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Protein-ligand binding affinity is a key pharmacodynamic endpoint in drug discovery. Sole

reliance on experimental design, make, and test cycles is costly and time consuming,

providing an opportunity for computational methods to assist. Herein, we present results

comparing random forest and feed-forward neural network proteochemometric models

for their ability to predict pIC50 measurements for held out generic Bemis-Murcko

scaffolds. In addition, we assess the ability of conformal prediction to provide calibrated

prediction intervals in both a retrospective and semi-prospective test using the recently

released Grand Challenge 4 data set as an external test set. In total, random forest and

deep neural network proteochemometric models show quality retrospective performance

but suffer in the semi-prospective setting. However, the conformal predictor prediction

intervals prove to be well-calibrated both retrospectively and semi-prospectively showing

that they can be used to guide hit discovery and lead optimization campaigns.

Keywords: conformal prediction, proteochemometric, protein-ligand binding affinity, bemis-murcko scaffolding,

random forest, deep neural net (DNN)

INTRODUCTION

One of the most important phases of a drug discovery campaign is the discovery of a potent
inhibitor to a target driving the disease phenotype. Experimental design, make, test cycles seek to
optimize initial hits to lead compounds by optimizing the protein-ligand binding affinity. However,
this process is frequently slow and costly, adding to the large cost of drug discovery. As such,
computational methods that can accelerate this optimization phase by predicting protein-ligand
binding affinity values are readily sought. Fully atomistic simulation approaches model protein-
ligand binding physics through time integrating Newton’s equations of motion in molecular
dynamics simulations (Jorgensen and Thomas, 2008; Chodera et al., 2011; Mobley and Klimovich,
2012; Christ and Fox, 2014; Abel et al., 2017; Cournia et al., 2017; Mobley and Gilson, 2017).
However, molecular dynamics approaches can suffer from large computational costs, insufficient
sampling, and variably accurate force fields. As an alternative, quantitative structure activity
modeling (QSAR) uses machine learning (ML) as a stand in for physically rigorous simulations
by seeking to model statistical correlations between ligand information and protein-ligand binding
affinity (Cherkasov et al., 2014). Traditional QSAR models do not model the protein directly, and
hence do not allow learning from related protein family members during training. In contrast
proteochemometric (PCM) models combine both protein and ligand information to create a
composite feature vector that allows the model to learn mappings between all protein-ligand
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pairs in a training set (Cortés-Ciriano et al., 2015a). PCM
models have been applied to a diverse number of protein
families including G-protein coupled receptors (Gao et al.,
2013), HDACs (Tresadern et al., 2017), kinases (Subramanian
et al., 2013), Cytochrome P450s, HIV proteases (Lapins et al.,
2008), Poly(ADP-ribose) polymerases (Cortés-Ciriano et al.,
2015b), and bromodomains (Giblin et al., 2018). Recently, PCM
and multi-task neural networks have also been benchmarked
using ChEMBL data where the utility of PCM modeling for
binder/non-binder classification was demonstrated (Lenselink
et al., 2017).

We first compare the performance of random forest (RF)
and feed-forward neural network (FFN) PCM models trained
using the recently released ChEMBL25 data set (Gaulton et al.,
2017) with full length protein sequence features on a generic
Bemis-Murcko scaffold split. It is shown that the RF and FFN
models achieve comparable overall performance suggesting that
both models approach the upper levels of performance possible
given the heterogeneous IC50 measurements in ChEMBL25
(Kalliokoski et al., 2013). Feature analysis shows that both
models leverage the protein sequence features extensively, albeit
in different ways. We demonstrate that the optimization of
entity embeddings for ECFP6 categorical variables allows FFN
models to perform feature engineering in a data driven manner
(Guo and Berkhahn, 2016). In addition, we compare the validity
and efficiency of regression conformal predictors first in a
retrospective test using ChEMBL25 data and subsequently in
semi-prospective test using the recent Drug Design Data (D3R)
Grand Challenge 4 (GC4) data set (Parks et al., 2019a). The D3R
issues blinded prediction challenges to the computer aided drug
design (CADD) community to assess method performance in
truly blinded scenarios. Although the data has been since released
to the community, we use the data in the most recent GC4
(Parks et al., 2019a) data set as a test set external to the data in
ChEMBL25 for what we refer to as a semi-prospective test. These
results show that the performance of both models suffer on the
GC4 dataset relative to the ChEMBL25 validation set. However,
the performance is in line with the top performing ML models in
prior D3R Grand Challenges (Gathiaka et al., 2016; Gaieb et al.,
2018, 2019; Parks et al., 2019a). Finally, the prediction intervals
from the conformal predictors are shown to be valid on the
GC4 data set, demonstrating the validity of conformal prediction
confidence intervals on a high-quality external test set.

MATERIALS AND METHODS

Data Set Source and Preparation
The recently released ChEMBL25 (Gaulton et al., 2017) database
was used for ML model training. Only molecules with specified
canonical SMILES strings, standard units of nM, no potential
duplicates, confidence score of 9, activity comment not equal
to inconclusive, and against protein targets with specified gene
ids, and protein sequences from Swiss-Prot were kept. Ligands
with PAINS patterns identified via RDKit1 were removed. Only
ligands with a molecular weight in the range of 75 to 800

1RDKit Avaliable Online at: https://www.rdkit.org/ (accessed August 13, 2019).

Da were retained. We replaced multiple IC50 values for the
same protein-ligand pair by the median IC50 value. SMILES
strings were standardized and canonicalized using the charge
parent function inMolVS2. SMILES strings were either featurized
using 4,096 bit length ECFP6 fingerprints, molecular weight,
topological surface area, number of hydrogen donors, number of
hydrogen acceptors, LogP, heavy atom count, number of rotatable
bonds, and ring count with RDKit or CDDD descriptors (Winter
et al., 2019). Protein sequences were featurized using amino acid,
dipeptide, composition, transition, and distribution descriptors.
Ligand and protein descriptors were then concatenated to create
the full feature vector. Non ECFP6 bit values were scaled using
the standard scaler function in Scikit-learn (Pedregosa et al.,
2011). All IC50 values were converted to pIC50 values and scaled
using the standard scaler function. The final data set contained
302,325 data points consisting of 213,502 unique SMILES strings
across 940 unique UniProt IDs.

Machine Learning Model Training and
Conformal Prediction
RF models were trained using the Scikit-learn (Pedregosa et al.,
2011) library via a grid search hyperparameter optimization
strategy. The following hyperparameter values were explored:
100, 500, and 1,000 for the number of estimators; sqrt, log2, 0.3,
and 0.5 for max features; and 1,3,5,10,25 for min samples leaf.
FFN models were trained using Fast.ai (Howard and Gugger,
2020). We investigated treating ECFP6 bit vectors as categorical
variables whose embeddings were optimized via backpropagation
during model training (Guo and Berkhahn, 2016). A 3-layer
model was employed with 2,000 nodes in the first layer, 1,000
in the second, and 500 in the third. Linear layer outputs were
then passed through an activation and then a batch norm and
dropout layer. A ReLU function were used for activations, with
the exception of the last layer, where a Sigmoid function was
used. This was done to facilitate training by scaling outputs from
the last linear layer to a range of values between the max and
minimum scaled pIC50 values in the training set multiplied by
a scaling factor of 1.2. Weight decay was set to 0.01. Dropout
of 0.25 was used in each layer, except for the embedding layers,
where a dropout of 0.01 was used. All other Fast.ai tabular
model defaults were used. The FFN model was trained with
the fit_one_cycle (Smith, 2018) method. All models were then
analyzed using mean squared error (MSE), Pearson correlation
coefficient, and Kendall’s Tau metrics.

Rigorous quantification of model confidence is essential in
fields such as drug discovery where chemical space is essentially
infinitely vast and models are trained on only a small fraction
of possible compounds. Conformal prediction is a state of the
art method to provide confidence intervals, i.e., a region where
the true value is predicted to be, and whose size is determined
in part by a user defined confidence level (Shafer and Vovk,
2008; Norinder et al., 2014; Cortés-Ciriano et al., 2015a; Sun
et al., 2017; Svensson et al., 2017). Here, we define validity as

2MolVS: Molecule Validation and Standardization —MolVS 0.1.1 documentation
Avaliable Online at: https://molvs.readthedocs.io/en/latest/ (accessed August 13,
2019).
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the frequency at which the confidence interval contains the true
value. For example, the 95% confidence prediction intervals for a
well-calibrated conformal predictor would contain the true value
95% of the time. The efficiency of a conformal predictor is a
reflection of the size of the confidence internals produced. Here,
a model that produces smaller confidence intervals than another
model would be considered to have higher efficiency. These two
variables, validity and efficiency, quantify the performance of
conformal prediction models. Conformal prediction requires a
way to gauge the similarity of a new piece of data to training data.
Recent literature has shown that the standard deviation across
the trees of a RF model (Svensson et al., 2018), and the use of
test-time dropout in the case of FFNmodels (Cortés-Ciriano and
Bender, 2019a), provide valid and efficient conformal predictors.
However, these methods have not been analyzed in prospective
settings extensively. We use these methods to assess non-
conformity herein. For an overview of conformal prediction in
the field of drug discovery, we direct the reader to a recent review
(Cortés-Ciriano and Bender, 2019b).

It has been shown that overly simplistic (i.e., random)
training/validation/test splits lead to overestimates in the
accuracy of machine learning models (Wallach and Heifets,
2018). This is one explanation for the discrepancy between
performance metrics seen in retrospective settings and those seen
in true prospective tests (Gathiaka et al., 2016; Gaieb et al., 2018,
2019; Parks et al., 2019a). In an attempt to mitigate this, we
elected to perform hyperparameter optimization using an 80/20
generic Bemis-Murcko scaffold split. This leads to amore difficult
split, as the validation set does not contain any compounds with
a generic Bemis-Murcko scaffold already present in the training
set. Optimal hyperparameters and performance metrics on the
ChEMBL25 data set for all models were first determined with
this split. In all subsequent models, these sets of hyperparameters
were using for training. The training set was then further divided
using a random 80/20 split into a new training and calibration
set. Models were then retrained and the calibration set was used
to calibrate the confidence intervals of the conformal predictors.
These models were used to assess the validity and efficiency
of the conformal predictors on the ChEMBL25 validation data
set. Finally, the entire ChEMBL25 dataset was randomly split
into another 80/20 training and calibration set. All models were
again trained and calibrated. These final models were used to
assess performance on the external GC4 dataset in a semi-
prospective test.

RESULTS

Retrospective Analysis
In Table 1 we provide the performance metrics and model
architectures for the best performing models across the full
validation set.

Table 1 demonstrates that both model types (RF/FFN)
perform equally well on the applied generic Bemis-Murcko
scaffold split. We found the RF model with ECFP6 fingerprints,
and the FFN model with entity embeddings to be the best
performing models. The following sets of hyperparameters were
found to be optimal for the RF models: {n_estimators=1000,

TABLE 1 | ChEMBL25 validation set performance metrics for both the RF and

FFN models as well as the SMILES featurization method used.

Model type MSE (scaled

pIC50)

Pearson

correlation

Kendall’s

Tau

RF (ECFP6) 0.38 0.80 0.61

RF (CDDD) 0.47 0.75 0.55

FFN (entity embeddings) 0.39 0.79 0.60

FFN (ECFP6) 0.41 0.78 0.58

FFN (CDDD) 0.42 0.78 0.58

TABLE 2 | Performance metrics averaged across individual UniProt IDs.

Model type MSE (scaled pIC50) Pearson correlation Kendall’s Tau

RF 0.37 +/– 0.17 0.65 +/– 0.18 0.46 +/– 0.15

FFN 0.38 +/– 0.15 0.61 +/– 0.22 0.43 +/– 0.17

max_features=sqrt, min_samples_leaf=1} using ECFP6
fingerprints, and {n_estimators=1000, max_features=log2,
min_samples_leaf=1} using CDDD features. The scaled pIC50
MSE values in Table 1 translate to a root mean squared error
of approximately 0.8 pIC50 units. These values are in the range
of expected errors for ML models trained on heterogeneous
ChEMBL25 data (Kalliokoski et al., 2013), and are in agreement
with prior literature that also demonstrated that RF and FFN
models approached the upper limit of overall accuracy across
the dataset, given the heterogeneous IC50 measurements in
ChEMBL25 (Cortés-Ciriano and Bender, 2019a).

Ensemble averaging is a strategy to improve prediction
performance by averaging the individual predictions of multiple
models. This wisdom of crowd approach works best when
individual models are uncorrelated, allowing errors to be
averaged out. The residuals of the RF and FFN model
are correlated with an R2 metric of 0.88. As such, only a
modest improvement at best is noted when the FFN and
RF model predictions are averaged to yield the following
performance metrics: 0.36 MSE, 0.81 Pearson correlation, and
0.61 Kendall’s Tau.

The number of data points per gene is heterogeneous
in ChEMBL25, allowing a few genes to contribute more to
performance metrics than others. To remove this bias, we
calculated performance metrics across each individual gene with
more than 100 data points in the validation set (Table 2). Analysis
of Table 2 shows that model performances vary moderately
across the various genes with metric fluctuations (standard
deviation/value) on the order of 30–50%. We found the amount
of training data for a given UniProt ID to be a poor predictor
for future successful predictions. We calculated the Kendall’s Tau
correlation between amount of data in the training set and the
MSEs for each gene and found no correlation (tau = 0.05 both
the RF and FFN model). Performance is spread across protein
families as well, with the top 30 performing UniProt IDs for
the RF model containing proteins from the kinase, protease, and
RNA polymerase families. This suggests that chemical similarity
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FIGURE 1 | (A) ChEMBL25 pIC50 probability distribution, (B) validation set scaled pIC50 vs. RF predictions, (C) validation set scaled pIC50 vs. RF prediction squared

error, and (D) validation set scaled pIC50 vs. FFN prediction squared error.

and bias between the training and validation set are the most
import variables determining performance.

Analysis of the training distribution of the pIC50 values
shows that a strong amount of publication bias exists in the
ChEMBL25 dataset (Figure 1A). Active compounds are over
represented as shown by the average pIC50 value of the whole
distribution being 6.57. In true prospective unbiased chemical
library screens, it is common for 95% of the compounds to have
pIC50 < 5 (i.e., non-binders). This demonstrates that the pIC50
predictions from the ML models herein should be used with
caution for prospective virtual screening of chemical libraries,
as large test-time distribution shift is certain. In addition, the
distribution of training pIC50s is non-uniform (Figure 1A). This
can lead to heterogeneous model performance across differing
ranges of pIC50 values. For example, the RF model predictions
correlate well with the measured values for the given split overall
(Figure 1B). However, Figures 1C,D demonstrates the accuracy
of both the RF and FFN models suffer in the tail of the pIC50
distribution, with quality performance obtained in a range of+/–
1 standard deviation from the mean.

Feature importance analysis allows us to determine whether
the protein sequence component of the feature vector is pertinent
to the model performance. This analysis indicates that the feature
importance for the RF model plateaus at approximately the
1500th ranked feature out of the total 4,104 features (Figure 2A).

All 567 protein sequence features, and all 8 physiochemical
property features, fall in the top 1500 features. For the FFN
model, the feature importance plateaus at approximately the
2000th ranked feature out of the total 4,104 features for the
FFN model (Figure 2B). The top 2,000 features consist of
268 of 567 protein sequence features, 1,725 of 4,096 Morgan
fingerprint bits, and 7 of 8 physiochemical properties. This
demonstrates that both model types rank protein sequence
features among the most important features. Both models find
the physiochemical properties features to be the most import
features overall, including MW. The Kendall’s Tau ranking of the
validation set scaled pIC50 values using solely MW alone is 0.15
demonstrating the trend of lead optimization campaigns to result
in increasingly larger MW molecules. To further interrogate
the protein sequence features, new training and validation sets
were generated via a random UniProt ID split and models were
retrained. This resulted in a much tougher split with the FFNs
being the clearly best performing model by MSE (Table 3). This
suggests that the FFN models are able to leverage the protein
sequence features more effectively.

Molecular fingerprints are themost commonly used technique
to encode molecules for ML model training. This technique
hashes atomic neighborhoods for each atom to bits to represent
molecules with 1D dimensional vectors. This approach can
suffer from bit collision. In addition, there is no meaning of
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FIGURE 2 | (A) feature rank vs. feature importance for the (A) RF model and (B) FFN model. In (B), the y-axis was capped at 0.001 to maintain resolution.

TABLE 3 | ChEMBL25 validation set performance metrics for both the RF and

FFN models as well as the SMILES featurization method used.

Model type MSE (scaled

pIC50)

Pearson

correlation

Kendall’s

Tau

RF (ECFP6) 0.96 0.41 0.27

RF (CDDD) 0.89 0.46 0.31

FFN (entity embeddings) 0.80 0.51 0.35

FFN (ECFP6) 0.79 0.49 0.34

FFN (CDDD) 0.78 0.48 0.33

proximity of bits (Feinberg et al., 2019). As an alternative,
prior literature has sought to extract features directly from
images (Ragoza et al., 2017; Ciriano and Bender, 2018; Jiménez
et al., 2018; Parks et al., 2019b) or graphs (Kearnes et al.,
2016; Kipf and Welling, 2017; Feinberg et al., 2019; Torng and
Altman, 2019) using convolution neural networks. Here, we
pursue a complementary approach where we map categorical
variables into Euclidean space using entity embeddings (Guo and
Berkhahn, 2016). Entity embeddings are sets of weights in the
neural network that represent possible categories of a feature.
These weights are then optimized by the neural network during
training. Hence, each category (0/1) of each bit in the Morgan
fingerprint is now represented by a unique set of weights in the
neural network. This allows the network to learn relationships
between chemical fragments in a data driven manner. Our results
demonstrate that the FFN learns to group Morgan fingerprint
bits intomultiple clusters through the optimization of embedding
weights (Figure 3) providing a novel compound fingerprint.
For the generic Murcko scaffold split used herein, the use of
entity embeddings led to a 5% reduction in MSE for the FFN
model. However, no performance variation was seen between
the CDDD/ECFP6/and entity embedding features for the FFN
models on the random protein split. Future work will be needed
to interrogate the utility of the entity embeddings as a supplement
to the tradition ECFP fingerprint.

The ChEMBL25 validation set was also used to assess the
retrospective performance of conformal prediction. Analysis of
the RF prediction interval sizes shows that they span a larger
range of values than those from the FFN (Figure 4A), and hence

FIGURE 3 | TSNE plot of the FFN entity embeddings for the category 1

variables of the morgan fingerprint vector. Category 1 was selected for plotting

as this denotes the presence of a chemical fragment. The category 1 weights

of the 0, 100, 1,000, 2,000, 2,500, and 4,050 bits are plotted in black to

illustrate how the FFN model groups bits into distinct clusters.

are less efficient. However, the RF model has better validities
than the FFN model (Figure 4B), but both models still achieve
quality validities overall. Interestingly, there is very little variation
in the size of the FFN confidence intervals across all predictions
on the validation set (Figure 4A) but this is still sufficient for
the FFN to generate valid prediction intervals (Figure 4B). In
total, conformal prediction is able to accurately gauge both RF
and FFNmodel confidence for predictions on held-out validation
data, in agreement with prior literature (Svensson et al., 2018;
Cortés-Ciriano and Bender, 2019a).

Semi-prospective Test
The true test of model performance is a prospective one as this
is how ML models are used in practice. Here, we use the recently
released GC4 dataset (Parks et al., 2019a) as an external, semi-
prospective test for the best performing models [RF (ECFP6) and
FFN (entity embeddings)] from the generic Murcko split. GC4
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FIGURE 4 | (A) Box-whisker plot of the 95% confidence interval (CI) sizes for both the RF and FFN model computed on the validation set, and (B) theoretical vs.

computed error rates (1-validities) on the validation set for varying error thresholds (1-confidence threshold).

TABLE 4 | GC4 BACE-1 and CatS performance metrics.

Model BACE-1

Pearson

correlation

BACE-1

Kendall’s

Tau

CatS

Pearson

correlation

CatS

Kendall’s

Tau

RF 0.25 (0.71) 0.19 (0.51) 0.25 (0.68) 0.38 (0.49)

FFN 0.5 (0.77) 0.29 (0.59) 0.19 (0.8) 0.26 (0.61)

The corresponding performance metrics on the ChEMBL25 validation sets for BACE-1

and CatS are contained in parenthesis for comparison.

provided IC50 data to two targets: Cathepsin S (CatS), and Beta-
amyloid secretase 1 (BACE-1). Analysis of Table 4 shows that
the ranking of model performances is target dependent, with the
FFN performing best for BACE-1 and the RF model performing
best for CatS. By comparing the metrics for both models on
the same targets in the retrospective validation set, we see that
both models suffer heavily in the prospective setting (Table 4).
This is in agreement with prior literature showing data set split
bias inflates model performance metrics (Wallach and Heifets,
2018), despite our attempts to mitigate this via a generic Bemis-
Murcko scaffold split. However, these metrics are in line with
the performance seen during GC4 with ML models (Parks et al.,
2019a). Based on the Kendall’s Tau value of the RF model for
the CatS dataset, the RF model would have ranked in the top 10
performing methods for the CatS affinity prediction challenge.
Similarly, the FFN would have placed in the top 10 for the
BACE-1 affinity prediction challenge.

In addition to the model predictions, this semi-prospective
test allows us to analyze the validity and efficiency of the
conformal prediction intervals for both the RF and FFN. Both
models achieve excellent validities on the CatS data set. Here,
the prediction intervals contained the true measured value 95
and 97% of the time for the RF/FFN models, respectively. The
validities of both models suffer slightly on the BACE-1 data set
relative to CatS, but overall still achieve excellent performance
with 81 and 80% validities. As a possible explanation for the
validity performance degradation between CatS and BACE1,
we note that the distribution of nearest neighbor Tanimoto

coefficients demonstrates that the CatS GC4 compounds are
more similar to the ChEMBL25 training data, and hence
providing an easier test for the conformal predictor, than
the BACE1 GC4 compounds (Supplementary Figure 1). For
both CatS and BACE-1, we find the FFN provides more
efficient prediction intervals (Figures 5A,B). In total, these
results demonstrate the ability of the conformal predictors to
generate valid prediction intervals in a semi-prospective setting.

We next sought to compare the performance of the PCM
models against a standard QSAR target model trained using
only CatS or BACE-1 ChEMBL25 data, respectively. Here, a
RF QSAR model achieved approximately the same performance
metrics on both targets as the RF PCM model with a 0.26
Pearson Correlation and 0.37 Kendall’s Tau for CatS and 0.26
Pearson Correlation and 0.18 Kendall’s Tau for BACE-1. This
indicates that the RF model may benefit from additional protein
sequence descriptors such as those from unsupervised training
(Kim et al., 2019). The conformal prediction validities remained
approximately equivalent at 93% on the CatS data set and
83% on the BACE-1 dataset. However, the data augmentation
from PCM training improved the efficiencies of the confidence
intervals relative to those from the QSAR RF model for BACE-
1 (Figures 5A,C). The FFN QSAR model performance degraded
relative to the PCM model with a 0.23 Pearson Correlation and
0.25 Kendall’s Tau for CatS and a 0.46 Pearson Correlation and
0.22 Kendall’s Tau for BACE-1. This suggests that the FFN is
able to leverage the information of other protein sequences in
the data set more effectively than the RF model during training.
The validities of the FFN QSAR conformal predictor for BACE-1
degraded to 74%, but remained roughly the same at 98% for CatS.
We find the PCM FFN model confidence interval to be more
efficient than those of the QSAR FFNmodel (Figures 5B,D). This
is most vividly captured in the case of CatS.

Finally, we sought to test the impact of deleting all CatS
and BACE1 data and retraining the models using the same
procedure. As shown in Supplementary Table 1, this had the
expected negative impact on performancemetrics for bothmodel
types with the FFN performance suffering the least. The only
exception was the Pearson’s correlation between FFN model
predictions and target values for CatS where the metric remained
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FIGURE 5 | Box-whisker plots of the 95% confidence interval (CI) sizes (scaled pIC50) for CatS/BACE-1 predictions for (A) RF PCM model, (B) PCM FFN model, (C)

QSAR RF model, and (D) QSAR FFN model.

statistically equivalent. Notably, the Kendall’s Tau ranking of
model predictions is now only as good as a LogP ranking of the
data for both model types. However, the conformal predictor
remains well-calibrated with a 99 and 80% validity for the RF
model, and 80 and 72% validity for the FFN model for CatS and
BACE1, respectively. Supplementary Figure 2 demonstrates that
there is a marked reduction in the efficiency of the prediction
intervals from the RF model. However, the FFN prediction
interval efficiencies only degrade slightly. Despite the reduction
in the performance of the point prediction values, we conclude
conformal prediction remains an impactful method to gauge
model confidence even on never before seen protein targets.

CONCLUSION

Protein-ligand binding affinity is a key variable during hit
discovery and lead optimization in drug discovery. Experimental
design, make, test cycles that seek to optimize this property
are costly and time consuming, and hence limit the rate of
entry of novel therapies to the clinic. Computational methods
seek to accelerate these cycles by producing reliable protein-
ligand binding affinity predictions. Traditional QSAR models
train using only chemical compound data for a specific target.
Alternatively, PCM models featurize both protein sequence and
ligand to create the final feature vector. This allowsMLmodels to
be trained on protein-ligand binding affinity data from multiple

proteins at once, hence augmenting the size of the training set,
and potentially allowing the model to learn from related proteins
(Lapins et al., 2008; Gao et al., 2013; Subramanian et al., 2013;
Cortés-Ciriano et al., 2015a,b; Tresadern et al., 2017; Giblin et al.,
2018).

Here we first analyze the performance of PCM models
trained using the most recent ChEMBL25 database (Gaulton
et al., 2017). The results above show that a RF and FFN
model achieve comparable performance on the generic Bemis-
Murcko scaffold split of ChEMBL25 data. The root mean
squared error of the models were approximately 0.8 pIC50 units
suggesting both models are approaching the limit of accuracy
given the heterogenous IC50 measurements in ChEMBL25
(Kalliokoski et al., 2013). Feature importance analysis of both
models demonstrated that protein sequence features were among
the most important features overall. We show that entity
embeddings for the categorical ECFP6 Morgan fingerprints
can be optimized during FFN training and provide quality
performance for drug discovery applications (Guo and Berkhahn,
2016). This allows for feature engineering in a data driven
manner and provides an alternative to other methods that seek
to derive novel chemical features using convolutional (Ragoza
et al., 2017; Ciriano and Bender, 2018; Jiménez et al., 2018;
Parks et al., 2019b) and graph-convolutional neural networks
(Kearnes et al., 2016; Kipf andWelling, 2017; Torng and Altman,
2019).
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Finally, we analyze the utility of conformal prediction
to provide prediction intervals to assess model confidence.
Conformal prediction was implemented using the standard
deviation across the trees of the RF model and Bayesian
dropout (Cortés-Ciriano and Bender, 2019a) for the FFN model.
Both models generated well-calibrated and efficient confidence
intervals on the ChEMBL25 validation set. In addition, we
assessed the performance of the RF model in a semi-prospective
setting using the recently released GC4 CatS and BACE-1
datasets. Here, we find that performance of the models is in
line with the top performing machine learning methods from
previous Grand Challenges (Gathiaka et al., 2016; Gaieb et al.,
2018, 2019; Parks et al., 2019a), but significantly below the
performance on the original validation set. This occurred despite
the use of a generic Bemis-Murcko scaffold split to assess model
performance retrospectively. However, the prediction intervals
from the conformal predictor on the GC4 dataset are well-
calibrated both retrospectively and semi-prospectively and thus
can serve as a reliable tool to mitigate false positives in hit
discovery campaigns and aid compound selection for synthesis
during lead optimization.
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