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Abstract

Obesity is a multifactorial disease caused by complex interactions between genes and die-

tary factors. Salt-rich diet is related to the development and progression of several chronic

diseases including obesity. However, the molecular basis of how salt sensitivity genes

(SSG) contribute to adiposity in obesity patients remains unexplored. In this study, we used

the microarray expression data of visceral adipose tissue samples and constructed a com-

plex protein-interaction network of salt sensitivity genes and their co-expressed genes to

trace the molecular pathways connected to obesity. The Salt Sensitivity Protein Interaction

Network (SSPIN) of 2691 differentially expressed genes and their 15474 interactions has

shown that adipose tissues are enriched with the expression of 23 SSGs, 16 hubs and 84

bottlenecks (p = 2.52 x 10–16) involved in diverse molecular pathways connected to adipos-

ity. Fifteen of these 23 SSGs along with 8 other SSGs showed a co-expression with

enriched obesity-related genes (r� 0.8). These SSGs and their co-expression partners are

involved in diverse metabolic pathways including adipogenesis, adipocytokine signaling

pathway, renin-angiotensin system, etc. This study concludes that SSGs could act as

molecular signatures for tracing the basis of adipogenesis among obese patients. Integrated

network centered methods may accelerate the identification of new molecular targets from

the complex obesity genomics data.

Introduction

Obesity, an excessive body fat accumulation in individuals acts as a major risk factor for the

development of diverse chronic diseases like impaired insulin metabolism, glycemic
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abnormalities, hypertension and cardiovascular diseases in future. Obesity, owing to its com-

plex multifactorial disease nature is not only challenging the molecular scientists to decode its

molecular basis but also the clinicians who are involved in treating, preventing and disease

management. Approximately 30% of the world population is either overweight or obese [1]. So

far, the specific molecular and cellular mechanisms through which environmental factors

increase the risk of developing obesity in genetically susceptible individuals still remains to be

a mystery. The chronic low inflammation in different tissues is one of the characteristic fea-

tures of obesity [2]. Particularly, chronic inflammatory reactions which takes place in adipose

tissues contribute to the obesity associated insulin insensitivity. Adipose tissue plays an impor-

tant role in the development of metabolic diseases due to dysregulated discharge of adipocyto-

kines from adipocytes in visceral fat of obese individuals. This will subsequently induce insulin

resistance condition in muscles and liver. The faulty insulin sensitivity of adipose tissues, con-

nects the obesity with other chronic diseases like diabetes, hyperlipidemia, arthritis, hyperten-

sion, cardiovascular disease, ischemic stroke, hyperglycemia and different types of cancer [3]

[4].

The importance of excess salt intake in the pathogenesis of metabolic diseases is widely rec-

ognized. Salt sensitivity is a physiological trait, in which the changes in salt intake parallel the

changes in blood pressure [5]. The gene expression status of salt sensitivity genes (SSGs) in adi-

pose tissues is not yet well explored. In the present study, we focused on SSGs expressed in adi-

pose tissues to figure their influential role in the pathogenesis of obesity. We considered genes

from renin-angiotensin system pathway which maintains the homeostasis of salt and body flu-

ids, and regulate the blood pressure [6]. In addition, expression of renin-angiotensin system in

adipose tissue is involved in the regulation of triglyceride accumulation, adipocyte formation,

glucose metabolism, lipolysis, and the initiation of the adverse metabolic consequences of obe-

sity [7], [8]. Therefore, in order to identify the candidate genes from SSGs and their molecular

signature networks connected to the pathogenesis of obesity, the gene expression datasets col-

lected from visceral adipose tissues were analyzed by knowledge based systemic investigations

and statistical methods. We used different statistical parameters like graph theory to pick up

biomarkers from the gene expression data. We also used gene-gene correlation, which relies

on the fact that disease candidate genes showing a similar expression pattern are more likely to

interact with one another for their biological functioning[9]. Our network biology integrated

investigation will offer novel association with potential biological comprehensions and sup-

ports future translational assessment on SSGs and obesity.

Materials and methods

Gene expression dataset

The microarray generated gene expression dataset with the reference ID of GSE88837 was col-

lected from GEO (Gene Expression Omnibus) database [10]. This gene expression data is gen-

erated on Affymetrix microarray platform using the total RNA extracted from human visceral

adipose tissue of 16 overweight woman adolescent samples (BMI > 25) and 14 lean adolescent

women (BMI< 25). Complete information about the individuals and testing methods, can be

found in S1 Table.

Normalization of gene expression data

Gene expression data analysis of the samples were implemented by means of R packages [11]

[12]. For the standardization and noise reduction in the probe data, CEL files were incorpo-

rated into R package, Affy, and the unprocessed signal intensity values of each gene expression

probe sets were standardized with help of a statistical algorithm called as RMA (Robust
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Multiarray Average). This RMA algorithm performs the normalization of raw intensity data

by generating a matrix of gene expression data whose background is corrected and log2 con-

version, and then quantile normalization was performed [12]. The standardized samples were

then quantitatively categorized as normal (control) and obese (disease) sets. The statistical dif-

ference between differentially expressed genes (DEGs) was computed using unpaired t-test

measure among healthy and obese samples [13]. For examine the statistical differences in

DEGs, the false discovery rate of Benjamini and Hochberg with a p value of 0.05 was con-

ducted[14].

Building network of proteinprotein interaction

Bisogenet, a cytoscape plugin, was used to derive associations between the DEGs obtained

from the profiles of expression. Bisogenet finds significant gene interactions from high-perfor-

mance experiments and deposited literature data in DIP (Database of Interacting Proteins),

BIND (Biomolecular Interaction Network Database), BioGRID (Biological General Repository

for Interaction Datasets), MINT (The Molecular Interaction database), HPRD (Human Pro-

tein Reference Database), and IntAct databases [13, 15–19].

Construction of subnetwork

The complex interactome Protein Interaction Network (PIN) was rescaled to a significant sub-

network of Salt Sensitivity Protein Interaction Network (SSPIN) by following admitted notions

in the network biology. From the Protein Interaction Network, we extracted genes that belong

to (a) hubs based on degree centrality (DC), (b) betweenness centrality (BC) based bottlenecks

(c) salt sensitivity genes. The PIN created from Bisogenet was optimized and imported to

Cytoscape 3.2.1 in order to represent and measure the different parameters like DC and BC

connected to network centrality of each individual protein in the biological network [20]. The

Network Analyzer [21] Cytoscape plugin was deployed to monitor the network’s local and

global centrality parameters [14, 22–24].

Selection of hub proteins

DC of a gene is the number of partners that are connected to that specific gene. Genes which

shows higher DC in any given biological network will possess many interacting partners[25].

In PIN, genes having higher DC corresponds to essential genes. For identifying the hubs, we

followed the hub classification approach, which was previously described by Rakshit et al.,

[26]. The cut-off scores used for DC, while selecting the hub protein is described as:

Hubs ¼ AvgðDCÞ þ ½2� SDðDCÞ� ðFormula 1Þ

where Avg is the average DC of significantly expressed genes in the PIN and SD denotes the

standard deviation values [26].

Identification of bottlenecks

The higher DC is in correspondence to biologically essential genes, but DC is unable to quan-

tify significance of any gene in a network [27]. Based on the theory of the protein’s local prop-

erty, DC does not assess the global value of the protein in the network. There could be several

other key indicators that show the importance of a protein in the network based on its global

significance. A global BC measure was therefore implemented to determine the characteristics

of any query gene at the entire interactome level [28]. BC is measured by applying following
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formula:

BC nð Þ ¼
P

s6¼n6¼t
sstðnÞ
sst

� �

ðFormula 2Þ

where ‘s’ and ‘t’ are the network nodes, other than ‘n’ and σst(n) is the number of shortest paths

from s to t that ‘n’ lies upon [29]. The significantly expressed genes falling in top 25% are

regarded under bottleneck category using the node betweenness distribution.

Salt sensitivity genes

The genes involved in the pathway of renin angiotensin aldosterone system were collected as

they serve as chief component in the regulation of salt and water balance of the body [30]. We

also collected salt sensitivity genes from a detailed literature survey [31] [5] [32] [33]. In total,

we obtained 47 SSG as represented in S2 Table.

Mapping of weighted gene-gene correlations

The map detailing gene-gene correlations was created on the basis of the algorithm known as

the Pearson correlation across the entire gene set in the SSPIN. The “r” value indicating the cor-

relation between gene pairs in the expression data was generated with help of Pearson’s corre-

lation coefficient (PCC) method. The formula used for calculating PCC for gene pairs is

described in below given Formula 3.

PCC rð Þ ¼

Pn
i¼1
ðxi � xÞðyi � yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � xÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðyi � yÞ

2
q ðFormula 3Þ

where x and y indicates average of the expression values of two genes in the samples,

respectively.

Functional enrichment analysis

Functional enrichment analysis validates the physiological importance of the genes involved in

a biological process and helps to reveal unintended gene activity. ToppGene Suite was

employed to perform functional enrichment of the filtered genes [34].

Results

Microarray gene expression profile analysis

We obtained 2691 significant genes from the analysis of raw gene expression signals using

RMA with statistical significance of p value� 0.05. The intensity values of genes in the expres-

sion profiles, before and after normalization, are depicted as box plots which represents stan-

dardized form of representing the data distribution in Fig 1.

Constructed Protein Interaction Network

Overall 2691 differentially expressed genes generated from the microarray expression profile were

inputted in Bisogenet, a plugin in Cytoscape, to create PIN by extracting all potential connectivity

between the genes. The created PIN comprised of outliers like replicated edges and self-loops. The

PIN is transformed to a stable network by eliminating self-loops and replicated edges which is

then used to calculate the standardized graph centrality parameters for each single gene. The

plugin created a complex PIN, covered of 2691 nodes and 15474 edges with edge-node ratio of
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5.75 on an average. Next, the plugin NetworkAnalyzer, calculated the degree centrality between-

ness centrality parameters of the network which are considered as local and global graph parame-

ters respectively [21]. Table 1 provides a description of the top 10 significant genes dependent on

the highest degree centrality along with general parameters of centrality.

Salt Sensitivity Protein Interaction Network (SSPIN)

PIN genes have been grouped into hubs and bottlenecks based on criteria of graph centrality

to establish a large network of protein interactions. The cut-off limit for hubs and bottlenecks

Fig 1. Pre and post-normalization of microarray gene expression data. Samples are represented on horizontal axis and the gene expression values on vertical

axis.

https://doi.org/10.1371/journal.pone.0228400.g001
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was defined in the methods section on the basis of Formulas 1 & 2. The degree of the hubs ran-

ged from 86 to 882 nodes which makes an average connectivity of 208 edges per node. We

obtained 40 hubs, 502 bottlenecks and 47 SSGs. 15 of 47 SSGs were also found to act as bottle-

neck in the interactome (Table 2). Hubs, bottlenecks and SSGs were together consisted of 574

genes with 5356 interactions. For the ease of exploration genes in hubs, bottlenecks and SSGs

were grouped as HBS. The interaction among these 574 genes in HBS were mapped from PIN

to create new network of Salt Sensitivity Protein Interaction Network.

Functional enrichment analysis

We used the ToppGene computational annotation system to determine the functional and bio-

logical importance of the genes. The genes of HBS have been enriched by 2192 biological

Table 1. List of 10 significant genes obtained from network analysis based on graph theory.

Gene Name BC# DC$

PHF8 PHD Finger Protein 8 0.260 882

EGR1 Early Growth Response 1 0.091 504

JUND Jund Proto-Oncogene, Ap-1 Transcription Factor Subunit 0.089 462

FOS Fos Proto-Oncogene, Ap-1 Transcription Factor Subunit 0.076 438

CHD2 Chromodomain Helicase Dna Binding Protein 2 0.051 371

APP Amyloid Beta Precursor Protein 0.070 366

IRF1 Interferon Regulatory Factor 1 0.036 306

STAT3 Signal Transducer And Activator Of Transcription 3 0.049 295

TEAD4 TEA Domain Transcription Factor 4 0.042 292

RELA RELA Proto-Oncogene, Nf-Kb Subunit 0.039 278

#BC = Betweenness Centrality
$DC = Degree Centrality

https://doi.org/10.1371/journal.pone.0228400.t001

Table 2. The salt sensitivity genes overlapping with bottleneck genes.

Symbol Name BC# DC$

ADD1 Adducin 1 0.001 17

ADRB2 Adrenoceptor beta 2 0.00305 62

AGT Angiotensinogen 0.00105 16

AGTR1 Angiotensin II receptor type 1 0.00097 9

ATP6AP2 ATPase H+ transporting accessory protein 2 0.00102 20

CYP11B2 Cytochrome P450 family 11 subfamily B member 2 0.00084 4

GNAI2 G protein subunit alpha i2 0.00283 31

GNB3 G protein subunit beta 3 0.00041 10

MME Membrane metalloendopeptidase 0.00047 22

NEDD4L Neural precursor cell expressed, developmentally down-regulated 4-like, E3 ubiquitin protein ligase 0.00216 46

PRCP Prolylcarboxypeptidase 0.00052 9

PREP Prolyl endopeptidase 0.00048 11

SCNN1A Sodium channel epithelial 1 alpha subunit 0.00043 12

SGK1 Serum/glucocorticoid regulated kinase 1 0.00149 32

WNK1 WNK lysine deficient protein kinase 1 0.00096 33

#BC = Betweenness Centrality
$DC = Degree Centrality

https://doi.org/10.1371/journal.pone.0228400.t002
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processes (BP), 210 molecular functions (MF), 246 cellular components (CC), 642 pathways

and 1669 diseases. Analysis of enrichment accounted for about 125 obesity genes. The obesity

related genes consisted of 23 SSGs, 16 hubs and 84 bottleneck genes. Approximately 50% of

the SSGs were observed to be involved in obesity via functional enrichment analysis (Table 3).

These genes were also involved in pathways associated with obesity like regulation of lipolysis
in adipocytes, adipogenesis, adipocytokine signaling pathway, renin-angiotensin system, signal-
ing by leptin, toll-like receptor pathway, PI3K-Akt signaling pathway, ras signaling pathway,
cytokine signaling in immune system insulin pathway, glucocorticoid receptor regulatory network
and NF-kappa B signaling pathway (Table 4). The detailed list of genes involved in these path-

ways are given in the S3 Table.

The enriched genes were also involved in obesity related diseases like Diabetes Mellitus,

Hypertensive disease, Asthma, Autoimmune Diseases, Diabetes Mellitus (Insulin-Dependent),

Congestive heart failure, Cardiovascular Diseases, Coronary Artery Disease, Heart failure,

Coronary heart disease, Coronary Arteriosclerosis, Depressive disorder, Hyperglycemia, Meta-

bolic Syndrome X, Essential Hypertension, Ischemic stroke, Hyperlipidemia. Obesity is one of

leading cause of aforesaid diseases. The interaction map of genes to the diseases is depicted in

the Fig 2.

Co-expression analysis

The expression pattern similarity between 574 HBS genes was established and ranked based

on Pearson’s correlation algorithm (Fig 3) for array of control and disease samples. For control

and disease samples (Formula 3), the algorithm created PCC for 328329 pair of genes from 574

genes. Gene pairs were screened in this approach based on established concepts such as i) gene

expression level with high positive correlation. ii) Genes with similar patterns of speech are

more likely to interact. In obesity studies, gene pairs with value r = 0.8 are chosen from the cor-

relation map as higher r score indicates a greater relationship. Corresponding gene pairs were

extracted from normal correlation map to identify the variation in the co-expression from obe-

sity to normal sample. Totally, 226 genes are observed to co-express with obesity related genes

with 1126 interactions in obesity condition (Fig 4). There were 88 obesity related genes and 23

SSGs in the set which were co-expressed in samples of obese adipose tissue. We focused on the

23 SSGs that are found to have co-expressed with obesity related genes.

By performing co-expression analysis, we obtained 23 co-expressed SSGs with obesity

related genes. Eight among the 23 co-expressed genes were not previously reported for the

Table 3. The genes involved in obesity categorized as hubs, bottlenecks and salt sensitivity genes.

Category Genes P-value

Salt sensitivity

genes

ACE, ACE2, ADD1, ADRB2, AGT, AGTR1, AGTR2, ANPEP, ATP6AP2, CMA1,

CYP17A1, GNB3, GRK4, KLK1, LNPEP, MAS1, MME, NEDD4L, PRCP, PRKG1,

REN, SGK1, TH

2.52 x

10−16

Hubs EGR1, JUND, FOS, APP, STAT3, JUN, STAT1, ATF3, SIRT7, FOXM1, TBL1XR1,

BAG3, HSPB1, CEBPD, HNRNPA1, VCAM1

2.52 x

10−16

Bottlenecks CALM1, PCNA, JUNB, CRK, SHC1, GAPDH, WWOX, ITCH, HSPA1A, CRY2,

NFKB1, MLH1, PKM, HSPD1, PTPN11, MAP1LC3B, TUFM, APC, SNRNP200,

CDK5, CALR, HLA-C, GTF2I, PRKAR1A, BCL2L1, TNF, IGF1R, ZFP36, NR4A1,

TANK, SOD2, KRT18, JAK3, SMARCA2, NUP62, PRKCZ, DNMT1, ATG5,

DNAJB1, STAT5B, LEPR, VDR, PIK3CA, PPIA, FOXO3, MYD88, CAST, DDAH2,

VEGFA, SOCS3, PINK1, COL1A1, THBS1, ACAT2, THRA, SNAP29, VTI1B, PER1,

TPI1, RGS2, BMPR1A, NPHP1, FTL, GTF2H1, APOE, CYCS, ABCA1, CSK,

TIMM44, GNAQ, C3, POLDIP2, SLU7, ST13, COL4A1, LAMA1, SDC2, IGF1,

BGN, CFH, ADM, WASF1, HGF, C1QTNF6

2.52 x

10−16

https://doi.org/10.1371/journal.pone.0228400.t003
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disease obesity via functional enrichment analysis. The list of co-expressed SSGs are depicted in

the Table 5. We developed an interaction map of unreported SSGs with obesity related genes (Fig

5) by taking their co-relation score as weight (Table 6). We extracted the edge weight of gene

pairs in both obese and normal sample to identify the distinct variations across set of two condi-

tions. This attempt was performed because of the fact that differentially co-expressed genes partic-

ipate in numerous biological processes resulting in adverse or complementary effects.

It is very clear from the plot that majority of the co-expressed genes in the obese conditions

are not co-expressed in normal conditions. Considering them as a disease subnetwork, we cal-

culated the local topological parameters based on graph theory. Among 8 unreported SSGs,

the highly connected genes with obesity related genes is ENPEP followed by WNK1. These

two genes were having 21 and 20 direct connectivity to the obesity related gene in the co-

expressed state. The SSGs, THOP1, CLCNKB, SCNN1G and THOP1 were having poor con-

nectivity in the disease subnetwork. Notably, CYP3A5 and CTSA formed two separate net-

works with connectivity 6 and 3 respectively to obesity related gene. The interactions of the

unreported SSGs with obesity related genes was separated and depicted in the Fig 6. We have

narrowed down unreported SSGs to 5 prioritized genes (ENPEP, WNK1, CYP3A5, SLC24A3

and CTSA) based on their co-expression and topological parameters.

Table 4. The enriched pathways that are closely associated with obesity or obesity related diseases.

Pathway P-value Source Gene’s Count

Adipocytokine signaling pathway 1.86E-02 KEGG 7

Adipogenesis 5.56E-03 Wikipathways 12

Cellular responses to stress 7.36E-06 REACTOME 39

Chemokine signaling pathway 4.22E-04 KEGG2 18

Cytokine Signaling in Immune system 9.58E-08 REACTOME 62

Glucocorticoid receptor regulatory network 1.45E-07 PID 16

Hemostasis 7.39E-04 REACTOME 43

Insulin signaling pathway 6.39E-05 PID1 9

Interferon Signaling 2.18E-06 REACTOME 24

MAPK signaling pathway 6.88E-04 KEGG 22

Mineralocorticoid biosynthesis 4.78E-03 BIOCYC 2

NF-KB signaling pathway 1.12E-03 BioCarta 5

NOD-like receptor signaling pathway 5.32E-04 KEGG 17

PI3K-Akt signaling pathway 8.92E-06 KEGG 32

Ras signaling pathway 3.61E-04 KEGG 21

Regulation of lipolysis in adipocytes 1.16E-03 KEGG 8

Renin secretion 2.61E-04 KEGG 10

Renin-angiotensin system 3.25E-30 KEGG 22

Signaling by Leptin 8.10E-03 REACTOME 19

Signaling by Rho GTPases 2.63E-03 REACTOME 30

Sodium/Calcium exchangers 7.92E-03 Reactome 3

Sphingolipid signaling pathway 2.94E-03 KEGG 12

TNF signaling pathway 1.46E-06 KEGG 17

Toll-like receptor pathway 2.23E-03 BioCarta 6

Type I diabetes mellitus 2.61E-02 KEGG 5

Type II diabetes mellitus 8.93E-03 KEGG 6

1PID = pathway interaction database
2KEGG = Kyoto Encyclopedia of Genes and Genomes

https://doi.org/10.1371/journal.pone.0228400.t004
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An attempt was made to associate novel genes found in this study to the genome wide asso-

ciation studies on many disease traits from around the world in the GWAS catalog (Mac-

Arthur et al., 2016). We extracted the reported traits of these co-expressed genes from GWAS

catalog to identify their association to obesity (Table 7). Many of these traits were related to

obesity or its associated traits in cardiovascular or metabolic diseases.

Discussion

Traditional gene profiling approaches are based on detecting individual targeted genes show-

ing variations in the experimental group versus the control one. However, mere identification

of differentially expressed genes cannot always help in understanding biological pathways

Fig 2. The interaction map of disease to genes. The red nodes represents salt sensitivity genes, pink and green nodes represents hubs and bottlenecks respectively.

https://doi.org/10.1371/journal.pone.0228400.g002
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(metabolism, transcription, and gene interactions, among others) regulations involved in the

disease pathogenesis [35]. This is especially true in case of multifaceted or complex disorders

like obesity, which do not progress because of instabilities in a single gene, but due to the

changes in several pathways comprising of various biological networks [14]. In the current

study, we investigated the concepts of gene regulatory networks in order to profile the signifi-

cant variations of salt-sensitive genes involved in obesity.

Local parameter DC and global parameter BC were used to dissect the complex interac-

tome. DC of a gene is the number of partners that are connected to that specific gene. Protein

Interaction Network (PIN) are mathematical representations of physical and/or functional

interaction between nodes, where nodes are the genes and the edges represent the connection

between them, which may be binding possibility, metabolic interaction or regulatory crosstalks

[36]. In our built PIN, significant alterations were observed in the expression level of h selected

genes in our experimental settings. Initially, a complex network of significant genes from adi-

pose tissue was constructed which was further decomposed to a Salt Sensitivity Protein Inter-

action Network based on hubs and bottlenecks. Hubs are considered as key features in

networks, because they project critical intersections, which gets disturbs the networks when-

ever they are removed [37]. In the constructed interactome PIN, highly essential genes show

high degree of connectivity. Several publications strongly suggested that diseased genes have

higher connectivity and cross-talks when compared to non-diseased ones which are support-

ing hubs impact in the network [38]. We obtained 40 hubs with an average connectivity of 208

edges. The enrichment analysis revealed that 16 hub genes were involved in obesity and 13

hubs were involved in Type 2 Diabetes, closely related to obesity. Thus, the identification of

hub molecules in the PIN is of substantial interest to get better insights of the disease patho-

genesis. On other hand, functionally relevant vertices (nodes) in the network were detected

Fig 3. Representation of gene-gene correlation plot. The correlation plots illustrate substantial variations in gene expression among the gene pairs in the control (lean)

and obese samples. A). Gene-gene correlation of lean samples (control), B). Gene-gene correlation of obese samples (disease)

https://doi.org/10.1371/journal.pone.0228400.g003
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using betweenness centrality (BC). In fact, This approach helped to sort-out vertices linking

dense networks, rather than nodes located inside the dense cluster[28]. Functional enrichment

analysis represented 84 bottleneck genes in obesity.

The unintended interactions of the genes may lead to deregulated functions. Hence, to bet-

ter understand the gene function in cellular context, we need to understand how genes are

interconnected together within several biological processes and molecular signaling pathways.

In fact this type of structural and functional bio interactome can be created by evaluating the

Fig 4. The plot of genes co-expressed with obesity related genes. The obese condition where yellow nodes represents obesity related genes.

https://doi.org/10.1371/journal.pone.0228400.g004
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functional features of the genes. Therefore, carrying out gene enrichment analysis is a vital

part in exploring the high-throughput data extracted from different biological observations

and experiments. This methodology helps to discover the non-predefined interaction between

functional genes that significantly regulate different biological. Gene ontology analysis

depicted the involvement of 125 genes in obesity and 24 genes among them were SSGs con-

tributing to 50 percentage of total SSGs. These findings signifies the critical role of SSGs in the

role of obesity. To explore more on salt related genes co-expression analysis of obesity related

genes in adipose tissue was carried out. By performing co-expression analysis, we obtained 23

co-expressed SSGs with obesity related genes. Eight among the 23 co-expressed genes were not

previously reported for the disease obesity via gene ontology analysis. Gene co-correlation can

be explained by the fact that genes showing similar regulation/ expression patterns are fre-

quently interconnected together than with arbitrary genes [9]. Interaction map of the unre-

ported SSGs with obesity related genes showed stronger interactions in disease state. It is very

clear from the plot (Fig 5) that majority of the co-expressed genes in the obese conditions are

not co-expressed in normal conditions. The novel obesity associated SSG and their interac-

tions supports the view that the differentially co-expressed genes are likely to get involved in

numerous molecular processes resulting in adverse or balancing effects [39].

The established theory in network biology is that disease related genes existing in close

physical proximity are most likely to cause diseases with similar molecular basis. In addition,

in a network of disease genes, the non-disease genes are identified to have a higher tendency to

interact with other disease genes [40]. Considering the theory, we looked into disease and

pathway related to the prioritized gene from unreported SSGs.WNK1 and ENPEP act as cen-

tral hub in the network with high number co-expressed partners. In the functional enrichment

Table 5. List of co-expressed salt sensitive genes with their identity in obesity.

Gene Name Role in obesity

ACE2 Angiotensin I Converting Enzyme 2 Reported

ADD1 Adducin 1 Reported

ADRB2 Adrenoceptor Beta 2 Reported

AGT Angiotensinogen Reported

AGTR1 Angiotensin Ii Receptor Type 1 Reported

ANPEP Alanyl Aminopeptidase, Membrane Reported

ATP6AP2 Atpase H+ Transporting Accessory Protein 2 Reported

CYP17A1 Cytochrome P450 Family 17 Subfamily A Member 1 Reported

GNB3 G Protein Subunit Beta 3 Reported

LNPEP Leucyl And Cystinyl Aminopeptidase Reported

MAS1 Mas1 Proto-Oncogene, G Protein-Coupled Receptor Reported

MME Membrane Metalloendopeptidase Reported

NEDD4L Neural Precursor Cell Expressed, Developmentally Down-Regulated 4-Like, E3 Ubiquitin Protein Ligase Reported

PRKG1 Protein Kinase Cgmp-Dependent 1 Reported

SGK1 Serum/Glucocorticoid Regulated Kinase 1 Reported

CLCNKB Chloride Voltage-Gated Channel Kb Unreported

CTSA Cathepsin A Unreported

CYP3A5 Cytochrome P450 Family 3 Subfamily A Member 5 Unreported

ENPEP Glutamyl Aminopeptidase Unreported

SCNN1G Sodium Channel Epithelial 1 Gamma Subunit Unreported

SLC24A3 Solute Carrier Family 24 Member 3 Unreported

THOP1 Thimet Oligopeptidase 1 Unreported

WNK1 Wnk Lysine Deficient Protein Kinase 1 Unreported

https://doi.org/10.1371/journal.pone.0228400.t005
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data, the geneWNK1 is reported in diseases like Diabetes Mellitus, Cardiovascular Diseases,

Metabolic Syndrome X, Hyperglycemia and heart failure. These enriched diseases also show

close relationship with obesity. Recent report by Ding et al., [41] in mouse model suggests

WNK1 as a novel signaling molecule involved in development of obesity. It suggests lack of

Akt3 in adipocytes rises the WNK1 protein level which in turn activates SGK1 and stimulates

adipogenesis through phosphorylation and inhibition of FOXO1 transcription factor, subse-

quently, activating the transcription of PPARg in adipocytes. Increased adipocyte results in

high fat accumulation and ultimately to obesity. Thus,WNK1, can act as one of the potential

biomarker or targets for controlling obesity. Additionally, at pathway level,WNK1 is known to

be a potent regulator of Na+ and Cl- ions transport, and consequently the blood pressure.

Ewout et al, (2011) describes about the role of WNKs in salt metabolism via regulating sodium,

chlorine, potassium and blood pressure [42]. WNKs are involved in crucial molecular path-

ways via connecting hormones such as angiotensin II and aldosterone to sodium and potas-

sium transport.WNK1 is significantly involved in homeostasis and several biological processes

regulations including and not limited to cell survival, proliferation and signaling fates. WNK1

activates sodium channel epithelial (ENaC) gene subunits SCNN1A, SCNN1B, and SCNN1D.

It is also known as an activator of SGK1. In fact, by inhibiting WNK4 activity through kinase

phosphorylation, WNK1 controls Na+ and Cl- ions transport. Moreover, WNK1 plays a switch

role-like (activation/inhibition) of the Na-K-Cl cotransporters (NKCC) respectively [43].

ENPEP is a member of the M1 family of endopeptidases. It is plays a role in the catabolic

pathway of the renin angiotensin system which in turn is involved in regulation of blood pres-

sure [44]. The gene is observed in Hypertensive disease which are closely associated with obe-

sity. Currently, inhibition of ENPEP activity is one of procedure used to treat hypertension

Fig 5. The plot depicts the correlation score of gene pairs in obese and control conditions. The color scale (-1 to +1) represents the correlation value. Higher the

value higher is the correlation. (A) Represents gene-gene correlation in normal samples and (B) represents their corresponding correlation in obese condition. Pink

nodes depict novel genes that are co-expressed with obesity related genes in obese condition and Yellow nodes represent obesity related genes.

https://doi.org/10.1371/journal.pone.0228400.g005
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Table 6. Interactions of unreported salt sensitive genes in obese and normal condition with their corresponding

co-relation score as weights.

Gene-1 Gene-2 Obese1 Normal2

WNK1 CALM1 0.9439 0.5472

ENPEP C1QBP 0.9417 -0.2225

ENPEP PCNA 0.9240 -0.2255

ENPEP MBNL1 0.9156 0.5669

WNK1 CEP104 0.9145 0.2931

ENPEP XRCC5 0.9110 -0.1939

CYP3A5 HIST1H2BD 0.9040 0.2237

CYP3A5 C3 0.9015 0.6306

CLCNKB MAS1 0.9001 0.4543

ENPEP CAST 0.8897 0.3039

CYP3A5 CFH 0.8787 0.5056

CYP3A5 KRT18 0.8696 0.1807

ENPEP SNX1 0.8659 0.3880

SLC24A3 RTN4 0.8625 0.7491

ENPEP MID2 0.8569 0.3283

ENPEP GNAQ 0.8480 0.5793

WNK1 SPTBN1 0.8469 0.3412

SLC24A3 LNPEP 0.8434 0.6549

WNK1 OPTN 0.8420 0.3940

ENPEP MAP1LC3B 0.8410 0.4832

WNK1 ST13 0.8377 0.4385

WNK1 LIN7C 0.8362 0.2726

WNK1 DLG1 0.8352 0.3487

ENPEP PPP2CB 0.8341 0.2886

WNK1 BCL2L2 0.8338 0.7179

ENPEP AGFG1 0.8333 0.2477

SLC24A3 ADM 0.8324 0.5586

ENPEP MLH1 0.8309 0.2835

WNK1 RNF11 0.8297 0.3692

CTSA POLDIP2 0.8285 0.1705

CTSA DERL1 0.8279 0.1225

ENPEP YAP1 0.8258 0.1928

WNK1 SMAD7 0.8237 0.2519

ENPEP KCMF1 0.8225 -0.0395

WNK1 YWHAG 0.8217 0.5680

SCNN1G GNB3 0.8216 0.5586

ENPEP PRKAR1A 0.8215 0.7386

CYP3A5 PRKCZ 0.8213 0.1144

ENPEP RDH11 0.8198 -0.0770

WNK1 COL4A1 0.8191 0.3485

CTSA DHX30 0.8171 0.2648

WNK1 EBF1 0.8168 0.3779

ENPEP ATG5 0.8151 0.2386

ENPEP AGTR1 0.8149 0.4997

ENPEP EPS15 0.8134 0.5767

WNK1 AGTR1 0.8124 0.4890

(Continued)
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condition. Hypertension is a growing problem affecting 40% percent of adults due to the grow-

ing prevalence of obesity and diabetes in many parts of the world [45]. In addition, DNA

methylation study in human adipose tissue reveals ENPEP as one of the differentially methyl-

ated genes associated with obesity and related traits [46]. ENPEP is found to be a candidate

gene associated with obesity and hypertension traits in GWAS (Genome Wide Association

study) studies. ENPEP is highly correlated with obesity related genes and also correlated with

the diseases that may be comorbidity conditions of obesity. Therefore, our work provides

strong evidence for ENPEP to be a novel gene that contributing to obesity.

CYP3A5 plays a role in the metabolism of many drugs and other metbolites, such as ste-

roids. CYP3A5 is also involved in the oxidative metabolism of xenobiotics, as well as calcium

channel blocking drugs and immunosuppressive drugs. CYP3A5 is a member of the cyto-

chrome P450 superfamily of enzymes. These proteins are monooxygenases catalyzing reac-

tions in metabolism of drugs, cholesterol, steroids and other lipids. The main functions

associated with CYP3A5 are monooxygenase activity, iron ion binding, lipid metabolism and

oxidoreductase activity [47].

Potassium-dependent sodium/calcium exchanger (SLC24A3) plays an important role in

intracellular calcium homeostasis. It facilitates exchange of intracellular Ca++ and K+ ions for

Table 6. (Continued)

Gene-1 Gene-2 Obese1 Normal2

WNK1 MBNL1 0.8123 0.5277

WNK1 RTN4 0.8121 0.4261

ENPEP PDIA6 0.8111 -0.2465

CYP3A5 CHEK2 0.8098 0.0108

WNK1 PPP2CB 0.8077 0.4375

WNK1 SCARB2 0.8059 0.1818

THOP1 CSK 0.8058 0.3290

WNK1 MID2 0.8047 0.3940

ENPEP TANK 0.8027 0.3945

WNK1 GTF2I 0.8001 0.1125

1obese = correlation score in obese sample
2normal = correlation score in normal sample

https://doi.org/10.1371/journal.pone.0228400.t006

Fig 6. The partners of prioritized unreported salt sensitive genes (ENPEP, WNK1, CYP3A5, SLC24A3 and CTSA) which are co-expressed with obesity related

genes in obese condition.

https://doi.org/10.1371/journal.pone.0228400.g006
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extracellular sodium ions [48]. CTSA is a member of cathepsins family which are a group of

lysosomal proteases that have a key role in cellular protein turnover. CTSA is not directly

reported in obesity, but an analysis performed by Nadia et al., (2010) implicates cysteine

Table 7. The traits extracted from GWAS catalogue for the unreported genes co-expressed with obesity related

genes.

Gene Trait PubMed

ENPEP atrial fibrillation 17603472

ENPEP systolic blood pressure 21572416

ENPEP diastolic blood pressure 21572416

ENPEP cognitive impairment, cognitive decline measurement 26252872

ENPEP eye color 29109912

ENPEP lung carcinoma 28604730

ENPEP metabolite measurement 21886157

ENPEP pursuit maintenance gain measurement 29064472

SLC24A3 chronic obstructive pulmonary disease, smoking initiation 21685187

SLC24A3 fat body mass 28224759

SLC24A3 matrix metalloproteinase measurement 20031604

SLC24A3 mean platelet volume 27863252

SLC24A3 migraine disorder 27182965

SLC24A3 Psychosis 24132900

SLC24A3 FEV/FEC ratio 22424883

SLC24A3 pulse pressure measurement 28135244

SLC24A3 unipolar depression, response to escitalopram, response to citalopram, mood disorder 27622933

SLC24A3 Age at smoking initiation in chronic obstructive pulmonary disease 21685187

SLC24A3 Daytime sleepiness 28604731

SLC24A3 Matrix metalloproteinase levels 20031604

SLC24A3 Migraine 27182965

SLC24A3 Pulmonary function decline 22424883

SLC24A3 Pulse pressure 28135244

SLC24A3 QT interval 27958378

WNK1 body mass index 25673413

WNK1 colorectal cancer 24836286

WNK1 eosinophil count 27863252

WNK1 eosinophil percentage of leukocytes 27863252

WNK1 lung carcinoma 28604730

WNK1 smoking status measurement, lung carcinoma 28604730

WNK1 squamous cell lung carcinoma 28604730

WNK1 blood manganese measurement 26025379

WNK1 Malignant epithelial tumor of ovary, response to paclitaxel 29367611

WNK1 Stroke 19369658

CYP3A5 Blood metabolite levels 25898920

CYP3A5 Borderline personality disorder 28632202

CYP3A5 Cognitive decline rate in late mild cognitive impairment 26252872

CYP3A5 Disease progression in age-related macular degeneration 29346644

CYP3A5 Early childhood aggressive behavior 26087016

CYP3A5 Factor VII 17903294

CYP3A5 Obesity-related traits 23251661

CYP3A5 Ticagrelor levels in individuals with acute coronary syndromes treated with ticagrelor 25935875

CYP3A5 Blood metabolite ratios 24816252

https://doi.org/10.1371/journal.pone.0228400.t007
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proteases cathepsins S, L, and K in complications of obesity [49]. Similarly, a study conducted

by Araujo et al., (2018) reports CTSB, a member in Cathepsin family, controls autophagy in

adipocytes. In obese individuals, the expression of this gene increases which in turn regulates

inflammatory markers [50]. In our analysis CTSA is co-expressed with obesity related genes

suggesting a critical role in the pathway of obesity since the members of Cathespin family plays

import role in obesity. The major functions associated with CTSA are glycosphingolipid

metabolism, protein transport and enzyme activating activity.

In GWAS analysis, the genes CYP3A5, SLC24A3 and CTSA are observed in obesity related

diseases like Hypertensive disease, Asthma, Coronary Artery Disease, Essential Hypertension,

Hypertensive disease and Heart failure. We found the gene CYP3A5 is reported as one of loci

associated with obesity related traits in GWAS studies [51]. It is also associated with Factor VII

and blood metabolite levels. Recent study by Takahashi et al., [52] reports the relationship of

factor VII and obesity. The results propose Factor VII is an adipokine, enhanced by TNF-α or

isoproterenol, which plays crucial role in the pathogenesis of obesity. SLC24A3 andWNK1 are

mapped to traits like fat body mass and body mass index which are closely associated with obe-

sity. This analysis of integrating GWAS studies also substantiates the possible association of

novel genes identified through this study to obesity related traits and comorbidity symptoms

and diseases.

We acknowledge that our strategy has some technical constraints. First, since experimen-

tally derived protein interactions were retrieved using Bisogenet plugin. This plugin employs

multiple databases of protein-protein interactions hence any interaction which has not been

updated in those databases may not have been included in our study. In addition to this the

insufficiency of data pertaining to certain genes in the Gene Ontology (GO) should also be

considered. In order to overcome these limitations, we tried to include protein interaction

based on co-expression. Overall, our research analysis has presented the effectiveness of link-

ing genetic expression with their functional relationship in identification of obesity candidate

genes. In order to demonstrate the involvement of the novel candidate genes mentioned in

this study further experimental validation is required.

Conclusions

This work systematically outlines an integrated bioinformatics pipeline for figuring out the

most indispensable key signatures from the interactome Salt Sensitivity Protein Interaction

Network (SSPIN). The findings with biological relevance depict 50% of the SSGs have experi-

mental evidences for their role in the pathogenesis of obesity. A detailed parametric down-

stream analysis based on biological insights, illustrated 5 candidate genes that can act as

potential biomarker or target for obesity. To authenticate our results, we illustrate the possible

role of ENPEP and WNK1 which appeared in the top prioritized list. Overall, our research

analysis has presented the effectiveness of linking genetic expression with their functional rela-

tionship in identification of obesity candidate genes.
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