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Abstract: Interventional cardiology procedures result in substantial patient radiation doses due to prolonged fluoroscopy 

time and radiographic exposure. The procedures that are most frequently performed are coronary angiography, 

percutaneous coronary interventions, diagnostic electrophysiology studies and radiofrequency catheter ablation. Patient 

radiation dose in these procedures can be assessed either by measurements on a series of patients in real clinical practice 

or measurements using patient-equivalent phantoms. In this article we review the derived doses at non-pediatric patients 

from 72 relevant studies published during the last 22 years in international scientific literature. Published results indicate 

that patient radiation doses vary widely among the different interventional cardiology procedures but also among 

equivalent studies. Discrepancies of the derived results are patient-, procedure-, physician-, and fluoroscopic equipment-

related. Nevertheless, interventional cardiology procedures can subject patients to considerable radiation doses. Efforts to 

minimize patient exposure should always be undertaken. 
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INTRODUCTION 

 The medical use of ionizing radiation, while offering 
great benefit to patients, also contributes significantly to 
radiation exposure of individuals and populations [1-3]. 
Interventional radiology and interventional cardiology (IC) 
contributes a significant proportion of the collective dose of 
the population from medical exposures. According to the 
results published by the United Nations Scientific 
Committee on the Effects of Atomic Radiation, inter-
ventional procedures contribute only 1% to the frequency of 
radiation use on the medical field whereas their contribution 
to collective dose is 10% [4]. When complex procedures are 
performed or procedures are repeated for the same patient, 
high radiation dose levels can occur because procedures 
often require long fluoroscopy time and a large number of 
images. 

 Over the last 10 years the number of IC procedures has 
increased rapidly [5, 6]. The main reasons is that IC permits 
specialists to avoid complicated invasive surgery which 
some patients might not tolerate due to factors of age or 
pathology [7] and results in limited hospitalization [5]. 
Additionally, knowledge of the benefits of IC becomes more 
widely spread and more complicated procedures are 
technically possible. Nevertheless, population dose and 
associated health risks are also increasing. The potential of 
occurrence of deterministic effects (injury of radiation, the 
severity of which varies with the dose and for which a dose 
threshold exists), especially to the skin, has been a subject of 
great concern. Additionally, estimation of the health risk 
owing to stochastic effects of radiation (malignant disease 
and heritable effects without a threshold level of dose, whose 
probability is proportional to the dose and whose severity is 
independent of the dose) especially for the younger patients 
is also under thorough investigation. 
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 Reviewing the various studies on patient dosimetry in IC, 
it is evident that there is great variability in both methods of 
measurement and levels of radiation dose received by the 
patient. Some of the factors responsible for dose variability 
are the complexity of the procedure, operator experience, 
level of training in radiation protection, and type and 
performance of x-ray equipment available in the 
catheterization laboratory.  

 The purpose of this study is to review published literature 
on patient dosimetry in IC, discuss discrepancies of results, 
and comment on risks to patients and strategies to minimize 
patient radiation doses. 

Patient Dosimetry Review in IC 

 Data were collected from 72 studies published in 
international scientific literature between 1986 and 2008 
concerning non-pediatric patient dose measurements and 

Table 1.  Type of Procedures and Corresponding Number of 

Studies 

 

Type of procedure Number of 

studies 
References 

CA 47 [5, 8-53] 

PCI 43 

[5, 8-10, 12, 13, 15, 16, 19-

22, 24, 25, 27, 28, 30, 32, 34, 

35, 38, 40, 43-47, 49-51, 53-

65] 

RFA 17 [5, 20, 33, 45, 49, 53, 65-75] 

CA+PCI 9 
[14, 19, 22, 23, 25, 28, 41, 42, 

49] 

CA+LV 8 
[24, 26, 33, 45, 54, 56, 58, 

76] 

EF 7 [33, 45, 49, 53, 71, 73, 74] 

PCI with stenting 7 [22, 25, 27, 28, 33, 56, 58] 

CA+PCI with stenting 2 [22, 28] 

CA+LV+PCI with 

stenting 
1 [76] 

CA: coronary angiography; PCI: percutaneous coronary intervention; LV: left 

ventriculography; EF: electrophysiological study; RFA: radiofrequency ablation 
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calculations in IC. Cardiac procedures reported in these 
studies fall into nine categories which are shown in Table 1 
together with the corresponding number of studies.  

 The most frequently reported procedures were coronary 
angiography (CA) and percutaneous coronary intervention 
(PCI), followed by radiofrequency ablation (RFA) and 
combined CA and PCI. Other procedures for which patient 
dosimetric data were reported were CA with left 
ventriculography, electrophysiology studies, PCI with stent 
implantation, CA with PCI and stent implantation, and CA 
with left ventriculography and stent implantation. Many 
studies reported data for more than one procedure whereas 
some studies compared the dosimetric data for the same 
procedure under varying conditions (e.g. procedural 
technique, equipment, cardiologist’s experience etc).  

 The quantities used to assess patient dosimetry in these 
studies are tabulated in Table 2.  

Table 2.  Assessed Quantities, Dosimetry Objective and 

Corresponding Number of Studies 

Quantity 
Dosimetry 

objective 

No. of studies 

assessed this 

quantity 

Fluoroscopy time* Quality assurance 60 

Dose Area Product (DAP)† Quality assurance 53 

Cine frames* Quality assurance 27 

Effective dose† Stochastic risk 23 

Cine time* Quality assurance 12 

Skin dose† Deterministic risk 12 

Coronary dose‡† Deterministic risk 2 

* non-dosimetric; † dosimetric; ‡ dose to a coronary artery (in Gy) measured with a 
catheter based dosimeter during irradiation 

 

 The most commonly used quantities were fluoroscopy 
time and DAP followed by the number of cine frames and 
effective dose. Other quantities assessed were cine time, skin 
dose and coronary dose, the dose to a coronary artery 
measured by a catheter based dosimeter during irradiation 
[28]. Fluoroscopy time (usually measured in minutes) is a 
non-dosimetric quantity; however it is widely used to 
evaluate patient dosimetry since it is readily available and 
still the only dose metric routinely employed in many 
interventional laboratories. Nevertheless it does not 
incorporate information about dose rate and skin entrance 
ports [77, 78]. DAP (measured in Gy·cm

2
) is the product of 

the dose in air in a given plane by the area of the irradiating 
beam and is independent of the distance from the x-ray 
source because the decrease in dose with distance parallels 
the increase in area [79]. DAP is the initial quantity not only 
for estimating patient skin dose but for first establishing the 
stochastic risk to patients, characterized by effective dose (E) 
[42]. DAP is measured by an ionization chamber incor-
porated into the x-ray equipment and includes field non-
uniformity effects such as anode-heel effect and use of 
beam-equalizing shutters (lung shutter). However it does not 
provide any information regarding the spatial distribution of 
the entrance beam on patient’s skin [77]. Cine time and cine  
 

frames (measured in seconds and number respectively) are 
also non-dosimetric quantities which are readily available 
but have the same limitations as fluoroscopy time. Effective 
dose (measured in mSv) introduced by the International 
Commission on Radiological Protection [80] is widely used 
as a stochastic risk related factor to assess radiation 
detriment and is also used to set dose limits and constraints, 
to limit the risk of cancer and hereditary effects. Effective 
dose can be assessed by three methods: (1) measurements in 
physical anthropomorphic phantoms using thermolumine-
scent dosimeters (TLDs), (2) by multiplying DAP by a 
conversion factor. Multiple sources of conversion factors 
exist but the most widely used are those proposed by the 
National Radiological Protection Board (NRPB) [81] and (3) 
by Monte Carlo based computer simulation codes such as 
WinODS [82], PCXMC [83] and XDOSE [84] which are fed 
with data of DAP for each projection, tube potential, field 
sizes and patient data. Skin dose is usually assessed by peak 
skin dose (measured in Gy) which is the highest absorbed 
dose received by any location on the patient’s skin and is 
thought to be best predictor of skin injury. Skin dose can be 
assessed with different methodologies [77]: (1) by direct 
calculation with off-line or on-line techniques, (2) by direct 
measurements on the patient with point detectors, (3) by 
direct measurement on the patient with large area detectors 
(e.g. Films). Coronary dose (measured in Gy) is measured by 
a TLD dosimeter placed at the tip of a catheter which is then 
advanced at the vicinity of the coronary artery subjected to 
angiography or intervention [28]. 

 Patient dosimetry methodologies and quantities can be 
divided into three categories according to dosimetry 
objective (Table 2) [85]: (i) dosimetry for stochastic risk 
evaluation, (ii) dosimetry for quality assurance and (iii) 
dosimetry to prevent deterministic effects of radiation. 
Effective dose (E) is the most suitable indicator in the 
assessment of diagnostic practice and population exposure 
and estimates the health risk owing to stochastic effects of 
radiation. DAP, fluoroscopy time, cine time and number of 
cine images are useful indicators to evaluate optimization 
level of radiological practise, to compare performance of 
equipment and operator skill or to compare the practice 
among different centres. Peak skin dose is important to 
assess the potential of deterministic effects due to skin 
irradiation and to prevent them. The literature of case 
reports, describing radiation induced skin injuries due to IC 
procedures is growing [86]. Therefore the potential of 
deterministic effects in some procedures may be of more 
concern than stochastic risk [85]. Coronary dose received 
during IC procedures although not frequently reported has 
been proposed as an iatrogenic component to coronary artery 
restenosis [87] and therefore might be of importance. 

Published Results 

 Published results on dosimetry in IC are presented in 
Table 3. In order to calculate the mean of the reported 
average and median values for each IC procedures, the 
average and median value of each study was considered 
against the total number of patients included in the particular 
study. The total sample for each IC procedure and the 
sample used to calculate the mean values are also shown in 
Table 3. The range of values shown in the table is the entire  
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range considering the range of values reported in each study. 
The mean fluoroscopy time, mean DAP and mean effective 
dose are graphically presented in Fig. (1). Mean cine frames 
and mean cine time per procedure are presented in Fig. (2) 
while mean peak skin dose and mean coronary dose are 
presented in Fig. (3).  

DISCUSSION 

 It is evident from the tabulated data that the range of the 
reported values for each IC procedure is considerably wide. 
For example the range of DAP values for CA (1.1-2400 
Gy·cm

2
) comprises the DAP values reported for almost any 

IC procedure. This is however due to the fact the CA is the 
most extensively studied procedure and dosimetric data 
include results reported in the 80s and 90s when radiation 
protection and catheterization laboratory equipment were 
less advanced. A recent study collected DAP values for 2265 
coronary angiographies performed between 2003-2005 in 
seven centers and has also reported large variability of 
results although DAP values spanned in a narrower range of 
5-130 Gy·cm

2 
[88]. The wide range of reported values are 

evident in all IC procedures and can be attributed to operator 
experience [40], workload [61], use of radiation-reducing 
techniques [38], procedural complexity [60, 89], examina-
tion technique [11] and catheterization laboratory equipment 
[42, 90]. In order to compare results between older and 
newer studies, mean DAP, mean fluoroscopy time and mean 
effective dose were calculated for results published before 
and after the year 2000 concerning the most extensively 
studied procedures (CA and PCI) (Table 4). It is evident that 
due to on-going development in radiation protection and 
catheterization laboratory equipment there is considerable 
reduction in radiation received by patients. 

Table 4. Comparison of Results Between Studies Published 

Before and After the Year 2000 

  
Fluoroscopy Time 

(min) 

DAP 

(Gy·cm
2
) 

Effectime 

Dose 

(mSv) 

  CA PCI CA PCI CA PCI 

before year 

2000 
6.2 21.3 52.5 81.7 11.7 20 

after year 

2000 
3.7 12.2 31.1 59.2 8.4 13.6 

 

 The calculated mean values of the dosimetric and non-
dosimetric quantities indicate that PCI procedures either with 
or without stent implantation result in increased radiation 
received by patients compared to angiography. When 
coronary angiography is combined with left ventriculo-
graphy DAP and E are similar, or even slightly reduced in 
the combined procedures. However this is probably due to 
the fact that considerably lesser studies included 
ventriculography (8 studies, 1297 total patients) than CA 
without ventriculography (51 studies, 9100 total patients) 
and thus the calculated mean values are less representative, 
particularly for E which is calculated only in one study. The 
same applies for the particularly high fluoroscopy time and 
effective dose reported for procedures that combine CA with 
left ventriculography and stenting since these values result 
from a single study. Contradictory results on mean effective 
dose at PCI (sample 500, mean E=17 mSv) and CA with PCI 

 
Fig. (1). Mean fluoroscopy time, DAP and effective dose per type of intervention. 
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(sample 147, E=13,6 mSv) are observed since it is expected 
that the combined procedure would result in higher effective 
dose. A likely explanation is that two studies on PCI with a 
large patient cohort (total 220 patients) are reporting 
effective dose values of 23.2 mSv [34] and 15,3 mSv [50] 
which are particularly high compared to other studies [34] 
and thus their contribution to mean effective dose results in 
an overall high mean value. Other studies on PCI with 
smaller patient cohort (total 22 patients) are reporting 

substantially lower effective dose values of 6.6 mSv [28] and 
6.9 mSv [22]. EF studies generally result in low patient 
exposure since fluoroscopy is exclusively used (without 
image acquisition) while RFA ablation is the procedure 
where the maximum values of DAP and effective dose are 
reported owing to the extended fluoroscopic times (average 
fluoroscopic time 45.8 min).  

 A few studies have included measurements of coronary 
dose, the dose received by the coronary vessels during 

 
Fig. (2). Mean cine frames and cine time per type of intervention. 

 
Fig. (3). Mean peak skin dose and coronary dose per type of intervention. 
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irradiation. The method of measurement involves the 
insertion of a catheter with a TLD dosimeter at its tip which 
is then advanced to the sinus of Valsalva corresponding to 
the coronary artery subjected to angiography or intervention 
[28]. The obvious advantage of the method is that it allows 
direct measurement of coronary dose, although this is not 
absolutely correct since due to technical and ethical reasons 
the dosimeter is not advanced inside the artery. Such a 
measurement might be important since experimental studies 
have shown that external beam radiation after stent 
implantation increases the restenosis rate [91, 92]. However 
the measured coronary doses were found approximately 2 
orders of magnitude lower than the doses that have resulted 
in neointimal hyperplasia after external beam irradiation 
[93]. The main disadvantage is the invasive nature of the 
technique which makes it difficult to adopt in everyday 
clinical practice.  

 A number of studies have evaluated the effect of various 
parameters on patient dose at IC procedures. The parameters 
that have been investigated include catheterization laboratory 
equipment, procedural complexity, operator experience, and 
irradiation parameters. Broadhead et al. [20] compared 
patient dosimetry in two cardiology rooms, one equipped 

with biplane image intensifier system and one with single 
intensifier system, and found that the biplane system 
provides greater imaging capability but also increases patient 
dose. Bernardi et al. [57] and Padovani et al. [60] 
investigated the effect of the complexity of PCI procedures 
on patient exposure by dividing the procedures in ‘simple’, 
‘medium’ and ‘complex’ based on a set of indexes and they 
found correlation between patient dose and procedural 
complexity. Arthur et al. [31] explored whether radiation 
dose was lower during cardiologist- or radiographer-
controlled radiation exposure and determined whether the 
grade of the cardiologist influences radiation dose. They 
found that cardiologist-operated exposure and senior 
cardiologists result in lower radiation doses during CA. 
Kuon et al. [94] varied the image intensifier entrance dose 
level in CA and found that with the exception of cases with 
special requirements, lower dose levels guarantee adequate 
image quality with reduced patient dose. Philippe et al. [64] 
and Sandborg et al. [41] compared the radial arterial 
approach to the femoral approach and found that radial 
approach yielded significantly higher patient dose. Tsapaki 
et al. [44, 95] and Trianni et al. [47] evaluated the dose 
performance of flat-panel systems compared to conventional 
image intensifier systems. They concluded that flat panel 

Table 5. DAP Values (cGy·cm
2
) Reported by Various Investigators. Evaluation of the Effect of Various Parameters on Patient Dose 

 

  CA PCI    CA PCI 

 biplane system  47.7 72.2   femoral approach  18.8 Broadhead 

et al. [20] 
 single plane system  23.4 51.6  

Philippe et al. [64] 

 radial approach  28.6 

         

 simple procedure  65.8   femoral approach 38 47 

 medium procedure  93  

Sandborg et al. [41] 

 radial approach 51 75 
Bernardi  

et al. [57] 

 complex procedure  116.7      

      image intensifier 39.3 44.3 

 simple procedure  66.7  

Tsapaki et al. [43] 

 flat panel 27.7 51.1 

 medium procedure  96.4      
Padovani 

 et al. [60] 

 complex procedure  132.7   image intensifier 30 45 

     

Tsapaki et al. [44] 

 flat panel 31 48 

cardiologist controlled radiation exposure 15.6       

 radiographer controlled radiation 

exposure 
17.3    image intensifier 31.1 52 

cardiologist grade: first operator 13.6   

Traini et al. [47] 

 flat panel 33.4 66.9 

Arthur  

et al. [31] 

cardiologist grade: assistant 20.8       

         

 dose level A (lowest) 5.97     EF RFA 

 dose level B 6.73   standard dose 27.17 74.77 

 dose level C 8.11   
Davies et al. [73] 

 low dose 3.55 11.62 

Kuon et al. 

[94] 

 dose level D (highest) 8.9       
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systems produce images of higher quality with lower 
entrance dose rates than image intensifier systems and thus 
dose reduction with flat panel systems is possible. However 
in clinical practise the final performance of flat panel 
systems in terms of patient dose could give opposite results. 
Davies et al. [73] studied patient dose levels before and after 
the introduction of a dose reduction regime in EF and RFA 
procedures and found a considerable overall reduction in 
DAP. The results of these studies are tabulated in Table 5. 

 An interesting issue regarding patient dosimetry is the 
contribution of fluoroscopy and image acquisition in total 
patient exposure. A number of studies report separate DAP 
values for fluoroscopy and fluorography during CA and PCI 
procedures [35, 62, 63, 96]. Mean DAP for fluoroscopy and 
image acquisition calculated from the values reported in 
these studies is shown in Fig. (4). In both procedures image 
acquisition contributes more in patient exposure although 
this is more profound in CA. Therefore minimization of 
fluorography would potentially lead to considerable patient 
dose reduction. 

 Another interesting issue is the comparison of patient 
radiation doses during non-invasive examinations with 

patient radiation doses during conventional coronary 
angiography. Multi-slice computed tomography (MSCT) 
coronary angiography is currently considered as a promising 
non-invasive alternative to conventional angiography due to 
recent advantages in spatial and especially temporal 
resolution of the technique [97, 98]. However, radiation dose 
is a major concern for MSCT coronary angiography, 
especially in cases of repeated examinations or in particular 
subgroups of patients (for example young female patients) 
[99]. Some investigators have compared radiation dose 
exposure during MSCT and conventional coronary 

angiography. The results are tabulated in Table 6. 

 All investigators conclude that mean effective dose for 
MSCT coronary angiography is significantly higher than that 
of conventional angiography. The organs receiving the 
highest equivalent doses in MSCT coronary angiography are 
the female breasts, lungs, liver and oesophagus [78]. Thus as 
MSCT cardiac scanners are becoming increasingly available, 
operators must be aware of the radiation doses, the factors 
that affect it and the importance of dose reduction 
techniques.  

 

 

Fig. (4). Contribution to total DAP of fluoroscopy and image acquisition during coronary angiography (CA) and percutaneous coronary 

intervention (PCI). 
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Risk to Patients 

 Invasive cardiology procedures provide great diagnostic 
and therapeutic benefit to patients but also subject them to 
considerable radiation exposure. On average, a coronary 
angiography corresponds to a radiation exposure to the 
patient of about 300 chest x-rays, while coronary stent 
implantation corresponds to 1000 chest x-rays and a 
radiofrequency ablation procedure up to 1500 chest x-rays 
[6, 101]. It is estimated that radiation induced cases of cancer 
per year in the UK is 280 cases per million of coronary 
angiographies whereas for CT scans, screening 
mammography and chest X-rays the cases of radiation 
induced cancer is 60, 8 and 1 cases per million examinations 
respectively [102]. In general, the justification of IC 
procedures is evident since they permit patients to avoid 
complicated invasive surgery which some might not tolerate 
due to factors of age or pathology [7]. Radiation is one of the 
many hazards to which a patient undergoing an IC procedure 
is exposed and it is generally accepted that the radiological 
risk, although high, will always be lower than other risks 
involved in the procedure [103, 104]. Nevertheless, radiation 
risk to patient must always be a matter of concern since in 
some complex procedures, patient skin doses can cross the 
threshold of deterministic effects whereas the increment of 
stochastic effects probability should also be taken into 
account, especially in young patients. 

 During a IC procedure the patient skin dose may 
occasionally exceed the threshold of 2Gy above which 
transient erythema and skin burns are observed [105]. In 
procedures where prolonged fluoroscopy time is used or 
when fluoroscopy is performed in a single projection the 
danger of large peak skin doses is increased. To avoid 
radiation skin injuries it is necessary to keep the exposure 
doses as low as can be reasonably achieved [106, 107], and it 
is recommended to monitor entrance surface doses. 
Unfortunately, real time maximum dose monitoring of the 
skin is difficult to assess in clinical practice since it is 
impossible to predict the site of maximum exposure before 
the intervention commences. In the absence of a direct 
measurement, conversion factors published in the literature 
may be used to establish peak skin dose from DAP values 
for CA and PCI [30, 46, 65]. Regarding CA, published 
conversion factors are 3,8 mGy/Gy·cm

2 
[65], 3,9 

mGy/Gy·cm
2
 [46] and 4.3 mGy/Gy·cm

2
 [108] whereas 

regarding PCI published conversion factors are 8.1 
mGy/Gy·cm

2
 [65], 8.7 mGy/Gy·cm

2 
[108] and 9.7 

mGy/Gy·cm
2 

[46]. 

 To assess the potential risk of stochastic effects such as 
cancer and leukaemia, the effective dose to the patient must 
be calculated [109]. Unfortunately, determining the effective 
dose in clinical practise is not straightforward, mainly 
because of the complexity of the x-ray beam geometry and 
field size, variations during the catheterization procedure, 
and the individual patient anatomy. However an excellent 
correlation between effective dose and DAP has been found 
based on phantom measurements and Monte Carlo 
simulations, indicating that using a simple conversion factor 
to estimate effective dose from DAP values is acceptable 
[49]. Published conversion factors are 0.183 mSv/ Gy·cm

2 

[22], 0.185 mSv/ Gy·cm
2 

[50], and 0.221 mSv/ Gy·cm
2 

[18]. 

Patient Dose Reduction 

 According to the ‘as low as reasonably achievable’ 
(ALARA) and optimization principles [2] it is necessary to 
minimize patient dose in order to outweigh the radiation risk 
by the benefit of the interventional procedure. Therefore 
efforts should be made to properly manage radiation 
exposure to the patient. The most evident approach in order 
to reduce patient dose is by minimizing the beam-on time 
both for fluoroscopy and acquisition [79]. This can be 
achieved through the practice of intermittent fluoroscopy 
(short bursts of beam-on time) rather than continuous 
fluoroscopy [110]. Radiation field should be minimized to 
include only the anatomic region of interest since proper 
collimation of the x-ray beam substantially decreases patient 
dose. The image intensifier should be positioned as close to 
the patient’s body as possible while the height of the table 
should be adjusted to keep the body of the patient as further 
away from the x-ray tube as possible [69]. Fluoroscopic 
systems providing pulsed-fluoroscopy mode are preferable 
since, compared to a non pulsed system, a system that pulses 
the beam at 12.5 frames/s can result to 80% less exposure 
[110]. The use of high-level control to improve image 
quality under specific circumstances by increasing the dose 
rate should be avoided as much as possible. The same 
applies for the use of magnification which also increases the 
dose received by the patient. On the contrary, last image 
hold, a feature which presents the last acquired fluoroscopic 
frame on the video monitor [79, 111], obviating the need for 
continuous fluoroscopy, reduces fluoroscopic time and 
should be used as much as possible. At cine mode, the lower 
setting of frames per second should be used whenever 
possible (e.g. 15 frames/s instead of 30 frames/s). During 
procedures that require long fluoroscopy time, if clinically 
feasible, changing the radiographic projection minimizes 
patient skin dose [79]. Inspection and quality control of both 

Table 6.  Comparison of Effective Dose Reported by Investigator Comparing Multislice Computed tomography Coronary 

Angiography (MSCT CA) with Conventional Coronary Angiography (CCA) 

Effective dose (mSv) 

MSCT CA CCA MSCT CA CCA Study Scanner 

patients without bypass grafts patients with bypass grafts 

Dill et al. [100] 16-slice 9.76±1.84 2.60±1.27 12.95±1.75 6.27±4.04 

Coles et al. [48] 16-slice 14.7±2.2 5.6±2.7     

Jabara et al. [98] 64-slice     14.1±3.8 9.0±2.7 
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the dose levels and the image quality of fluoroscopic 
equipment should be routinely contacted in order to assure 
optimum performance [69, 79]. Finally motivation and 
training of all laboratory personnel including radiographers 
and nursing staff and the overall efficiency of the 
catheterization laboratory contribute to patient dose 
reduction.  

CONCLUSION 

 Patient radiation doses vary widely among the different 
interventional cardiology procedures but also among 
published studies. Discrepancies of the derived results are 
patient-, procedure-, physician-, and fluoroscopic equipment-
related. Nevertheless, IC procedures can subject patients to 
considerable radiation doses and efforts to minimize patient 
exposure should always be undertaken. 
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