (AMT), a nitric oxide synthase
inhibitor; xaliproden, a serotonin receptor agonist; and
BAY-K8644, an L-type calcium channel activator.
Tipifarnib had the highest median tau score of 94.82
among the comparable small-molecule medicines
(Figure 10). These possible small-molecule medications can
reverse PCa-induced gene expression and help develop
targeted molecular therapies against PCa.
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Figure 7: Gene set variation analysis (GSVA) of hub genes. (a) Heat plot summarizes the association between the GSVA score and the
activity of cancer-related pathways in PCa. (b) Heatmap summarizes the percentage of PCa in the mRNA expression of hub genes
(TOP2A, NCAPG, and BUB1B) that potentially affect pathway activity. The GSVA score represents the integrated level of gene set
expression which is positively correlated with the gene expression. ∗P value ≤ 0.05; #FDR ≤ 0:05.
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Figure 8: Gene set enrichment analysis (GSEA) and the relationship between hub genes expression and 24 immune cells. (a–c) The top five
gene sets are enriched in the high-expression group of single hub genes according to the GSEA enrichment score. Each small bar represents a
gene within the top five gene sets. It demonstrates the correlation between genes in the top five gene sets and the real hub genes. (d) The
bubble plot summarizes the correlation between TOP2A, NCAPG, and BUB1B mRNA expression and 24 immune cell types infiltrate in
PCa. Bubble size correlates with FDR significance. The black outline border indicates FDR ≤ 0:05.
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Figure 9: The mRNA expression patterns, genomic alterations, and methylation of the three hub genes. (a) The genetic alterations of the
three hub genes based on the cBioPortal. The primary mutation types of the three hub genes were AMP, diploid, and deep deletion.
BUB1B has the highest mutation rate (6%), while NCAPG and TOP2A have a 4% mutation rate. (b) Alteration frequency analysis of the
three hub genes in TCGA-PRAD using the cBioPortal.
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4. Discussion

The pathogenesis of prostate cancer is complicated, and
metastases lead to medication resistance which is challeng-
ing to treat. As a result, proper identification is highly critical
to therapy. In recent years, bioinformatics technology has
provided many studies to screen biomarkers for malignant
tumors [19–21]. However, only a few have made it into clin-
ical practice. For the screening of 10 hub genes (EZH2,
BUB1B, MK167, CENPF), NCAPG, TK1, CENPU, TOP2A,
and BIRC5, RRM2), GEO and TCGA gene expression data-
sets were employed, as well as clinical information such as
PSA, Gleason score, TNM staging, and more realistic screen-
ing approaches like WGCNA. The three genes, BUB1B,
NCAPG, and TOP2A, have an excellent clinical diagnostic
and predictive value. These genes are not only upregulated
in prostate cancer tissues but also their expression levels
are associated with the Gleason score, T and N staging,
and overall survival analysis. The 5-year AUC values of the
ROC curve were 0.6, 0.61, and 0.61, respectively. Further-
more, these genes could be linked to immune invading cells
in prostate cancer and tumor therapy resistance. BUB1B
(BUBR1), also known as the mitotic checkpoint for serine/
threonine kinase B, belongs to the Bub1 family. A “destruc-
tion” box can degrade the targeted proteins during mitosis of
the cell cycle [22]. BUB1B is abnormally expressed in can-
cers of the liver, pancreas, lung, breast, and other organs.
Its clinical prognosis, especially its poor survival rate, is
linked to the BUB1B gene expression [23–26]. Based on
our findings, the expression of BUB1B in PCa tissue is sig-
nificantly higher than in normal prostate tissue. Its expres-
sion is favorably associated with Gleason score and T and
N staging and negatively correlated with the overall clinical

survival based on the TCGA and GEO datasets. The findings
of Zhong et al. [27] were also validated based on our find-
ings. Our results revealed that BUB1B plays a critical role
in the invasion and proliferation of PCa and is linked to var-
ious clinical outcomes.

The regulatory subunit, NCAPG, of the clusterin com-
plex is essential for chromosomal condensation and stabili-
zation in mitosis and meiosis. During mitosis, two
threonine residues in the CAP-G subunit can be mutated,
resulting in the CAP-G formation of the chromosome. Birth
deformities and cancer have been associated with location
defects [28]. The present study on NCAPG focuses on how
it affects the cell cycle to enhance invasion, progression,
and metastasis of liver cancer [29, 30]. Furthermore,
NCAPG has been correlated with a poor clinical outcome
in breast and lung cancer [30, 31]. Our results support the
findings of Feng et al. and Arai et al. [32, 33], who observed
that NCAPG expression is substantially associated with
tumor stage and overall clinical survival rate.

Topoisomerase II (TOP2A) is a DNA topoisomerase II
isoenzyme that regulates essential biological functions by
modifying the topological structure of the chromosomal
DNA [34]. Type II topological difference, anticancer, and
antibacterial medicines are therapeutic targets for structural
enzymes [35, 36]. TOP2A research has reached an advanced
stage. The topoisomerase II inhibitor, etoposide phosphate
(VP-16), has clear activity in individuals with metastatic
castration-resistant prostate cancer (mCRPC), as evidenced
by studies like Cattrini. Furthermore, TOP2A overexpres-
sion could be a biomarker for predicting mCRPC (excellent
response to VP-16) [37]. Therefore, TOP2A has a higher
diagnostic and prognostic value, as demonstrated in this
study.
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The tumor microenvironment (TME) includes tumors,
stroma, and invading immune cells. Many studies have
observed that tumor-infiltrating immune cells (TIIC) can
modulate tumor prognosis, immunotherapy response rates,
and chemotherapeutic efficacy [38, 39]. In prostate cancer
progression, TIIC is also crucial. According to certain
research, the PCa malignancy degree is directly associated
with the infiltration trend of quiescent NK cells, memory B
cells, M2 macrophages, and activated dendritic cells. The
malignancy degree is adversely connected with naive B cells,
active NK cells, and quiescent dendritic cells [40].

Furthermore, iNKT cells could slow PCa evolution by
decreasing proangiogenic macrophages and boosting the reg-
ulatory mechanism of proinflammatory m1-like macrophages
[41]. Moreover, a strong relationship was observed between
the hub gene mRNA expression and immune cell infiltration
in the study sample in this investigation. Therefore, TOP2A,
NCAPG, and BUB1B are possible prognostic indicators asso-
ciated with tumor-infiltrating immune cells in the tumor
microenvironment. They could be evaluated as potential
immunotherapy targets to enhance the clinical performance
prognosis of PCa patients, especially CRPC patients.

The functional analysis of GSVA and GSEA revealed
that the hub gene is primarily enriched in apoptosis, cell
cycle, DNA damage, EMT, hormone AR, and other meta-
bolic pathways. Therefore, they are linked to tumor growth
and treatment resistance in the late stages of the tumor.

In this investigation, we found four related small-
molecule medicines that could prevent PCa progression
using the CMap database: tipifarnib, AMT, xaliproden, and
BAY-K8644. Tipifarnib depicted the highest association
among the three and was regulated by three hub genes. Tipi-
farnib is a farnesyltransferase inhibitor that is highly effec-
tive and selective and can treat various solid cancers. It
treats HRA-mutated non-small-cell lung cancer [42] and
pancreatic cancer [43] and is also being tested as a novel
anticancer therapy for cervical squamous cell carci-
noma [44].

Thus, tipifarnib could be beneficial in treating PCa, par-
ticularly CRPC; additional in vivo and in vitro testing is
required.

However, there is no substantial relationship between
the gene chosen and the clinical sample M staging and
PSA levels. This lack of association could be due to the small
sample size of M staging tumor patients (4 cases). Moreover,
various aggravating factors and constraints could affect the
PSA test value and the impact of sex in a person’s life. The
current work uses an open database for research and verifi-
cation. In vivo and in vitro research are still required to
ascertain the accuracy of these findings and better under-
stand the specific roles and molecular mechanisms of the
three identified biomarkers in the evolution of PCa.

5. Conclusion

We employed a combination of datasets, including GEO and
TCGA and bioinformatics methods like WGCNA and cyto-
Hubba, to screen for three hub genes (TOP2A, NCAPG, and
BUB1B). Hub genes were confirmed and analyzed using

GSVA, GSEA, cBioPortal, and CMap. Finally, TOP2A,
NCAPG, and BUB1B could be exploited as potential PCa
biomarkers. However, their reliability and specific mode of
action are still under investigation.

Data Availability

The study analyzed publicly available datasets that can be
accessed here: https://www.cancer.gov/, The Cancer
Genome Altas (TCGA), https://www.ncbi.nlm.nih.gov/,
and Gene Expression Omnibus (GEO): GSE38241,
GSE3325, and GSE46602.

Conflicts of Interest

The authors have no conflicts of interest.

Authors’ Contributions

Wenxuan Wang and Qinghui Wu Contributed equally to
this work.

Acknowledgments

This study was supported by the Provincial Postgraduate
Innovation Project of Hainan Province in 2020 (No.
HYS2020-379), Hainan Province Science and Technology
Special Fund (grant no. ZDYF2021SHFZ096), and Hainan
Province Clinical Medical Center.

Supplementary Materials

Supplementary Table 1: three GEO datasets. The GSE38241,
GSE3325, and GSE46602 microarray datasets were down-
loaded from the NCBI GEO dataset, which contained 67
tumor samples and 41 normal prostate samples. The table
describes the dataset ID, references, and Gene Expression
Omnibus Platform information of each GEO datasets. Sup-
plementary Table 2: the 115 DEG_GEO. The NCBI Web
analysis tool “GEO2R” was used to collect and evaluate the
differences in the selected GEO datasets, and the 115 differ-
ential gene expression data matrix was generated with P ≤
0:05∣Log FC∣ ≥ 1 as the standard. Adj.P.Val: adjusting P
value. Log FC: logarithmic fold change. Supplementary
Table 3: top 100 DEGs of the TCGA_PRAD data. DEGs of
normal and cancer samples in TCGA-PRAD RNA-seq
counts data was screened using the “EdgeR” R package based
on the overdispersed Poisson model. Using P ≤ 0:05∣Log
FC∣ ≥ 1 as criteria, the differential gene expression data
matrix was obtained, and the top 100 target genes were
selected for further analysis, 14 upregulated genes and 86
downregulated genes. Supplementary Table 4: the 62 com-
mon genes derived from the intersection of GEO-DEGs
and the TCGA-DEGs. The 62 upregulated genes were
obtained from overlapping parts of GEO-DEGs and
TCGA-DEGs datasets for further analysis. Supplementary
Table 5: top 10 in network node ranked by MCC method.
Supplementary Table 6: the pathways were associated with
the hub genes in prostate cancer. Supplementary Table 7:
the expression of 3 hub genes was positively correlated with
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the activation of the pathways. Supplementary Table 8: the
hub gene-drug-TOP 90 (∣Raw‐cs∣ > 95,N ≥ 3). Ninety
small-molecule drugs closely related to PCa were screened
from DEG in the green module using CMap online database.
Raw-SC ranged from -100 to +100; negative values indicated
that the signal biology could be prevented or slowed down.
Pert_id: Perturbagen ID; Raw-cs: raw-connection score; Cell
iname: the type of cell line that the drug is treating; Moa:
CMap mode of action analysis. Supplementary Table 9:
information of abbreviations. The main abbreviations men-
tioned in the manuscript are shown in the table below. Sup-
plementary Figure 1.1: heatmap of the top 115 DEG_GEO.
Top 108 upregulated genes and top 7 downregulated genes
were described by heatmap based on P value and Log FC
value. Rows and columns represent genes and datasets,
respectively. Red and blue indicate upregulation and down-
regulation of gene expression, respectively. Log FC: logarith-
mic fold change. Supplementary Figure 1.2: heatmap of the
top 100 TCGA-PRAD counts data. Based on P value and
Log FC, the heatmap showing the top 14 upregulated genes
and the top 86 downregulated genes, respectively. Each row
represents a gene, and each column represents a dataset. Red
means upregulation, and blue means downregulation. Log
FC was calculated according to “EdgeR” R package. Supple-
mentary Figure 2: external validation of TOP2A, NCAPG,
and BUB1B gene expression levels by UCAN online dataset.
(A) Gene expression levels of TOP2A, NCAPG, and BUB1B
between PCa and normal samples. (B) Correlation of TOP2A,
NCAPG, and BUB1B with different Gleason scores (6, 7, 8, 9,
and 10). (D) Association between TOP2A, NCAPG, and
BUB1B expressions and different N stages (N0, N1). Student’s
t-test was utilized to calculate statistical differences in the
UCAN online dataset. Supplementary Figure 3: gene set vari-
ation analysis (GSVA) of hub genes. (A) The detailed result of
the GSVA score correlated with the specific pathway activity
through the scatter plot, with a fitting line. (B–D) The boxplot
depicts the pathway activity score between the high- and low-
expression groups in TOP2A, NCAPG, and BUB1B. Supple-
mentary Figure 4: hub gene and tumor immune infiltration
analysis. (A) The detailed result of the mRNA expression of
hub genes positively correlated with TOP 4 immune cell infil-
trate through the scatter plot, with a fitting line. (B) The
detailed result of the mRNA expression of hub genes nega-
tively correlated with TOP4 immune cell infiltrate through
the scatter plot, with a fitting line. (Supplementary Materials)
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