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ABSTRACT
The association of perfluorodecanoicacid (PFDA) with tumor promotion and 

associated effects is not clear. Given that PDFA is mostly consumed with food and 
drinking water, we evaluated the effects of PFDA on a gastric cell line. When added 
to cell cultures, PFDA significantly increased growth rate and colony forming ability 
compared with control treatment. We found that suppression of cell senescence, 
but not apoptosis or autophagy was associated with PFDA-induced promotion of cell 
amount. To determine the molecular mechanism that was involved, DNA microarray 
assays was used to analyze changes in gene expression in response to PFDA treatment. 
Data analysis demonstrated that the vascular endothelial growth factor signaling 
pathway had the lowest p-value, with sPLA2-IIA (pla2g2a) exhibits the most altered 
expression pattern within the pathway. Moreover, sPLA2-IIA and its transcription factor 
TCF4, known as a direct target and a binding partner of Wnt/β-catenin signaling in 
gastric cells respectively, were the third and second most varied genes globally. Cells 
transfected with expression plasmids pENTER-tcf4 and pENTER-pla2g2a show reduced 
cell proliferation by more than 60% and 30% respectively. Knockdown with sPLA2-IIA 
siRNA provided additional evidence that sPLA2-IIA was a mediator of PFDA-induced 
cell senescence suppression. The results suggest for the first time that PFDA induced 
suppression of cell senescence through inhibition of sPLA2-IIA protein expression and 
might increased the proliferative capacity of an existing tumor.

INTRODUCTION

Perfluorinated carboxylic acids or perfluorinated 
fatty acids (PFCAs) have been used for decades to make 
products that resist heat, oil, and water. Because they 
are used in the manufacture of nonstick cookware, fire-
fighting foam, and many other industrial products [1, 2], 
perfluorinated compounds can be detected globally in the 

environment [3, 4], wildlife [5–8] and humans [9–15]. In 
recent years, perfluorochemicals have become recognized 
as a public health concern as evidence of environmental 
persistence has increased [16–19], and toxicity data has 
emerged in laboratory animals [20–25]. 

Perfluorodecanoicacid (PFDA) is a perfluorinated 
carboxylic acid that is known to increase peroxisome 
proliferation in rodents by inducing various peroxisomal 
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enzymes [26–28] as well as a series of mitochondrial, 
microsomal and cytosolic enzymes and proteins involved 
in lipid metabolism [29–32]. In vivo, PFDA is a highly 
potent and persistent peroxisome proliferator [33]. 
It is several times as toxic as perfluorooctanoic acid 
(PFOA) [34]. PFDA produces toxic effects similar to those 
caused by dioxin (2, 3, 7, 8-tetrachlorodibenzolydioxin), 
and has been reported to produce hypophagia and severe 
weightloss, bradycardia, hypothermia, and decreased 
serum thyroid hormone levels in rats [34, 35]. The 
reported cellular and physiological effects of PFDA 
include reproductive [36–39], endocrine [35, 40–42], 
and liver toxicity and disturbances of lipid metabolism 
[30, 43–47], and the immune system [48]. Evidence 
of damage to genetic material included DNA strand 
breaks and fragmentation, chromosomal breaks, and 
apoptosis [49, 50]. PFDA accumulates at much higher 
concentrations than PFOA in human blood and organs 
and serum elimination half-life can last several years. 
However, despite the evidence of PFDA toxicity, little is 
known of how it acts in tumor promotion.

Gastric cancer is a common malignancy, and 
accounts for about 10% of all invasive cancers worldwide. 
It may be the second leading cause of cancer death, 
and in China, the total number of cases and deaths 
from gastric cancer have increased concomitant with 
extensive demographic changes and ongoing increase 
of environmental pollution. A positive correlation of 
gastric cancer with environmental pollution has been 
confirmed [51–53]. PFDA is present in air, food, and 
water, especially in China, where 0.139 ng/mL PFDA 
was detected in snow fall in the area around Beijing [4]. 
In China, the primary source of PFDA accumulated in 
human is primarily through the polluted drinking water 
and food source especially the seafood [54]. In this study, 
we evaluated the effects of PFDA in gastric cells.

In the current study, our results suggested sPLA2-IIA  
mediated suppression of PFDA-induced cell senescence 
and then stimulated cell proliferation. This report describes 
a new molecular mechanism by which PFDA promotes 
cell growth in gastric cells.

RESULTS

Effects of PFDA on cell amount

To assess effects on in vitro cell proliferation, 
we treated AGS gastric epithelial cells with PFDA and 
monitored growth with a Cell Counting Kit-8 (CCK8) 
and a colony forming assay. As shown in Figure 1A, 
the CCK8 assays found that cells incubated with certain 
concentration of PFDA had significantly increased cell 
amount compared with DMSO-treated control cells. 
Moreover, the growth response of AGS cells varied in 
response to stimulation by different PFDA concentrations, 
this cell amount-promotion effect was verified by hepatic 

cell line Bel-7402 (Figure 1B) and another gastric cell 
line BGC823 (Supplementary Figure 1). More evidence 
was obtained from colony forming assay of AGS, PFDA 
enhanced colony forming ability by more than 70% 
compared with control cells (Supplementary Figure 2), 
which was significantly higher than that seen with PFOA, 
perfluorooctane sulfonate (PFOS) or other PFCs with 
longer chain length at the same concentration (PFOA 
and PFOS, 8C; PFDA, 10C; PFUDA, 11C; PFDoA, 
12C; PFTeDA, 14C) (Figure 1C). The largest difference 
in growth rates was found on day 3 (Supplementary 
Figure 3). The results thus confirm that PFDA had an 
effect on the growth of human cells.

PFDA enhanced gastric epithelial cells via 
suppressing senescence

Due to cell amount is generally affected by certain 
cellular processes such as apoptosis, autophagy and 
senescence, we used flow cytometry, western blots, and 
SA-β-gal staining to determine which cellular process 
were modulated by PFDA treatment. Following treatment 
with PFDA for 72 h, flow cytometry showed no significant 
difference between in the percentages of apoptotic cells 
with (3.7%) or without (6.4%) the presence of PFDA in 
the culture media (Figure 2A and 2B). Furthermore, the 
western blot data showed no differences in degradation of 
autophagy substrates (p62) or lipidation of LC3 (LC3-II) 
in response to PFDA treatment compared with controls 
(Figure 2C and Supplementary Figure 4). These results 
suggested that neither apoptosis nor autophagy were key 
factors in the PFDA-induced cell amount promotion. 
However, cell senescence-associated β-galactosidase 
(SA-β-gal) activity decreased following PFDA 
treatment, which was confirmed by a reduction in both 
the number of SA-β-gal-stained cells and in the staining 
intensity (Figure 2D and 2E). In addition, the decreased 
expression of p16, p21 and p27 as well as changes in cell 
morphology were consistent with a negative effect of 
PFDA on cell senescence (Supplementary Figure 5 and 
Supplementary Figure 6). Overall, these results implied 
that cell senescence played an important role in PFDA-
induced promotion of AGS cell growth.

sPLA2-IIA and its transcription factor TCF4, 
are down-regulated in PFDA-treated gastric 
epithelial cells

In the result of DAVID analysis of the microarray 
data, the biological process (GOTERM_BP_FAT) that 
was most affected was GO: 0014070, i.e., response to an 
organic substance (p = 0.00074, the smallest GOTERM 
p-value). In line with cellular response to PFDA treatment, 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway with the lowest p-value (p = 0.011) was the 
vascular endothelial growth factor (VEGF) signaling 
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pathway. In that pathway, all four genes (CDC42, 
SH2D2A, PTGS2 and PLA2G2A) were down-regulated, 
and the most down-regulated gene was sPLA2-IIA 
(PLA2G2A). Its expression was 21.4% of that in controls, 
and it was the third most changed among all the genes 
analyzed (Figure 3A). The upstream transcription factor 
of sPLA2-IIA, TCF4, was the second most changed gene, 
with a decreased in expression to 19.9% of controls after 
PFDA treatment. The decreased expression was verified 
by RT-qPCR and in western blots (Figures 3B, 4A and 
Supplementary Figure 7). The down-regulation of sPLA2-
IIA and TCF4 expression was also observed in BGC823 
and Bel-7402 cells. sPLA2-IIA and TCF4 mRNAs 
decreased 5.88 and 5.29 fold respectively in BGC823 
(Supplementary Figure 8) after PFDA treatments, they 
even decayed to undetected levels in Bel-7402 cells. 

TCF4 regulation of gastric cell growth by 
sPLA2-IIA is influenced by PFDA treatment

To investigate the effects of TCF4 and sPLA2-
IIA gene expression on cell proliferation, we transfected 
AGS gastric epithelial cells with TCF4 and sPLA2-IIA  

expression plasmids (pENTER-tcf4 and pENTER-
pla2g2a) to stimulate TCF4 and sPLA2-IIA expression 
concomitant with PFDA treatment. Transfection was 
confirmed by sequencing using BLAST (Supplementary 
Figure 9). As shown in Figure 4A–4C, TCF4 and sPLA2-
IIA expression was restored and expression levels of each 
gene were increased in dose-dependent manner after 
transfection. However, transfection of pENTER-pla2g2a 
did not affect TCF4 expression.

AGS cells were evaluated for changes in cell growth 
following transfection with pENTER-tcf4 and pENTER-
pla2g2a. As shown in Figure 4D, the growth rate of the 
transfected cells was reduced by 60% by pENTER-tcf4 
and 30% by pENTER-pla2g2a compared with PFDA-
treated control cells. This is in line with the pattern of 
TCF4 and sPLA2-IIA expression in AGS cells, and was 
verified by CCK8 result of AGS transected with sPLA2-
IIA a siRNA alone (Supplementary Figure 10). However, 
proliferation rates of cells transfected with pENTER-tcf4 
and -sPLA2-IIAsiRNA were higher than in cells with only 
pENTER-tcf4 transfection, suggesting that PFDA induced 
cell proliferation through regulation of sPLA2-IIA protein 
expression. 

Figure 1: PFDA significantly enhanced cell amount. (A) Cell counting kit 8 assay of PFDA treated or control AGS cells (*p < 0.05); 
(B) Cell counting kit 8 assay of Bel7402 treated with different concentrations of PFDA (*p < 0.05); (C) Quantification of colonies on agar. 
Colony formation assays were performed as described in Materials and Methods. Experiments were performed in triplicate with similar 
results.
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Figure 2: PFDA treatment suppressed senescence of gastric epithelial cells. (A) Both PFDA treated and non-treated cells 
showed low levels of apoptosis, and their difference was not significant; (B) Quantification of the apoptotic cells, there was no significant 
difference between PFDA treated and control cells; (C) Western blot of LC3-II and p62. NC: DMSO, PC: starvation; (D) Senescence-
associated β-galactosidase (SA-β-gal) activity assessment of PFDA treated and control cells; (E) Quantification of (D). ***p < 0.001. 
Apoptosis analysis, western blot and SA-β-gal activity assessment were performed as described in Materials and Methods.

Figure 3: PFDA treatment down-regulated expression of sPLA2-IIA and its up-stream target gene TCF4. (A) Microarray 
analysis showed that TCF4 and PLA2G2A expression decreased 5.02 and 4.67 fold respectively concurrent with PFDA incubation; this 
decreased expression was verified by (B) RT-qPCR, ***p < 0.001. Microarray analysis and RT-qPCR were performed as described in the 
Materials and Methods.
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sPLA2-IIA expression restored cell senescence 
and inhibited cell proliferation

The effects of sPLA2-IIA expression on cell 
senescence were investigated in AGS cells that over-
expressed TCF4 and sPLA2-IIA. As shown in Figure 5, 
suppression of senescence was significantly increased two 
fold in cells expressing TCF4 and sPLA2-IIA compared 
with treatment-control cells. The results suggest that 

PFDA induced suppression of cell senescence and then 
stimulated cell proliferation through regulation of sPLA2-
IIA protein expression.

DISCUSSION

Despite recent advances in understanding the 
molecular mechanisms perfluorinated environmental 
pollutants, many unanswered questions remain. PFDA may 

Figure 4: TCF4 and sPLA2-IIA were involved in PFDA-associated cell proliferation promotion. (A) Western blot analysis 
of TCF4 and sPLA2-IIA expression in AGS cells: 1, DMSO control; 2, AGS with PFDA treatment; 3, AGS with PFDA treatment and 
pENTER-tcf4 transfection; 4, AGS with PFDA treatment and pENTER-pla2g2a transfection; 5, protein marker; 6, AGS with PFDA 
treatment, pENTER-tcf4 transfection and interfered by sPLA2-IIA siRNA; (B) and (C) RT-qPCR analysis of sPLA2-IIA and TCF4 
expression in AGS cells under the circumstance of sPLA2-IIA and TCF4 plasmid transfection; (D) CCK8 analysis of AGS cells as TCF4 and 
sPLA2-IIA proteins were administrated, ***p < 0.001. Western blot and RT-qPCR were performed as described in Materials and Methods.

Figure 5: SA-β-gal activity assessment of PFDA treated and transfected AGS cells. 1, DMSO control; 2, AGS with PFDA 
treatment; 3, AGS with PFDA treatment and pENTER-tcf4 transfection; 4, AGS with PFDA treatment and pENTER-pla2g2a transfection; 
5, AGS with PFDA treatment, pENTER-tcf4 transfection and interfered by sPLA2-IIA siRNA; 6, AGS interfered by sPLA2-IIA siRNA. 
SA-β-gal activity assessment was performed as described in Materials and Methods.
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important for understanding the molecular mechanisms of 
peroxisome proliferation. It is thus hoped that PFDA can 
assist in dissecting the sequence of events that is initiated 
by peroxisome proliferator-activated receptor interactions 
and ultimately results in tumor formation [33].

Of the phospholipase A2 super family (sPLA2) 
subgroup members, type-IIA sPLA2 (sPLA2-IIA, encoded 
by pla2g2a) have the highest bactericidal activities, 
and may also be involved in cell signaling, apoptosis, 
remodeling of cell membranes, and inflammatory 
responses [55–59]. Gastric cancer patients with tumors 
expressing high levels of sPLA2-IIA have been shown 
to have significantly improved survival compared 
with patients having tumors with low sPLA2-IIA  
expression [60]. However, beyond this prognostic 
association, little is actually known of how sPLA2-IIA 
contributes to development and progression of gastric 
cancer. Although sPLA2-IIA has been proposed as a 
potential tumor suppressor, evidence supporting this 
model is conflicting [60–64]. In the microarray data of 
AGS treated by PFDA, the KEGG pathways sPLA2-IIA 
belonging to were VEGF and MAPK signaling pathway. 
FOS and FGF18 were included in the latter pathway 
and increased by 2.28 and 2.14 fold respectively. Given 
that FOS and FGF18 are involved in tumor growth, and 
invasion as well as PFDA stimulates cell growth and, 
the microarray data seemed to imply us that PFDA were 
involved in the processes of tumorigenesis. However, a 
previous report found a larger group of genes differentially 
expressed in primary human hepatocytes, such as FABP1, 
Ehhadh, Pdk4, Scd1 etc. Meanwhile, FABP1 was also 
found up-regulated in our microarray data of AGS [65]. 

In early-stage tumors, Wnt signaling is active, 
and drives cell proliferation and dedifferentiation by 
up-regulating genes with pro-oncogenic activity. The 
transcriptional coactivator β-catenin can translocate to 
the nucleus to bind T-cell specific factor (TCF)-4 and 
lymphoid-enhancer factor (LEF)-1, thereby regulating 
gene expression [66]. Ganesan et al. showed that sPLA2-
IIA is a direct target of Wnt/β-catenin signaling in gastric 
cancer cells and functions to negatively regulate gastric 
cancer invasiveness and metastasis [67]. In this study, 
the association of TCF4 and sPLA2-IIA expression was 
identified by gene over-expression and siRNA knockdown.

Cellular senescence is the state of permanent cell 
cycle arrest, and represents an important mechanism 
of both tumor suppression and tissue maintenance  
[68, 69]. Either oncogene inhibition or activation of tumor 
suppression can induce premature senescence, which 
then serves as a failsafe mechanism to restrict tumor 
development. On the other hand, recent reports showed 
that senescent cells enhanced cell malignancy. Senescent 
cells develop a secretory phenotype (SASP) that can affect 
the behavior of neighboring cells. Strikingly, many SASP 

factors are known to stimulate phenotypes associated with 
aggressive cancer cells, such as IL-6 and VEGF [70]. 
Senescence can be regulated by multiple pathways 
[71, 72]; however, the effects of PFDA and sPLA2-IIA 
on cellular senescence and its mechanism has not been 
reported previously. In this study, we demonstrated that 
PFDA enhanced growth of gastric epithelial cells. As 
to cell amount decreased after 24 and 48 h of PFDA 
treatment, the underlying mechanism could be PFDA 
suppressed glucose transport and NF-κB activation which 
directly affected the expression of a large number of genes 
and cell growth [73, 74]. The inhibiting the expression 
of sPLA2-IIA represents a new molecular mechanism 
engaged in regulating proliferation of gastric cancer cells.

MATERIALS AND METHODS

Gastric adenocarcinoma cell line AGS and BGC823 
were cultured and maintained in Ham’s F-12 medium 
(HyClone, Utah, USA) supplemented with 10% FCS and 
1% penicillin-streptomycin; the medium of Hepatocellular 
Carcinoma cell line Bel-7402 was RPMI-1640 (Life 
Technologies, California, USA) plus 10% FCS. The 
cultures were kept in a 5% CO2 and 95% air humidified 
incubator at 37°C. PFDA was purchased from Sigma 
Chemical Company (St. Louis, MO, USA). The full-length 
human sPLA2-IIA and TCF4 cDNA expression plasmids: 
pENTER-pla2g2a and pENTER-tcf4, and the control 
plasmid pENTER-mock were purchased from Biosune 
Company (Shanghai, China). FuGENEs HD Transfection 
Reagent (Roche Applied Science, Basel, Switzerland) was 
used for the transfection of these plasmids according to the 
manufacturer’s instructions.

RNA extraction and quantitative real-time PCR

Total cellular RNA was extracted with Trizol 
(Life Technologies, California, USA) according to the 
manufacturer’s protocol. First-strand cDNA was synthesized 
from 1 µg of the extracted RNA using the RevertAid TM 
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 
Massachusetts, USA). The cDNA was then amplified using 
specific primers as follow: human sPLA2-IIA forward primer 
5′-TCACCCAAGAACTCTTACCA-3′ and reverse primer 
5′-CAGCCGTAGAAGCCATAA-3′; human TCF4 forward 
primer 5′-GGGGCTCATACTCATCTTA-3′ and reverse 
primer 5′-CCCTATTGTAGTCGGCAGT-3′; β-actin forward 
primer 5′-AGTTGCGTTACACCCTTTCTTG-3′ and reverse 
primer 5′-CACCTTCACCGTTCCAGTTTT-3′. The real-
time PCR reactions were performed on the ABI7000 Fast 
Real-Time PCR System with the SYBR Premix Ex Taq TM. 
The reaction ran for 35 cycles, in which each cycle included a 
denaturation step at 95°C for 10 sec, primer annealing step at 
55°C for 30 sec and primer extension step at 72°C for 30 sec. 
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Western blot analysis

Western Blot Analysis was performed as described 
previously [75]. Briefly, cell lysates (20 μg/lane) were 
separated on 10% SDS polyacrylamide gel and then were 
transferred to a poly (vinylidene fluoride) membrane. 
sPLA2-IIA, p62 and LC3-II protein [76] was detected 
by a mouse monoclonal IgG (OriGene Co. Ltd, Beijing, 
China) and visualized by the enhanced chemiluminescence 
system (Amersham, Arlington Heights, IL, USA). The 
intensity of the bands was quantitated using the NIH image 
software package. The extent of sPLA2-IIA expression 
was evaluated through the ratio of their expression in 
experiment groups over their corresponding expression in 
the control groups. If the ratio equated to more than 1, it 
may indicate its over-expression.

Colony formation assay

Gastric cell line AGS was cultured in a 6-well plate 
at a concentration of 2 × 105 cells/well. It was treated with 
PFDA (Sigma Chemical Company, St. Louis, MO, USA) 
and its control reagent solvent DMSO. After a period of 
growth, the cells were trypsinized and re-plated into new 
6-well plates at a concentration of 300 cells/well. After 
making up the volume to 3 ml/ well with culture medium, 
the plates were incubated at 37°C for a week. During this 
time, the formation of cell colonies could become visible. 
At that point, the colonies were washed with PBS buffer 
for 3 times before subjected to cell fixation using 1 ml of 
methanol at room temperature for 10 min. Then, 1 ml of 
diluted Giemsa dye was added into each well and incubated 
at room temperature for about 20–25 min. After incubation, 
the wells were washed gently and repeatedly with PBS 
until no residual background Giemsa dye was observed. 
Finally, the 6-well plate was scanned for colony counting 
and analysis. 

Cell apoptosis analysis

Cell apoptosis analysis was performed as instructed 
by the Annexin V, FITC conjugate [77, 78] manual 
(Thermo Fisher Scientific). Briefly, 5 × 105 AGS cells 
in a well of 6-well plates were treated with certain 
concentration of PFDA and control DMSO, incubating 
for 72 h before the cells were digested and harvested 
by centrifugation. After harvested the cells and washed 
in cold phosphate-buffered saline (PBS), then the cells 
were centrifuged and discard the supernatants, then re-
suspended the cells in Annexin-binding buffer. Add 5 μl 
Annexin V-FITC conjugate and PI per 100 μl solution to 
the suspended cells. After 15 min at room temperature 
in the dark, 400 μl Annexin-binding buffer was added. 
Keep the cells on ice and analyzed with flow cytometry 
equipped with an argon laser at 488 nm.

Senescence-associated β-galactosidase (SA-β-gal) 
activity assessment

SA-β-gal activity was detected using a staining kit 
of SA-β-gal [79, 80], and it was performed according 
to the manufacturer’s protocol. Briefly, AGS cells were 
seeded into a 24-well plate. The cells were treated with 
PFDA on day 3. After treatment, the cells were washed 
with PBS (pH7.2) twice before they were fixed with 
3.7% formaldehyde in PBS for 3–5 min. Then, the SA-β-
gal staining solution (1 mg/ml X-gal, 40 mM citric acid/
sodium phosphate pH6.0, 5 mM potassium ferrocyanide, 
150 mM NaCl, and 2 mM MgCl2) was added into each 
well before the plate was incubated at 37°C for 12–16 hr 
in the absence of CO2. Finally, the cells were rinsed with 
PBS and the plate was observed under the microscope, 
in which the number of the SA-β-gal positive cells was 
recorded. The experiment was performed in triplicate.

Microarray analysis

The microarray chip consisted of 27326 probes for 
different human cDNAs (Capitalbio Company, Beijing, 
China), in which the house-keeping gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was served as 
internal control. The cDNAs extracted from PFDA-treated 
AGS cells were labeled with Cy3, while the cDNAs 
from the control DMSO-treated AGS cells were labeled 
with Cy5. The labeled cDNAs were then hybridized with 
microarray chip under standard conditions according to 
manufacturer’s instructions. Changes in mRNA expression 
in response to PFDA stimulation were assayed in DNA 
microarrays. Two fold up- or down regulation were set 
as cutoff values, and changes in gene expression were 
analyzed using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID). 

Statistical data analysis

All experiments except microarray analysis were 
repeated at least three times and the data were expressed as 
mean ± standard deviation (SD). The differences between 
the three groups were compared using the Student’s t-tests 
and P < 0.05 (*) was considered statistically significant.
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