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Abstract: According to the Korea Institute for Health and Social Affairs, in 2017, the elderly, aged 65
or older, had an average of 2.7 chronic diseases per person. The concern for the medical welfare of the
elderly is increasing due to a low birth rate, an aging population, and the lack of medical personnel.
The demand for services that take user age, cognitive capacity, and difficulty into account is rising. As
a result, there is an increased demand for smart healthcare systems that can lower hospital admissions
and offer patients individualized care. This has motivated us to develop an AI system that can easily
screen and manage neurological diseases through videos. As neurological diseases can be diagnosed
by visual analysis to some extent, in this study, we set out to estimate the possibility of a person
having a neurological disease from videos. Among neurological diseases, we focus on stroke because
it is a common condition in the elderly population and results in high mortality and morbidity
worldwide. The proposed method consists of three steps: (1) transforming neurological examination
videos into landmark data, (2) converting the landmark data into recurrence plots, and (3) estimating
the possibility of a stroke using deep neural networks. Major features, such as the hand, face, pupil,
and body movements of a person are extracted from test videos taken under several neurological
examination protocols using deep-learning-based landmark extractors. Sequences of these landmark
data are then converted into recurrence plots, which can be interpreted as images. These images can
be fed into convolutional neural networks to classify stroke using feature-fusion techniques. A case
study of the application of a disease screening test to assess the capability of the proposed method
is presented.

Keywords: stroke diagnosis; landmark extraction; recurrence plot; deep learning

1. Introduction

The prevalence of neurological disease increases with age. Accordingly, both related
medical costs and personal and social burdens increase. Therefore, in a super-aged society,
such as Korea, the personal, social, and national interests in the prevention, initial diagnosis,
and treatment of neurological diseases in the elderly are gradually increasing. Typical
neurological diseases in the elderly include stroke, dementia, and Parkinson’s disease.

Stroke is a clinical syndrome of cerebral defects that lasts for more than 24 h and has
no obvious features other than vascular features [1]. According to the global burden of
disease study in 2015, neurological disorders, including stroke, accounted for 16.8% of all
deaths [2,3]. The risk of stroke generally increases in people over 60 years of age as blood
vessels become harder and narrower with aging. In the United States, stroke is the fifth
leading cause of death, generating health care costs of up to USD 33.6 billion each year [4].
In Korea, the nationwide cost for stroke care was KRW 3737 billion (USD 3.3 billion) in
2005 [5]. Disease management is highly dependent on prompt diagnosis, particularly for
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ischemic stroke. According to current ischemic stroke guidelines, patients are eligible for
intravenous thrombolysis up to 4.5 h from symptom onset and endovascular thrombectomy
without advanced imaging within 6 h of symptom onset [6–8]. A prompt diagnosis with a
suitable treatment decision is crucial for acute stroke management. Pre-screening high-risk
stroke patients can help deal with these emergencies.

As the average age of the population increases, and the number of medical personnel
becomes insufficient, the need for an automatic diagnosis system, or a system that can aid
in medical procedures, increases. Early screening and diagnosis of neurological diseases,
including stroke, are mainly based on neurological examinations by experts in the neuro-
logical field. The accessibility of special neurologists or neurological clinics for the elderly
population is declining. Accordingly, researchers have been striving to identify automatic
detection methods for neurological disorders using machine intelligence. For example,
some researchers have focused on assessing facial paralysis through studies using facial
landmarks [9,10], 3D information [11,12], and optical flow [13].

With the remarkable success of deep learning in computer vision problems, such as
segmentation, detection, classification, etc., many researchers are developing diagnostics
systems based on deep neural networks. Predicting lung cancer treatment response by
analyzing time-series CT images of patients [14] or identifying pneumonia and COVID-19
using X-ray pulmonary images [15] are examples. In contrast, a deep-learning-based
approach, using a one-dimensional convolutional neural network (CNN), has significantly
improved the ability to convert brain signals into clinically useful features for epilepsy
diagnoses [16]. A deep-learning-based automatic diagnosis system can significantly reduce
the time and expense of diagnosis; however, it requires large amounts of medical data for
training. Therefore, these methods face challenges in data collection.

In this study, we propose a new deep-learning-based approach to analyze the presence
of a stroke in a patient where it is suspected or where there is considerable risk of its
occurrence. We formulate this task as a binary classification problem, that is, stroke (or
related disorders) vs. normal. The input data for the proposed method are videos, which
were recorded while patients performed a certain set of motions according to predefined test
protocols. These are captured by ordinary video cameras and there is no need for expensive
devices such as CT or MRI scanners. A straightforward approach to process these videos is
to use a video-based deep model; however, this is computationally quite expensive. The
goal of this paper is to propose a stroke screening method that can be used in public, so
feeding videos into a neural network directly is not a suitable approach. To resolve this
issue, in this paper, the videos go through deep-learning-based human landmark detectors
to extract the time series of the major landmarks. Then, these time-series data are fed into
deep neural networks to estimate the possibility of a stroke.

The contributions of this paper can be summarized as follows:
1. To the best of our knowledge, the proposed deep-learning-based approach is the

first attempt to estimate the presence of a stroke using major human landmarks. Here, the
proposed method does not focus on a specific part of a person, but on various parts, such
as the face, pupils, body, and hands, to make a more robust decision. The data from actual
patients were used to train and validate the proposed method.

2. A novel variant of the recurrence plot transform is proposed to efficiently process a
vast amount of the landmark data extracted from the videos.

3. Pretrained weights, trained separately on each neurological protocol, were used for
training the proposed network to improve its final performance. This was inspired by the
observation that mildly affected patients can exhibit normal behaviors in many individual
neurological examination protocols.
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We performed extensive experiments under various different settings of the proposed
method and reported the area under the curve (AUC) values of receiver operating charac-
teristic (ROC) curves for the screening test set. The proposed method can potentially be
extended to other clinical tests, especially for neurological disorders that result in muscular
motion abnormalities.

The remainder of this paper is organized as follows: Related work is introduced in
Section 2. The KUAH dataset and the proposed method are described in Section 3. The
experimental results are presented in Section 4. We conclude the paper with a discussion in
Section 5.

2. Related Works
2.1. Stroke Diagnosis Based on Machine Learning

Stroke is a common but fatal vascular disease. It is the second most common cause
of death and the third major cause of disability [17]. The gold standard test for stroke
diagnosis is a brain screening MRI or CT scan to detect brain lesions. In addition, there are
two commonly adopted clinical tests, the Cincinnati Pre-hospital Stroke Scale (CPSS) [18]
and the face arm speech test (FAST) [19]. Both methods assess the presence of unilateral
facial droop, arm drift, and speech disorders. The patient is requested to repeat a specific
sentence (CPSS) or to have a conversation with the doctor (FAST), and abnormality is
disgnosed when the patient slurs, fails to organize their speech, or is unable to speak.

Machine learning (ML) has been applied in medicine increasingly frequently over
the past decade. In the case of strokes, machine learning algorithms have already been
used in clinical applications for automatic diagnosis. ML methods have been applied to
the diagnosis of a stroke [20], prediction of stroke symptom onset [21,22], assessment of
stroke severity [23], analysis of cerebral edema [24], and outcome prediction [25]. The
data used in these studies were composed of medical records, CT images, or MRI scans.
Such data forms are quite expensive; therefore, they cannot be collected easily in large
quantities. Moreover, there has been a rapid increase in deep learning for image-based
stroke diagnosis [26,27], where a large amount of training data are required. This approach
can provide better results because of the power of deep learning. However, the cost of data
collection is several times greater. Another downside of the above approaches is that they
are all based on images; they often fail to capture temporal changes in human muscular
motions which can be especially useful for diagnosing a stroke.

2.2. Recurrence Plots

A recurrence plot (RP) [28] is a visualization method that transforms the trajectory of
an m-dimensional phase space in two dimensions. Equation (1) is a popular method for
generating an RP.

R(i, j) =
{

1, i f
∥∥~x(i)−~x(j) ≤ ε

∥∥,
0, otherwise.

(1)

In (1), R is a matrix where the (i, j)-th element is set to 1 if ~x(i)−~x(j) is less than a
given threshold ε. We should select ε carefully since an excessively small ε makes the RP
sensitive to noise and an excessively large ε can make an RP contain trivial information.
An RP with a well-chosen ε provides information about the temporal correlation.

We chose the threshold ε = 80 to generate an RP in this study based on our empirical
experience. Figure 1 shows examples of signal data and its RP. The image transformed by
the RP algorithm depicts a collection of time pairs whose locations are the proximity of
each other. In other words, the visual representation of the RP can provide information on
time-series data and be efficiently utilized by a convolutional neural network (CNN) [29].
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Figure 1. Examples of time-series data and the corresponding RPs.

3. Materials and Methods
3.1. The KUAH Dataset

The clinical dataset for this thesis was acquired in Korea University Ansan Hospital
(KUAH). The institutional review board (IRB) of KUAH approved the study protocol
(2018AS0291).

Screening for subjects was performed for in-patients and out-patients who were admit-
ted or visited the Department of Neurology at KUAH. Specifically, the control group was
collected through a clinical trial advertisement at the hospital. The control group had no
medical conditions or neurologic diseases that could be related to abnormal neurologic find-
ings or impaired gait. Patients who provided informed consent were enrolled in the study.
A large pool of patients diagnosed with stroke was screened. A total of 382 individuals
were finally recruited to collect neurological examination videos from August 2017 to
November 2020, according to predefined data collection protocols designed by a collabora-
tion between KUAH and Hanyang University. The subjects were either stroke patients or
healthy controls. The median and interquartile range (IQR) values of the participants’ age
were 62 and 18, respectively. Among these participants, those in their 60 s to 70 s accounted
for the majority (46%), followed by those in their 40 s and 50 s (40%). The percentage of
men was higher than that of women.

The stroke diagnosis was confirmed by a stroke neurologist (J., J.-M.) through clinical
and radiological evidence. In this study, we focused on a binary classification task to
distinguish stroke cases from normal subjects, regardless of the stroke subtypes, including
ischemic and hemorrhagic strokes. Thus, of 382 participants, 259 were labeled “stroke” and
the rest “normal”.

Each subject was asked to perform seven tasks: (1) movement of the extraocular
muscles; (2) making a frowning face; (3) repeating sentences; (4) raising hands side-by-
side forward; (5) finger tab exercise; (6) pointing at own nose with their finger and then
touching an installed object repeatedly; and (7) gait. The ability to perform correct facial
expressions and body movements is an important indicator of stroke; that is, if the subject
slurs, mumbles, limps, or has difficulty in enacting body motions, they have a high chance
of stroke [18,19]. The subjects were asked to sit in a chair for most of the tasks, except for
the gait task. The protocols corresponding to these seven tasks were named extraocular
movement (EOM), facial palsy, dysarthria/aphasia, weakness of the upper extremities,
finger tab, ataxia of the upper extremities, and gait, respectively.
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The subjects were video-recorded as they performed the above seven tasks. Six tasks
were recorded with four full-HD cameras from the upper, middle, left, and right directions,
respectively, and the gait task was recorded with one frontal camera.

Figure 2 shows a picture depicting the camera station used for collecting the KUAH
dataset. Four Sony Handycam HDR-CX405 cameras were installed on the station as follows:
The distances between Camera 3 and the others were 30 cm; Cameras 1, 2, and 4 were
tilted in the direction of the subject at an angle of 15 degrees. The station was fixed on a
one-meter-tall tripod.

Apart from the gait protocol, all the other protocols were recorded in one take. There-
fore, they needed to be separated into individual videos afterwards. To facilitate this
process, a screen fence with a distinctive color was used to differentiate the protocols; that
is, it appeared in between every two consecutive tasks (or protocols). The videos were
separated automatically if there was a sudden change in the distribution of colors in the
frames; all the results were verified manually.

Each video had a label and metadata information on clinical impressions by a stroke
neurologist (J., J.-M.) (indicating the expert’s judgement on whether the subject had per-
formed the task normally or not and the corresponding symptom if the task was not
normally performed) and each subject had a ground truth label of whether they had a
stroke and another label for its severity. In the proposed method, the label for each video
was used in pretraining, while that for each subject was used in the main training procedure.

Figure 2. Camera station used for collecting the KUAH Dataset.

The KUAH dataset provides real-world data from stroke patients as well as from
normal controls, which makes the proposed method useful for practical clinical use, for
example, to assist in the remote diagnosis of strokes. A distinctive characteristic of the
KUAH dataset is that it provides various examination protocols, which focus on many
different parts of the human body and are comprehensively recorded using four cameras.
Unlike other studies that required more expensive data forms, we only used RGB videos,
which can reduce the overall cost of diagnosis.

3.2. Proposed Method

In this study, we propose a deep-learning-based stroke diagnosis method. This section
introduces the data preprocessing methods, the proposed classification network, and the
detailed modules and techniques used in the network architecture. The overall procedure
of the proposed method is shown in Figure 3.

Figure 3. The overall workflow of the proposed algorithm.

The overall workflow of the proposed algorithm consists of four steps: (1) collecting
neurological examination videos, (2) processing the videos using human landmark detec-
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tors and converting the results to RPs, (3) feeding the RPs into the proposed network, and
(4) estimating the possibility of a stroke.

3.2.1. Landmark Extraction

In our task, we needed pose, hand, face, and pupil landmarks from neurological
examination videos to train the neural network. There are many methods to extract
human landmarks in an image or video but, recently, deep-learning-based approaches have
exhibited the best performance in landmark detection. Accordingly, we used deep-learning-
based methods in this paper.

The details of landmark extraction for each part are as follows:
Pose: There are two popular approaches to multi-human pose estimation. First,

OpenPose [30] is a bottom-up approach in which networks first detect the body parts or
keypoints in an image and then map proper keypoints to form pairs and calculate the final
poses. Alternatively, AlphaPose [31] is a top-down approach that attempts to extract a more
accurate region from an unclear bounding box by adding a symmetric spatial transformer
network. Because AlphaPose reported better performance than OpenPose [30], in this
study, we chose AlphaPose to estimate body joints.

The estimated pose consists of 18 body joints: Lear (left ear; the following names are
represented in a similar manner), Leye, Reye, Lshoulder, Rshoulder, Rear, Nose, Neck,
Lwrist, Rwrist, Lhip, Rhip, Lelbow, Relbow, Lknee, Rknee, Lankle, and Rankle.

Hand: We extracted 2D hand skeletons using a hand keypoint detection model pro-
posed in [32], which produces keypoints for both the right and left hands. The outputs of the
model were 21 keypoints, four points on each finger and one point on the wrist. This model
uses a training process called multiview bootstrapping with multiple cameras, to produce
a fine-grained detector for hand keypoints with greater robustness to noise and occlusion.
This model was selected in this study because it achieved a performance comparable to
methods based on depth sensors. OpenPose already contains a good implementation of
this hand pose estimation model [30]; therefore, we adopted this in our framework.

This model can produce precise hand keypoints that are crucial to representing fine
hand movements, but there is one problem: to detect the hand keypoints, we need to know
where the hand bounding box is in the image. Accordingly, we should either find this
by a separate hand detection model or speculate on the location based on the result of a
body pose estimator. In this study, we chose the latter approach, in which the pipeline is
described as follows:

First, body keypoints were extracted using a body-pose estimator in the corresponding
frame using AlphaPose.

Second, we cropped the hand image from the entire image using the wrist joints. Here,
the location and size of the hand patch were set as follows: The estimated center of the
patch was set to the extrapolated point of the wrist and corresponding elbow (20% farther
point from the wrist); the length of the square patch was set to 1.2 times the distance
between the two shoulders. The cropped image was then resized to a 368 × 368 resolution.

Finally, the hand keypoint extraction model was applied to extract the hand keypoints
and their coordinates were restored to the original image’s coordinate system.

This pipeline cannot detect a hand that is not bound to any of the body keypoints.
This might be avoided by using a separate hand detection model, but we found empirically
that the general accuracy was much better when using speculated locations based on the
body-pose estimator. The example results of the AlphaPose model and hand keypoint
extraction pipeline are shown in Figure 4.
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(a) Body pose detection. (b) Hand pose detection.

Figure 4. The example results of (a) AlphaPose [31] and (b) hand pose detection in OpenPose [30,32].
The estimated body pose consists of 18 joints and the estimated hand consists of 21 keypoints on
each hand.

Face: RetinaFace [33] is a one-stage face detection model that utilizes multi-task
learning. This algorithm exhibited excellent performance on the WIDER Face dataset [34].
Hence, we chose this model to obtain face bounding boxes. Style aggregation network
(SAN) [35] is a heatmap-based approach based on the modified ResNet-152 backbone [29].
This algorithm shows satisfactory performance for both the 300 W [36] and ALFW [37]
datasets. Hence, we selected this model for facial landmark detection. In summary, our
facial landmark detection pipeline is as follows: First, the input image is fed into the
RetinaFace model to obtain a face bounding box. Second, a cropped image from the
bounding box is used in the SAN model to retrieve the facial landmarks.

Pupil: Many gaze estimation models estimate the location of a pupil, and we chose
GazeML [38], which is a high-performance gaze estimation framework based on deep
learning. GazeML utilizes an intermediate 2D representation instead of directly estimating
the pitch and yaw of the eyeball to improve its performance. In our framework, the face
landmarks explained above were utilized to roughly locate the eye positions, for which the
cropped patches were fed into GazeML to extract the pupil landmarks.

3.2.2. N-Divided Recurrence Plots

RP is a method of representing time series data using a 2D image based on distances
between data points. In this study, the input data are the trajectories of various human
landmarks, which are a set of time-series data. Hence, RP can be effectively utilized for
this data.

Each keypoint that changes over time should be converted into a recurrence plot.
However, the input videos in this study have a significant length in terms of time, and
converting the landmark trajectories to corresponding RPs can lead to large image sizes. To
resolve this issue, we propose a new technique for utilizing RP in deep learning; that is,
dividing the time series into several sections, converting them individually to RP, and then
concatenating them along the channel dimension to form a smaller image with N channels.
This technique will be referred to as N-divided RP hereafter.

If we transform time-series data to RP for the entire time T, the required memory
complexity will be O(T2), whereas an N-divided RP can express the entire time-series
dataset with only O( T2

N ) (N pieces of O(( T
N )2)). Although the N-divided RP excludes

long-range relationships in its representation, most of the meaningful indicators of a stroke
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are concentrated in local regions, so this input representation is sufficient for the proposed
method. Figure 5 shows an example of a three-divided RP. Here, the input time-series
data had 68 channels, and the length was 90. The resulting three-divided RP becomes a
30 × 30 image with 204 channels (68 channels multiplied by three).

Figure 5. An example of three-divided RP. The entire sequence is divided into three parts, where
each part is converted to an RP. The resulting RPs are concatenated to form a three-channel image.

One issue with the N-divided RP is that the regions near the borders of the sections may
not receive enough attention. To resolve this issue, we created another version of N-divided
RP: called overlapped N-divided RP, where consecutive sections overlap with each other by
50%. Figure 6 shows an example of the overlapped three-divided RP. The overlapped version
produced a larger result than the original N-divided RP. For example, let us suppose that the
length of the input sequence is 90, and N is three. Then, the size of the corresponding original
RP will be 30 × 30, whereas that of the overlapped RP will be 45 × 45.

Figure 6. An example of overlapped three-divided RP. The sequence is divided with 50% overlaps between
consecutive parts. The parts are converted to RPs and then concatenated to form a three-channel image.
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3.2.3. Pretraining Subnetworks

In the proposed method, we used a network structure that consists of multiple sub-
networks. These subnetworks were designed to learn protocol-specific features. Figure 7
shows an outline of network structure.

Figure 7. An outline of the proposed network structure.

In the case of mild patients, it is quite common for them to perform normally in
some of the neurological examination protocols. In these cases, the data for individual
protocols were labeled “normal” in the KUAH dataset. These individual labels can be used
in training the proposed method to improve its final performance. If we do not utilize these
additional labels and train the entire network with only the final disease label end-to-end,
then the training of each subnetwork will not be conducted efficiently. Accordingly, in this
study, we first pretrained each subnetwork based on labels of the corresponding protocol,
which was then attached to the entire network structure so that end-to-end training could
be conducted.

ResNet [29] has demonstrated remarkable performance and is frequently described
in the literature. Accordingly, we chose ResNet-18 as the base architecture which had the
fewest trainable parameters among the ResNet architectures because the size of the training
data was relatively small. This architecture was used for all subnetworks to estimate
the results of the individual examination protocols. We also evaluated other backbone
networks, such as ResNeXt [39] and EfficientNet [40]. ResNeXt adopts group convolution
[41] in ResNet bottleneck blocks, which converts the multi-path structure into a unified
operation. It achieved second place in the ImageNet Challenge [42]. EfficientNet, on the
other hand, achieved high performance on the ImageNet dataset by making CNN much
more effective, based on the observation that balancing network resolution, channel width,
and depth can lead to better performance. The experimental results for the pretraining are
presented in Section 4.

3.2.4. Selective Dropout

As will be demonstrated later in the experimental analyses, the performance of the
pre-trained subnetworks, as described above, shows some disparities. This indicates
that different subnetworks may vary in their reliability in estimating the final answer.
Accordingly, it is necessary to control the importance of the output features of different
subnetworks when they are combined together at the final stage of the proposed network.
To address this issue, we propose a new technique called selective dropout to boost the
final performance of the proposed network. The basic process of selective dropout is
described below.

Selective dropout is a combination of several dropout modules which have different
probabilities. Dropout [43] is a technique used to regularize a neural network by stochas-
tically dropping features. In the proposed selective dropout, each dropout module is
connected to each subnetwork, and the probability of dropout is set according to the impor-
tance of the subnetwork. Here, the probabilities are predefined by the users. As shown in
Figure 8, the selective dropout drops features in different paths with different frequencies,
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unlike the original dropout. This can control the impact of different subnetworks on the
final decision. The experiments described in Section 4.7 involve a comparison between
different dropout techniques as well as a simpler weighting strategy, which demonstrates
that selective dropout exhibits the controlling effect.

Figure 8. An example of selective dropout. (Left): no dropout, (middle): the original dropout [43],
(right): selective dropout.

3.2.5. Overall Network Structure

The overall structure of the proposed network is shown in Figure 9.

Figure 9. Proposed network structure with selective dropout.

With a set of N-divided RPs from the input landmark data, we first extracted features
via the corresponding subnetworks for individual examination protocols. The features
extracted from the subnetworks were concatenated into a single long vector; this final
feature vector went through selective dropout and a fully connected layer to yield the
estimated diagnosis. This structure is designed to enable subnetworks to learn protocol-
specific features to improve the overall performance.

Because the proposed method is a classification problem, we used cross-entropy loss
to guide the proposed network. In general, a large amount of data is required to train a deep
neural network. However, the size of the KUAH dataset used in this study is relatively small.
One of the techniques we used to overcome this problem is the pretraining of subnetworks,
as explained in Section 3.2.3. To help address this problem, we also utilized individual
protocol labels in the fine-tuning procedure. This formulates the training procedure as a
multi-task learning problem; that is, the proposed network must estimate the final answer
(whether the subject has a stroke), as well as evaluate the individual protocols (whether the
subject performed each task successfully or not). This can provide further guidance to the
proposed network and stabilize the overall training procedure. Accordingly, the overall
loss function for the proposed method is given by (2).
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L = lstroke + ∑
i

λilprotocol,i (2)

where lstroke is the loss for the final label, lprotocol,i is the loss of the i-th examination protocol,
and λi is the corresponding weight.

4. Results and Discussion
4.1. Detailed Settings of the Training Procedure

In this paper, the proposed algorithm was implemented with PyTorch [44] and evalu-
ated on a single NVIDIA TITAN Xp GPU throughout the experiments. For all the experi-
ments, training, including pre-training and fine-tuning, was conducted for 50 epochs with
a mini-batch size of one using the Adam optimizer (β1 = 0.9, β2 = 0.999) and no weight
decay was used unless otherwise stated. The learning rates were set to 10−3 for pre-training
and 10−4 for fine-tuning, unless otherwise stated. For the evaluation, we reported the area
under the ROC curve (AUC). All the hyperparameters explained here were configured
manually according to a five-fold cross-validation, except in Table 1, where only a single
(pre-)training procedure was conducted for each subnetwork.

Table 1. Results of pre-trained subnetworks on neurological protocols (AUC).

EOM Facial Palsy Dysarthria/Aphasia Weakness Finger Tab Ataxia Gait

0.533 0.541 0.505 0.822 0.795 0.679 0.677

In most of the experiments, an overlapped N-divided RP was used, except for Section 4.4.
Since the usual lengths (time) of the protocols are different, we set N of the overlapped
N-divided RP differently for different protocols, such that the resulting image size ap-
proached 224 × 224, which was the input size of the backbone models. The width and
height of the resulting images were not exactly 224; therefore, we resized them to 224 × 224
using bilinear interpolation. For example, in the EOM test, the average number of total
frames in a video was approximately 1500; therefore, we set N = 9. Similarly, we set N to
3, 3, 5, 5, 7, and 15 for the remaining tests, respectively. Note that we removed the frames
that corresponded to the remainder after division by N.

For most of the experiments, we used ResNet-18 [29] as the backbone model for
the subnetworks. For some experiments, we also tested three other backbone networks:
ResNet-34, ResNeXt-50 [39], and EfficientNet-B2 [40] were used to observe the effects of
the different backbones. We adjusted the initial convolution kernel sizes of these backbones
according to the channels of the overlapped N-divided RP and the output channels of the
final fully connected layers were set to two (stroke vs. normal).

When retrieving keypoints using landmark detectors, the coordinates were set to zero
if they failed to find the correct landmarks. For different protocols, different landmarks
were used. For example, because the EOM test is about facial expression, we used only
the face and pupil coordinates, which included 70 landmarks. The same landmarks were
used for the facial palsy and dysarthria/aphasia tests. By contrast, 60 landmarks from the
body and hands were used for the weakness, finger tab, and ataxia tests. Lastly, 18 body
landmarks were used for the gait test.

Unless otherwise stated, we used two simple augmentation techniques for the land-
mark sequences, i.e., scaling and jittering. For jittering, random noise from a Gaussian
distribution, with a mean µ = 0 and a standard deviation σ = 0.03, was added to the
sequences. For scaling, the magnitude of all elements in the time series was increased or
decreased by a scalar determined by a Gaussian distribution, with µ = 1 and σ = 0.1.

In the training procedure, the losses in (2) and selective dropout were used, unless
otherwise stated. The protocol-specific losses were scaled by weights which were the
same as the corresponding probability values of the selective dropout. These weights
(or probabilities) were set so that the overall network focused on protocols, where the
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subnetworks showed higher performance in pre-training because the features from these
were likely to be more reliable. Accordingly, the weights were set to 0.3, 0.3, 0.3, 0.9, 0.8, 0.7,
and 0.7, respectively, for the seven protocols (see Section 4.3 for more details).

4.2. Data Configurations

The KUAH dataset was acquired from 382 individuals and split into two subsets,
approximately 70% for training, and 30% for testing. The training set had 266 samples,
and the test set had 116 samples. There were class-imbalances in the labels, including the
protocol labels and final labels of the KUAH dataset, as shown in Figure 10. Hence, we
carefully divided the subjects into training and test sets so that the labels were as evenly
distributed as possible.
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Figure 10. Label distributions of (a) EOM, (b) facial palsy, (c) dysarthria/aphasia, (d) weakness,
(e) finger tab, (f) ataxia, (g) gait, (h) stroke.

4.3. Analysis of Pre-Training Results

In this section, we discuss the pre-trained subnetworks introduced in Section 3.2.3. In
Table 1, the subnetworks were pre-trained separately on individual neurological protocol
tests. The performance reported here represents the AUC value for the corresponding
protocol tests.

The results for the EOM, facial palsy, and dysarthria/aphasia protocols, which in-
volved facial expressions, were worse than those involving body movements. We conjecture
that the facial landmark detector had learned only on the faces of normal persons in public
benchmark datasets, so it was difficult for it to capture the anomalies in the faces of patients
with strokes. This observation was the basis of the idea behind the selective dropout
proposed in Section 3.2.4. To verify the validity of the pre-training, the learning curves
for the pre-training are presented in Figure 11. The above seven protocols can be roughly
divided into three groups based on their relative performance: (i) those with relatively poor
performance, i.e., EOM, facial palsy, and dysarthria/aphasia, (ii) those with relatively good
performance, i.e., weakness and finger tab, and (iii) those with moderate performance, i.e.,
ataxia and gait. We sampled one protocol from each group and presented the learning
curves. It can be seen that the curves generally showed stable convergence. An interesting
observation was that the loss values after convergence reflected their actual performance,
i.e., EOM had the highest loss value, while weakness had the lowest.

Table 2 shows the results of the final stroke screening tests depending on different
pre-training methods. For this experiment, the network structure explained in Section 3.2.5
and its subnetworks were initialized with various pre-trained subnetworks, including those
described above. Here, “Random weights” indicates that no pre-training was used, and
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the entire network structure was trained from scratch. In this case, the Kaiming uniform
initialization in PyTorch was used to configure the initial weights and the entire network
structure was trained for 50 epochs at a learning rate of 10−3. The other two configurations,
starting with “pre-trained with” indicates that the entire network structure was fine-tuned
(according to the setting introduced in Section 4.1) using pre-trained subnetworks. Here,
we also tested another external pre-training dataset, i.e., the NTU-RGB+D dataset [45]. The
NTU-RGB+D dataset is an open dataset designed for skeleton-based action recognition
problems. The format of this data (trajectories of human landmarks) is similar to that of
our input data; therefore, this may be another suitable candidate for the pre-training of the
proposed method. For this dataset, the subnetworks were pre-trained for 200 epochs with
a mini-batch size of eight using a learning rate of 10−3.
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Figure 11. Learning curves in pre-training for (a) EOM, (b) Weakness, and (c) Ataxia.

For pre-training of the subnetworks on the NTU-RGB+D dataset, we used the same
N for generating overlapped N-divided RP, as explained in Section 4.1, and the resulting
images were resized to 224 × 224. However, there was a problem that the NTU-RGB+D
dataset only had 25 joints in the human body. The number of points required for each
protocol was usually larger than 25 (i.e., 60 or 70), except for the gait protocol, which
required 18 points. In the case of the gait protocol, we excluded some joints to match
the number. Here, the joints that were far from those of the body landmark detector
were excluded. For the other protocols, we increased the number of points by linearly
interpolating the trajectories of the connected joints (i.e., the limbs). Specifically, we divided
the limbs equally to produce additional points and the number of divisions was set such
that the resulting points satisfied the requirements. However, this number of divisions
might not become a natural number; therefore, we divided the longer limbs more than
the others. For example, suppose that we needed to divide the limbs into 3.5 equal parts
to produce the required number of points. In this case, according to the reference shape
provided in the NTU-RGB+D dataset, longer limbs were divided into four parts, and the
rest were divided into three parts.

Table 2. Stroke screening results with different pre-training strategies.

Method AUC

Random weights 0.556
Pre-trained with NTU-RGB+D dataset 0.696

Pre-trained with protocols 0.747
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In Table 2, it is apparent that using pre-trained weights was better than using random
initialized weights. Among those using pre-trained initializations, “pre-trained with pro-
tocols” showed better final performance. The subnetworks pre-trained with individual
protocols were designed to learn protocol-specific features, so it was anticipated that using
these would be better.

We also performed an additional experiment for the choice of a fine-tuning method;
that is, we tried different learning rates for fine-tuning. In Table 3, the term “freeze” implies
that we froze the pre-trained subnetwork weights when fine-tuning the entire network
structure. In this case, a learning rate of 10−3 was applied to train the additional layers (the
final FC layers). In the other cases, all weights (including the subnetworks) were allowed
to change according to the indicated learning rates. In the table, using a learning rate of
10−4 resulted in the best performance for both pre-training cases. In conclusion, the best
configuration involved fine-tuning the overall structure with a learning rate of 10−4, using
subnetworks pre-trained with the protocol labels. Accordingly, all experiments described
hereafter follow this configuration. The learning curves of the best performing model (i.e.,
pre-trained with individual protocols and Lr = 10−4) in fine-tuning are presented in Figure
12. It can be seen that the curves show stable convergence.

Table 3. Stroke screening results with different learning rates in fine-tuning.

Method Lr = 10−3 Lr = 10−4 Freeze

pre-trained with NTU-RGB+D dataset 0.671 0.696 0.658

pre-trained with protocols 0.719 0.747 0.713
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Figure 12. Learning curves in fine-tuning. Here, the subnetworks were pre-trained with individual
protocols and the learning rate was 10−4.

4.4. Analysis on the Choice of Recurrence Plot Formats

To determine the effectiveness of the proposed overlapped N-divided RP, we com-
pared it with its non-overlapping counterpart. In the case of N-divided RP, we used smaller
N to produce an image with a similar size compared with the case of the overlapped
version. Accordingly, we set N to 6, 2, 2, 3, 3, 5, and 10, respectively, depending on the
protocols. The resulting images were resized to 224 × 224.

In addition to the input format, all other settings followed those explained in Section 4.1
and the pre-training/fine-tuning method in Section 4.3. From Table 4, it is confirmed that
the overlapped N-divided RP showed better performance than the original RP. This was
because the overlapped N-divided RP can pay more attention to the regions near the
borders of the sections than the N-divided RP. The ROC curves of the above experiment
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are shown in Figure 13. It can be seen that the overlapped N-divided RP showed better
characteristics.

Table 4. Stroke screening results with N-divided RP and overlapped N-divided RP.

Method AUC

N-divided RP 0.724
overlapped N-divided RP 0.747
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Figure 13. ROC curves for different RP formats.

4.5. Analysis on Network Backbones

In this section, we discuss the network backbones introduced in Section 3.2.3. We
experimented with several network backbones mentioned in Section 4.1.

Table 5 shows the performance of the networks based on different backbone architectures.
In our case, the model with a smaller capacity was a better choice, especially because the
dataset that we used was relatively small. The results showed that ResNet-18 and EfficientNet-
B2 exhibited better performance, which supports this insight. ResNet-18 showed the best
AUC of all the models. Although EfficientNet-B2 recorded the second-best performance, it
represents a good alternative because it has less computational costs. Figure 14 depicts the
ROC curves for these models. Here, it can be seen that the curve of ResNet-18 is generally
more favorable.

Table 5. Results with different network backbones.

ResNet-18 ResNet-34 ResNeXt-50 EfficientNet-B2

AUC 0.747 0.703 0.682 0.728

4.6. Comparison to Non-RP-Based Baseline

In this section, we describe an additional experiment to compare the proposed method
with a non-RP-based baseline using landmark data. We created the baseline by replacing the
subnet backbones with 1D ResNet. The details of the 1D ResNet are shown in Figure 15. The
channel sizes and the number of residual blocks were tuned to yield the best performance.
Here, a residual block contains two sequences of 1D convolution, BN, and ReLU, and its
input and output are connected with a skip connection. All the proposed techniques, i.e.,
the augmentation transform, selective dropout, and individual protocol labels, were used
to provide a fair comparison. Moreover, even though we were not using RP for the baseline,
we divided the entire sequence into N parts with overlaps to ensure that the input setting
was as close as possible.
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Figure 14. ROC curves for different network backbones.
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Figure 15. The architecture of 1D ResNet. "/2" in the conv blocks indicates that the stride was 2. A
dotted skip connection means that the width and height are halved by an average pooling and the
channel size is doubled by adding zeros.
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Table 6 shows the results. Here, it can be seen that the proposed method achieved
better perfomance. This indicates the effectiveness of using an RP-based format, which
preserves complex temporal patterns despite its simplicity. Figure 16 depicts the ROC
curves for comparison. Again, it can be seen that the curve for the proposed method was
generally better.

Table 6. Comparison of RP- and non-RP-based methods.

Method AUC

Proposed method 0.747
1D-ResNet-based model 0.713
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Figure 16. ROC curves for non-RP-based method and ours.
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4.7. Ablation Study

In this section, we present an ablation study of the various techniques proposed. We
tested whether to use the augmentation transform or not (“Transform”), as well as whether
to use the additional protocol losses or not (“Using all labels”) as in (2). We also tested two
other alternatives for selective dropout, i.e., “Dropout” and “Weight concat”. “Dropout”
refers to a case where a plain dropout was used instead of the selective dropout. The dropout
probability was set to 0.5. “Weight concat” refers to a method in which no form of dropout was
used; instead, different parts of the final concatenated feature vector were simply weighted
according to the probability values of selective dropout. This can be interpreted in another way,
i.e., it is the selective dropout operating in ‘evaluation mode’ even during the training phase.
These two alternatives were introduced to demonstrate the effectiveness of selective dropout.

Comparing all the techniques in Table 7, we can confirm that the selective dropout had
the best impact on performance and was better than other similar techniques, i.e., dropout
and weight concat. Moreover, we confirmed that adding augmentation transform and
using the additional losses had a relative minor but meaningful impact on the performance.

In conclusion, we can confirm that all the proposed techniques, i.e., the augmentation
transform, selective dropout, and use of all labels including individual protocol labels, had
significant positive effects on performance. In particular, when using all three techniques,
the AUC value increased by approximately 0.17 points from the baseline. The ROC curves
for some of the above models are presented in Figure 17. Here, it can be seen that using all
three techniques was clearly advantageous.

Table 7. Results of ablation studies.

Transform Dropout Selective Dropout Weight Concat Using All Labels AUC

0.577

X 0.581

X 0.579

X 0.669

X 0.644
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Selective dropout (AUC = 0.669)
Using all labels (AUC = 0.651)
Transform + Selective dropout (AUC = 0.675)
Transform + Selective dropout + Using all labels (AUC = 0.747)

Figure 17. ROC curves for various models in ablation study.



J. Pers. Med. 2022, 12, 1691 18 of 20

5. Conclusions

We proposed a deep-learning-based screening method for patients with stroke using
neurological examination videos. Based on experimentation, using ResNet-18 architecture
with overlapped N-divided RP pretrained with protocol tests, and applying the three
additional techniques was the most effective, with an AUC value of 0.747. The proposed
method has many potential practical applications, such as remote screening using a kiosk
device or a mobile device.

In the experiments, we found that reducing the importance of the subnetworks for
facial expression protocols using selective dropout was able to improve performance. We
conjecture that the main reason for this was the biased facial landmark detector. However,
including these protocols as a part of the input is still meaningful for the final diagnosis.

The KUAH dataset used in this study had some limitations, including its size and
data distribution. Accordingly, the generality of the proposed method must be investigated
further based on larger datasets. Future studies will extend the proposed framework to
other types of neurological disorders, such as Parkinson’s disease. The use of multi-modal
features, such as voice data or thermal images, which also contain important symptoms of
stroke, represents another promising direction.
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