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Abstract: This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal
samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebi-
otic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosac-
charides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant
and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in
MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for
B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates
above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The
presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and
B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These
characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Corre-
lation analysis of glycosidase activities suggests strong associations between glycosidase families
comprising HMOs-degrading enzymes, which are often found in MAGs from the same species.
Mathematical models here proposed may contribute to a better understanding of the carbohydrate
metabolism of some common bifidobacteria species and could be extrapolated to other microorgan-
isms of interest in future studies.

Keywords: bifidobacteria; glycosidase; prebiotics; machine learning; metagenomics; metagenome-
assembled genomes

1. Introduction

Bifidobacterium is one of the most abundant genera of Gram-positive anaerobes that
compose the human intestinal microbiota, especially in the early stages of life, during
which bifidobacteria may comprise up to 90% of infant gut microbiota [1,2]. It has been
proposed that bifidobacteria play a key role in human health, both in infancy and later
life stages [3]. Breastfeeding provides infants with a wide variety of natural prebiotic
structures, called human milk oligosaccharides (HMOs), which comprise the third most
abundant solid component of human milk after lactose and lipids [2]. Remarkably, some
HMOs structures are selectively fermented by specific bifidobacterial species typically
associated with the breastfed infant gut microbiota and thus are suggested to promote
their persistence in the infant gut. Some health benefits associated with Bifidobacterium
include reducing inflammation, supplementing nutrients through the production of folate
and other vitamins, enhancing immune responses to vaccinations, preventing or reducing
allergic diseases, and conferring resistance against human pathogens [2,4]. In addition,
the probiotic properties of some bifidobacterial strains have been demonstrated and are
currently commercialized as probiotic products [5].

Dietary carbohydrates may shape the bifidobacterial pan-genome [3]. Efforts have
been made to elucidate glycosidase domains codified in Bifidobacterium genomes involved
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in the hydrolysis of HMOs and galactooligosaccharide (GOS) [2], one of the main oligosac-
charide types widely recognized as prebiotics and which is commonly added to infant
formula in combination with fructo-oligosaccharides (FOS) to mimic biological functions of
HMOs [6]. However, few studies report the recovery of metagenome-assembled genomes
(MAGs) of Bifidobacterium to study the glycolytic activities of each species. In recent
works, Asnicar et al. [7] reported the recovery of 48,181 MAGs, including Faecalibacterium
prausnitzii or Bifidobacterium animalis, while Pasolli et al. [8] reconstructed 154,723 micro-
bial genomes, including B. adolescentis, B. bifidum, B. breve, B. dentium and B. longum and
Faecalibacterium species.

On the other hand, it should be considered that microbiome experiments generate
large volumes of intricate data, which are often difficult to interpret. For this purpose,
several computational workflows involving advanced mathematical modeling techniques
have been developed. In this sense, implementing machine learning models comprising
several families of powerful pattern-recognition algorithms has proven to be of funda-
mental interest in the main areas and challenges in microbiome research. Some examples
of machine learning applications in basic microbiome research include identification of
changes in brain structure associated with diet-dependent changes in gut microbiome pop-
ulations to gain a better understanding of the gut–brain–microbiota axis [9], identification
of trends and patterns characteristic of microbiota-associated gastrointestinal disorders to
help with the diagnosis based on different clinical symptoms and biochemical findings [10],
design microbiome-targeted therapies and in silico prediction of drug–microbiome in-
teractions [11]. In addition, more specific applications of mathematical modeling and
machine-learning algorithms have been reported in the field of probiotics and metage-
nomics. Machine learning has been used to optimize probiotic therapeutics in an artificial
human gastrointestinal tract [12] and to assist gut microbiome analysis of sequencing
data for identifying patients with specific gastrointestinal diseases [13]. Applications to
assess the bioactivity of prebiotic carbohydrates have also been reported. Machine learning
models were employed to determine the impact of GOS and FOS on microbial taxa in
clinical trials [14] and to simulate colonic fermentation and mechanisms of action in silico
of novel prebiotic structures in combination with other computational techniques [15].

To our knowledge, no previous attempts have been made to establish specific glycosi-
dase profiles of recovered MAGs from Bifidobacterium species exposed to different types of
prebiotic structures. Therefore, this study aimed to develop advanced machine learning
models to elucidate complete glycosidase activities encoded in Bifidobacterium MAGs re-
covered from human samples. Characteristic glycosidase profiles of Bifidobacterium species
were compared, determining the influence of HMOs, GOS, FOS and dietary fiber on their
metabolic activities.

2. Materials and Methods
2.1. Data Collection and Genome Recovery from Metagenomes

To compare metabolic patterns and glycosidic activities of the most representative
Bifidobacterium species, individual genomes were first recovered from human metagenomes.
For this purpose, we collected metagenomic sequencing data obtained from two of the most
widely known reference repositories: Sequence Read Archive (SRA) from the National
Center for Biotechnology Information (NCBI) and MG-RAST metagenomics analysis server.
Among all datasets available, two studies reported shotgun metagenomic sequencing
of human fecal samples after regular prebiotic consumption or fiber-based dietary inter-
ventions [16,17]. The first study comprises 447 paired-end metagenomic sequences from
60 infants (0–8 months of age; 31 females and 29 males) following different diets (breastfed,
whole-milk-fed, and infant formula-fed). Infant formulas described were supplemented
with different types of prebiotic oligosaccharides: GOS and FOS. In addition, HMOs may
play a relevant role in breastfed individuals. These samples were deposited under BioPro-
ject identity PRJNA473126, sample accession codes SAMN09259835–SAMN09260236 [16].
On the other hand, the second study consisted of 40 paired-end metagenomic sequences
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from 39 healthy adults (33 women, 6 men) following two 3 day dietary interventions
where they consumed either barley kernel-based bread or white wheat flour bread. These
samples were deposited under MG-RAST identity mgp13068, MG-RAST ID of sequences
mgm4624578.3–mgm4624657.3 [17].

Sequences had been already quality-filtered, trimmed and decontaminated by the
authors. The first step in our data-analysis pipeline involved concatenation of paired-
end sequences and metagenome assembly using MEGAHIT v.1.2.9 [18]. Default settings
were used for assembly commands with the exception of maximum k-mer size, set at
127, generating a series of k-mers with different length, which are shorter than entire
reads (k-21, k-31, k-41, k-51, k-61, k-71, k-81, k-91, k-101, k-111, k-121, k-127). Bowtie2
v.2.3.5.1 [19] was run on MEGAHIT results to map the reads against the assembly. Bam files
generated were sorted and indexed. Then, assembled contigs ≥1.5 kilobases were grouped
and assigned to individual genomes in the binning step performed using MetaBAT2
v.2.2.15 default options [20]. Quality control of the obtained bins was assessed using
CheckM v.1.1.3 lineage-specific workflow, the recommended workflow for assessing the
completeness and contamination of genome bins [21]. MAGs showing completeness higher
than 50% and contamination lower than 5% were selected according to Asnicar et al. [7].
Finally, taxonomic identification of MAGs was performed following Kraken2 standard
workflow [22].

Once individual genomes were assembled and identified, glycosidase functional
domains of MAGs were annotated following the “run_dbcan” pipeline developed by
Zhang et al. [23], which maps the samples against the carbohydrate-active enzymes
database (CAZy, http://www.cazy.org/ last accessed: 1 March 2021). HMMER software
for biosequence analysis using profile hidden Markov models (HMMs) [24] was integrated
into the standard workflow, allowing functional domain annotation and glycosidase iden-
tification based on the Pfam database, a widely used resource for identifying functional
domains that occur within proteins and the classification of protein sequences into fam-
ilies [25]. To ensure the quality of glycosidase identification, only glycosidase domains
showing coverage values higher than 0.95 were selected for further analysis.

2.2. Machine Learning Modeling to Elucidate Glycosidase Patterns

Glycosidase functional domains identified in MAGs were grouped into CAZy gly-
cosidase families. To compare metabolic profiles of MAGs recovered, glycosidase profiles
were expressed as binary data, including presence (value = 1) and absence (value = 0)
of glycosidase domains from the same CAZy family in each MAG. According to differ-
ent criteria, these data were used as input for different machine learning models, pow-
erful pattern-recognition algorithms that allow accurate classification of samples from
their biological origin [26,27]. Our machine-learning data analysis strategy involved three
main steps: (i) unsupervised distribution of glycosidase profiles of MAGs according to
both Bifidobacterium species (B. adolescentis, B. bifidum, B. breve, B. catenulatum, B. dentium,
B. longum, B. pseudocatenulatum, B. scardovii) and diet type (breastfed, breastfed + GOS,
breastfed + GOS + FOS, infant formula-fed, infant formula-fed + FOS, infant formula-
fed + GOS, infant formula-fed + GOS + FOS and whole-milk-fed infants as well as fiber-rich
diets in adults), (ii) supervised classification of MAGs to accurately elucidate characteristic
glycosidic patterns of the main bifidobacteria identified (B. adolescentis, B. bifidum, B. breve,
B. longum, B. pseudocatenulatum), (iii) association study between glycosidase families found
in MAGs. It should be noted that B. catenulatum, B. dentium and B. scardovii were not con-
sidered for supervised classification in step (ii) due to the low number of MAGs recovered
from these species, insufficient to train supervised models.

Concerning the first step, the unsupervised distribution of MAG glycosidic activities
was investigated through artificial neural network-based principal component analysis
(PCA). This model was developed to reconstruct experimental data (i.e., presence/absence
of functional domains from a specific CAZy family) by the conventional PCA method in
combination with artificial neural networks (ANNs) [26,28]. ANNs are among the most
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popular families of machine learning models that allow modeling complex and highly
nonlinear processes. These complex algorithms are formed by an input layer (i.e., principal
components from PCA), an output layer (i.e., reconstructed glycosidase profiles of each
MAG) and several “neurons” or nodes organized in a hidden layer (i.e., 20 neurons in
this study), connected through mathematical functions. The activation function, a trans-
formation applied to the input spectra to determine whether the information that the
neuron is receiving is relevant or not, was a hyperbolic tangent activation function (tanh).
Weight decay value, a regularization technique used to avoid over-fitting based on the
multiplication of the sum of squares of ANN weights by a smaller number, was 0.001.
ANN-based PCA was computed using the “pcaMethods” R package v1.78.0 [28].

The second data analysis step involves a supervised classification of MAGs to eluci-
date characteristic glycosidase profiles of several Bifidobacterium species in an accurate and
reproducible way. With this aim, three different supervised machine learning models were
compared: ANN, random forest (RF) and generalized linear model elastic-net (glmnet).
Similar to the first step, ANN was formed by an input layer (i.e., presence/absence of func-
tional domains from a specific CAZy family), an output layer (i.e., Bifidobacterium species)
and 5 neurons organized in one hidden layer, where each neuron in a layer was connected
with each neuron in the next layer through a weighted connection. The activation function
was logistic, and the weight decay value was 0.1. In contrast, RF is based on multiple deci-
sion trees (i.e., 500 in this study), outputting the different classes (i.e., bifidobacteria species),
and each node is split using the best among a subset of predictors (i.e., presence/absence of
functional domains from a specific CAZy family) randomly chosen (i.e., 9 variables tried at
each split in this study). Then, RF averages the results from each tree to get a more accurate
and stable prediction. The glmnet model involves a linear regression model that could be
generalized (i.e., the response variable may follow different distributions than the normal
distribution). Regularization methods are used to reduce possible overfitting of generalized
linear models and reduce the prediction error variance. Elastic-net regularization is based
on two parameters, alpha and lambda. Alpha (comprised between 0 and 1, i.e., 0.4 in this
study) is used to optimize the model, and it indicates the combination of two different
regularization techniques, L1 and L2. All these methods try to penalize the Beta coefficients
(i.e., 0.02 in this case) of the regression for obtaining the important variables. Lambda is the
regularization parameter or penalty coefficient and allows adjusting the prediction error.
ANN, RF and glmnet models were computed using the nnet v7.3.12, random forest v4.6.14
and glmnet v3.0.2 R packages [29–31].

The last data analysis step involved a graphical correlation network between gly-
cosidase families present in MAGs, computed using ccrepe v1.22.0 and qgraph v1.6.5 R
packages [32,33].

All mathematical models were computed on R v3.6.2.

3. Results
3.1. Recovery of Metagenome-Assembled Genomes (MAGs)

Characteristic glycosidase profiles of several Bifidobacterium species present in the
gastrointestinal tract of both healthy infants and adults were investigated through a survey
of MAGs recovered from gut metagenomic datasets. To this end, shotgun metagenomic
data have been collected from the main sequence repositories [16,17]. Sequences were
assembled into contigs and MAGs, and annotation of glycosidase functional domains and
families codified in individual genomes was performed using the CAZy database [23]. A
total of 1806 MAGs representatives of 177 species and strains were recovered from 487
metagenomes, comprising 1339 MAGs from 447 metagenomes from 60 infants, as well
as 467 MAGs from 40 metagenomes from 39 adults (Supplementary Materials Table S1).
Escherichia coli (n = 140), Faecalibacterium prausnitzii (n = 116), and Ruminococcus gnavus
(n = 114) showed the highest overall number of MAGs recovered. Asnicar et al. [7] and
Pasolli et al. [8] recovered MAGs from F. prausnitzii and R. gnavus showing the relevance of
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these species in large cohorts of participants. Escherichia, Faecalibacterium and Ruminococcus
were also found in infant metagenomes using assembly-free methods [16].

In general, bifidobacterial species were among the most frequently identified MAGs
species, including B. longum (n = 70), B. bifidum (n = 39), B. breve (n = 38) and B. pseudocatenulatum
(n = 35). However, a low number of MAGs were recovered from other bifidobacteria
species, such as B. adolescentis (n = 17), B. dentium (n = 2), B. catenulatum (n = 1) and
B. scardovii (n = 1). Previous studies also reported MAG recovery from B. adolescentis,
B. bifidum, B. breve, B. dentium and B. longum in fecal metagenomes from human donors
following westernized and non-westernized lifestyles [7,8], highlighting the relevance of
these species in metagenomes from different individuals (infants and adults) exposed to
specific types of diets, including variable prebiotic consumption. Moreover, gene families
and metabolic pathways of several species belonging to Bifidobacteriaceae were reported
by previous authors in the assembly free analysis of the infant metagenomes [16], in
agreement with our assembly results.

Other species and strains showing a high number of MAGs recovered were Collinsella
aerofaciens (n = 71), Veillonella parvula (n = 62), Akkermansia muciniphila (n = 59), Lach-
nospiraceae bacterium strain GAM79 (n = 50) and Ruthenibacterium lactatiformans (n = 46).
MAGs from A. muciniphila were also recovered from Pasolli et al. [8] in westernized and
non-westernized cohorts in agreement with our results. It has been reported that metabolic
pathways of Collinsella, Veillonella parvula and Akkermansia muciniphila played a relevant
role in infant microbiota [16], in agreement with the high number of MAGs recovered from
these clades.

It should be noted that some MAGs were identified at strain level, including Blautia
sp. SC05B48 (n = 38), Ruminococcus sp. JE7A12 (n = 32), Lachnoclostridium sp. YL32 (n = 25),
Longibaculum sp. KGMB06250 (n = 25), Caproiciproducens sp. NJN-50 (n = 19), Blautia
sp. N6H1-15 (n = 16), Lachnospiraceae bacterium Choco86 (n = 16), Erysipelotrichaceae
bacterium GAM147 (n = 15), Streptococcus sp. HSISS3 (n = 11) and Enterococcus sp. HSIEG1
(n = 8). Interestingly, metabolic pathways of Enterobacteriaceae and Lachnospiraceae
families as well as Blautia species had been also identified in infant metagenomes using
assembly-free methods [16].

Furthermore, up to 11 MAGs could be recovered from Lacticaseibacillus rhamnosus,
although few MAGs were obtained from other lactobacilli species. On the other hand,
Clostridium bolteae (n = 36) was the most frequent Clostridium species, while a low number
of MAGs could be obtained from other genera like Bacillus, Staphylococcus and Streptococcus.
Interestingly, Clostridium genes were also identified in the assembly-free analysis of infant
metagenomes [16].

Concerning the sample origin of each MAG, most MAGs were recovered from formula-
fed infants (n = 638), adults following fiber-rich dietary interventions (n = 467) and infant
formula + GOS-fed infants (n = 281). Similarly, most bifidobacteria MAGs were obtained
from formula-fed infants (n = 64), infant formula + GOS-fed infants (n = 52) and breastfed
infants (n = 31), while only 11 bifidobacteria MAGs could be obtained from adult par-
ticipants (Supplementary Materials Table S2). Among these samples, most MAGs from
B. adolescentis were recovered from adults following fiber-rich dietary interventions (n = 8),
while most MAGs from B. longum and B. pseudocatenulatum were recovered from infant
formula-fed infants (n = 32 and n = 13, respectively). Similarly, most MAGs from B. bifidum
and B. breve were recovered from breastfed (n = 11) and infant formula + GOS-fed infants
(n = 16), respectively.

To deepen the metabolic potential of the MAGs species and strains obtained in this
study and their variation with prebiotics consumption, glycosidase activities codified in
MAGs were annotated, finding up to 80,028 functional domains belonging to 54 CAZy
families of interest. These CAZy families were chosen based on their potential ability
to metabolize the most common types of prebiotics (α- and β-GOS and FOS commonly
added to infant formula), as well as HMOs. It must be considered that these oligosaccha-
ride structures were present in the diet of most individuals considered in this study [16].
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Specific glycosidase activities aimed at hydrolyzing these substrates were selected to
find characteristic metabolic profiles of the Bifidobacterium genus depending on prebiotic
consumption. Moreover, enzymatic profiles of prebiotic-exposed bifidobacterial MAGs
were compared to those of bifidobacteria found in infants fed by non-supplemented
formulas and adults exposed to high-fiber dietary interventions (and not specific pre-
biotic structures). Therefore, functional domains from CAZy families CBM32, CBM40,
GH1-5, GH16, GH20, GH29, GH30-33, GH35-36, GH39, GH42, GH58-59, GH68, GH95,
GH97, GH109-110, GH139, GH141, GH147 and GH151 involving α- and β-galactosidases,
β-fructosyltransferases and β- fructofuranosidases, fucosidases, hexosaminidase and siali-
dases as well as other fiber-degrading activities were selected (Supplementary Materials
Table S3). Most metabolic activities reported during the assembly-free functional analysis
of infant microbiota were limited to routes related to amino acid synthesis and degra-
dation and vitamin synthesis pathways [16]. In contrast, the present study deepens the
characterization of carbohydrate-degrading enzymes present in these species, providing
an extensive comparison of CAZy families found in Bifidobacterium species and their ability
to metabolize specific prebiotic structures.

3.2. Unsupervised Analysis to Study Glycosidase Distribution in Metagenome-Assembled
Genomes (MAGs)

Recovered MAGs from all identified microbial species were clustered considering the
presence of CAZy families of interest described in the previous section through hierarchical
clustering considering a Euclidean distance metric (Figure 1). Moreover, heatmaps illus-
trating the presence and absence of functional domains were generated. In this sense,
applications of heatmaps to represent the presence or absence of microbial taxa and
genes have been extensively reported in the literature. Some recent examples include
the usage of heatmaps to elucidate the presence of coincident genes across microbial
genomes [34] and coincident genera in human microbiota samples [35]. In the present study,
most species belonging to the same genus were clustered together, highlighting common
metabolic patterns. In general, the widest number of glycosidase activities codified in MAGs
was observed for the following genera: Bacteroides, Blautia, Caproiciproducens, Clostridium,
Longibaculum, Paraprevotella, Prevotella, Roseburia, Ruminococcus, Ruthenibacterium, Muribaculum,
as well as several species belonging to Lachnospiraceae and Erysipelotrichaceae families
(Figure 1). It should be noted that Bacteroides, belonging to Bacteroidetes phyla, is one of
the most relevant clades in the microbiota of adult individuals due to particular metabolic
capabilities that allow Bacteroides to use a wide range of complex carbohydrates [36]. Other
Bacteroidetes, such as Paraprevotella, Prevotella, Muribaculum, may play a similar role based
on their glycosidase profiles. In addition, Roseburia comprises another relevant genus of the
Firmicutes phyla known to metabolize dietary polysaccharides [17]. Other Firmicutes that
exhibited a wide range of prebiotic-degrading enzymes include Blautia, Caproiciproducens,
Clostridium, Longibaculum, Ruminococcus and Ruthenibacterium. It has been reported that
the healthy gut microbiome is composed predominantly of the phyla Firmicutes and Bac-
teroidetes [37], and our cluster analysis highlights the prevalent role of the glycosidic
metabolic activities of these two phyla, showing a wider variety of glycosidases able to
hydrolyze some of the most common types of prebiotics.
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Figure 1. Heatmap showing the presence of different glycosidases (indicated as black cells) in metagenome-assembled genomes (MAGs). Specifically, glycosidases capable of degrading
galacto- and fructo-oligosaccharides (GOS and FOS), as well as human milk oligosaccharides (HMOs), are illustrated. Black and white cells indicate the presence and absence of a specific
CAZy family, respectively. Codes corresponding to the CAZy family of each enzyme were assigned. MAGs from Bifidobacterium are highlighted in black. (top) Glycosidase functional
domains corresponding to CAZy families GH5 1, GH5 10, GH5 21, GH5 41, GH58 and GH68 were not identified in MAGs from the species shown in this section of the heatmap (vertical
axis) and are not illustrated. (middle) Glycosidase functional domains corresponding to CAZy families GH5 5, GH5 7, GH5 8, GH5 10, GH5 18, GH5 21, GH5 38, GH30 2, GH30 6, GH30 9,
GH68, GH139 and GH147 were not identified in MAGs from the species shown in this section of the heatmap (vertical axis) and are not illustrated. (bottom) Glycosidase functional
domains corresponding to CAZy families GH5 5, GH5 18, GH5 22, GH5 38, GH5 41, GH30, GH30 9, GH58 and GH147 were not identified in MAGs from the species shown in this section
of the heatmap (vertical axis) and are not illustrated.
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Glycosidase activities from these bacteria corresponded mainly to the CBM32, CBM40,
GH1-5, GH31-42, GH95-110 CAZy families comprising most enzyme classes included in
this study, such as α- and β-galactosidases, fucosidases, fructosidases, hexosaminidases and
sialidases. On the contrary, other species not characteristic of a healthy infant microbiota,
according to Baumann-Dudenhoeffer et al. [16] and Hill et al. [38], lack several GH5
and GH30 subgroups comprising hexosaminidases and fucosidases, indicating a limited
potential ability to metabolize HMOs.

A wide number of glycosidase activities were also found for Bifidobacterium, similar to
those of the above-mentioned non-bifidobacteria species with high metabolic capacities,
belonging to Firmicutes and Bacteroidetes. Moreover, some glycosidases were characteristic
of bifidobacteria (i.e., not present in most MAGs species recovered): GH30 5 fucosidases
were present in B. bifidum, B. breve and B. longum, as well as other non-bifidobacteria
species like B. producta, C. sp. enoides, C. saccharolyticum, P. dentalis and P. xylaniphila,
and L. bacterium strain GAM79. Similarly, GH59 β-galactosidases were characteristic of
B. breve, B. longum and B. pseudocatenulatum, but were also present in C. bolteae, C. sp. enoides,
C. saccharolyticum, F. prausnitzii, R. albus, R. bicirculans and R. champanellensis, and strains
L. sp. YL32 and L. bacterium GAM79. As it can be seen, some characteristic glycosidases
from bifidobacterial were also found in the Clostridium and Ruminococcus genera and novel
strains from Lachnospiraceae, highlighting metabolic similarities between these species and
a higher potential to degrade HMOs and mucins when compared to other microorganisms.

Other non- bifidobacteria species showed a limited number of CAZy families of inter-
est, more limited than those observed for bifidobacteria. In this sense, only GH3 and GH31,
comprising hexosaminidases and α-galactosidases, were found in Mageeibacillus indolicus,
while GH3 was the only relevant domain analyzed in MAGs from Phascolarctobacterium and
Megasphaera genera. The presence of α-galactosidases in these species could be of interest
to metabolize α-GOS commonly added to infant formula due to their potential prebiotic
effect [6]. Interestingly, GH30 3 family involving fucosidases was the only relevant domain
determined in Alistipes communis MAGs. It should be considered that fucosidases have
been described in species from the genus Alistipes [39].

Main glycosidase activities for several species and strains presented in this work
were previously reported in adult metagenomes by other authors involving xylan 1,4-beta-
xylosidase, glucan endo-1,3-beta-D-glucosidase, glucan 1,6-alpha-glucosidase, licheninase,
and cellulase [17]. However, no attempts to elucidate glycosidase profiles of common
prebiotic structures like GOS and FOS were made. Therefore, the results herein presented
provide complementary information to those already reported in the bibliography and
may provide a foundational basis to estimate which prebiotic structures could be more
fermentable by a given species.

To get a general overview of glycosidase activities codified in different MAGs obtained
from groups consuming different prebiotic structures, unsupervised sample distribution
was evaluated by the ANN-based PCA model (Figure 2). Specifically, differences between
MAGs from different Bifidobacterium species (Figure 2A) as well as glycosidase profiles of
MAGs from all identified species (and not just Bifidobacterium, Supplementary Materials
Table S1) according to the host diet (Figure 2B,C), are illustrated. The implementation
of an ANN allows describing as much variance as possible, and the cumulative percent-
age of variance explained by the first five components was 89.2%, which could not be
achieved by conventional PCA. Therefore, this kind of mathematical model could be
especially suitable to find patterns in biological samples, which may yield sparse and
heterogeneous data [26,27]. B. bifidum showed a characteristic glycosidic profile different
from the rest of bifidobacteria (B. adolescentis, B. breve, B. catenulatum, B. dentium, B. longum,
B. pseudocatenulatum, B. scardovii) (Figure 2A). This could be related to the potential ability
of this species to degrade mucins [40]. In addition, glycosidase patterns of B. longum were
distinguished from those of B. adolescentis, considering the absence of overlap in normal
ellipses and the percentages of variance explained.
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Figure 2. Artificial neural network-based principal component analysis (PCA) of glycosidase activities encoded in
metagenome-assembled genomes (MAGs). MAG distribution is illustrated according to two different criteria: char-
acteristic profiles of MAG-recovered Bifidobacterium species (A), differences in MAGs from all identified species (including
not only bifidobacteria) (B) and only bifidobacteria species (C) depending on the diet. GOS: galacto-oligosaccharides, FOS:
fructo-oligosaccharides.
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When interpreting these differences, it should be considered that metabolic activities
of B. bifidum and B. longum subsp. infantis are tailored toward HMOs degradation, while
other bifidobacteria do not encode the same HMOs-specific glycosidases and can degrade
only limited HMOs [41]. In contrast, no characteristic pattern could be elucidated when
grouping MAGs from bifidobacteria and other species identified (Figure 2B,C) according
to the type of diet (breastfed, breastfed + GOS, breastfed + GOS + FOS, infant formula-fed,
infant formula-fed + FOS, infant formula-fed + GOS, infant formula-fed + GOS + FOS and
whole-milk-fed infants as well as fiber-rich diets in adults).

These results indicate the existence of different glycosidase profiles between Bifidobac-
terium species regardless of prebiotic exposure.

3.3. Supervised Classification to Establish Characteristic Glycosidase Profiles of Bifidobacterium Species

To deepen the study of characteristic glycosidases found in Bifidobacterium MAGs,
several supervised classification algorithms were compared, allowing establishing more
robust patterns than the ones suggested by unsupervised projection. The number of MAGs
recovered from B. catenulatum, B. dentium and B. scardovii was not enough to train super-
vised algorithms (Supplementary Materials Table S1), so these models were focused on
B. adolescentis, B. bifidum, B. breve, B. longum, B. pseudocatenulatum. ANN, RF and glmnet
were trained on 70% of MAGs from each Bifidobacterium species and tested on 30% new
samples to ensure the reproducibility of the model. Figure 3 illustrates the architecture of
the ANN model used in this study. In addition, all models were 10-fold cross-validated. To
assess model performance, several estimators were calculated (Supplementary Materials
Table S4). The number of correctly classified MAGs during train and test phases was 97.8
and 91.7% for all models, while cross-validation accuracies for ANN, RF and glmnet were
96.4, 96.4 and 97.1%, respectively. Cross-validation kappa values, a more robust measure of
accuracy that takes into account the possibility of correct classification by chance, for ANN,
RF and glmnet, were 95.2, 96.2 and 96.2%, respectively. Similarly, kappa values obtained
during the test phases were 89.2, 89.1 and 89.1% for ANN, RF and glmnet. A comparative
account of the models was performed (Supplementary Materials Figure S1), highlighting
the absence of statistically significant differences (p > 0.05) accuracies and kappa values
calculated from the resampling distributions of the three algorithms. Additional estimators
calculated include model sensitivity, specificity, precision, recall, F1, and balanced accuracy
during the test phase on new samples.

Sensitivity, defined as the coefficient of the number of true-positive results by the total
number of positives (including false-positives), recall, defined as the coefficient of true
positives between relevant elements (i.e., MAGs from the same bifidobacteria species), and
F1 coefficient, which combines precision and recall in one metric, showed lower values for
B. adolescentis (ranging from 0.63–0.83) than the rest of bifidobacteria in all models. This fact
indicates a lower classification rate for B. adolescentis than the rest of Bifidobacterium species,
revealing the absence of a unique glycosidase pattern for this species. As a consequence,
characteristic glycosidases of B. adolescentis are also characteristic of other bifidobacteria.
However, specificity calculated by dividing the number of true-negative results by the
total number of negatives (including false negatives) presented high values for all species,
above 0.95 (Supplementary Materials Table S4). Interestingly, precision, defined as the
percentage of the model’s positive predictions that are accurate, showed the lowest values
for B. pseudocatenulatum (0.82 for the three models). As a consequence, B. adolescentis
and B. pseudocatenulatum exhibited the lowest balanced accuracies (0.81–0.86 and 0.93,
respectively), defined as the sum of sensitivity and specificity divided by two.
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Figure 3. Artificial neural network (ANN) architecture computed to classify metagenome-assembled genomes (MAGs) of B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum
based on their glycosidase activities. Weights are color-coded by sign (black +, gray -); thickness is in proportion to magnitude.
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These results could be attributed to minor differences existing in the glycosidase pro-
files of B. adolescentis and B. pseudocatenulatum recovered from infant or adult metagenomes
and metabolic similarities between these two species, leading to misclassification of certain
MAGs. Indeed, these two species belong to the same phylogenetic group [42]. Machine
learning trained MAG glycosidase data showed similar performance metrics than pre-
vious models trained on carbohydrate spectral data, highlighting the suitability of this
mathematical approach to elucidate complex patterns within the field of probiotics and
prebiotics [27].

When interpreting these models, it should be considered that RF, glmnet and MLP are
computed differently, although they yielded similar results, highlighting the characteristic
activities of each Bifidobacterium species. These profiles were elucidated by complementary
approaches, and the results from predictive algorithms reinforce each other. The unsuper-
vised method could not properly discriminate between all Bifidobacterium species showing
a lower performance (low percentages of variance explained by the first components).
In contrast, supervised ANN, RF and MLP showed high classification accuracies, above
90% when tested on new samples. This fact may be attributed to the subtle differences
existing between glycosidase domains found in MAGs that could not be properly explained
by PCA-like methods. Therefore, advanced supervised pattern recognition methods are
needed to elucidate the metabolic profiles of bifidobacteria.

To determine the most relevant glycosidase activities in the characteristic profile
of Bifidobacterium species, a variable importance analysis of each model was carried out
(Supplementary Materials Tables S5–S7). The most dominant glycosidase family from
B. adolescentis was GH2 (involving β-galactosidases). The absence of GH20 (comprising
hexosaminidases) was also characteristic of this species, although B. adolescentis shared the
rest of its characteristic glycosidase domains with other Bifidobacterium species, leading
to a lower classification rate (Supplementary Materials Table S4). Pokusaeva et al. [43]
suggested that B. adolescentis is incapable of properly degrading HMOs, agreeing with
our findings.

Relevant families in B. bifidum profiles include GH5 44, GH32, and GH110 (hex-
osaminidases, fructosidases, fructosyl transferases and α-galactosidases). It should be
noted that the GH110 CAZy family was not found in MAGs from other bifidobacteria
(Figure 1), indicating a different hydrolytic profile for B. bifidum that may explain metabolic
differences observed in PCA analysis (Figure 2A). The role of hexosaminidases like β-N-
acetylglucosaminidases on HMOs metabolism has been described by Sakanaka et al. [2].
Specifically, the presence of hexosaminidases reported in B. bifidum, B. breve and B. longum
subsp. infantis genomes has been reported. Hexosaminidases from B. bifidum, showing
high importance coefficients in our machine learning models, could be highly active on
HMOs like lacto-N-triose (LNTri), while those from other species like B. breve could be
active on lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT). It has also been reported
that B. bifidum shows a high HMOs assimilation ability that may contribute to its character-
istic glycosidase profile that favors its persistence in the breastfed infant gut [2,43]. In fact,
previous studies indicate that B. bifidum degrades some HMOs structures more rapidly than
lactose [43]. After host glycans and HMOs degradation, mono– or disaccharides released
are consumed by other species metabolically dependent on these simple sugars [4,44].

Glycosidase profiles of B. breve were characterized by GH1 and GH5 18 families
(comprising β-galactosidases and hexosaminidases hydrolyzing mainly LNT and LNnT
in contrast to those from B. bifidum), and those from B. longum showed high importance
coefficients for β-galactosidases and fucosidases from GH1 and GH30 5 families. Finally,
the presence of the glycosidase families, GH5 44 and GH20 comprising hexosaminidases
and the absence of GH5 18 were characteristic traits from B. pseudocatenulatum. These
enzymes may contribute to the metabolism of lacto-N-biose I (LNB), according to previous
authors [2,45].

We have demonstrated that it is possible to get highly accurate classifications of gly-
cosidase activities from some of the most common Bifidobacterium species based on several
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mathematical approaches. Specifically, ANN, RF and glmnet exhibited high-performance
metrics, indicating a high predictive power. As explained, characteristic glycosidase pro-
files of each bifidobacteria have been elucidated based on the importance coefficients from
the three machine learning models. These models could be generalized and applied to new
genomes from bifidobacteria and related microorganisms in future studies.

Concerning the main limitations of this method, it is possible that some glycosidase
domains of interest may be lost during MAG assembly. However, the study of bifidobacte-
ria MAGs allows comparing metabolic profiles of Bifidobacterium associated with specific
groups of individuals (i.e., following dietary interventions of interest) and assessing the
metabolic complementarity between bifidobacteria and non-bifidobacteria species found
in the same participant.

3.4. Correlation Networks to Elucidate Glycosidase Activities Commonly Associated

To study the associations between different glycosidase activities (i.e., which glycosi-
dase families are usually encoded together in the same MAG), correlation network models
were computed (Figures 4 and 5). The first correlation model (Figure 4) was built using gly-
cosidase activities from all species identified (bifidobacteria or not). Some of the strongest
correlations observed include the positive associations between GH1 and GH4 and between
GH36 and GH42 (involving α- and β-galactosidases). Furthermore, GH139 was positively
associated with GH30 6 and GH147 families (involving β-galactosidases and fucosidases),
and the GH151 family was correlated to CBM40 and GH97 (involving α-galactosidases,
fucosidases and sialidases). In this sense, GH5 44 was associated with GH30 1, GH16, GH5
18 and GH30 2 families and GH59 was positively correlated to GH30 9 and GH5 22 families
(comprising β-galactosidases, fucosidases and hexosaminidases). Similarly, several CAZy
families involving hexosaminidases showed positive correlations: GH5 37 was associated
with GH5 2, GH5 4 and GH5 1, while GH5 1 was associated with GH5 8, and GH5 22 was
associated with GH5 9. It should be noted that all negative correlations were weaker than
the positive ones, and no relevant associations were observed.

A second correlation network was computed to investigate glycosidase associations
only in bifidobacteria MAGs (Figure 5). GH30 9 and GH59 families involving fucosidase and
β-galactosidase activities were positively associated, while a positive association was found
between CBM32 and GH110 (comprising sialidases and α-galactosidases characteristic of
B. bifidum). In addition, GH3 was correlated to GH4; these two CAZy families comprising
hexosaminidases and β-galactosidases. Similar to the previous study, no relevant negative
correlations were observed.

As previously explained, fucosidases and β-galactosidases were strongly correlated
not only in bifidobacteria but in all MAGs analyzed. It should be considered that these
two enzyme families are involved in HMOs metabolism. Specifically, to degrade HMOs,
both β-1,4-galactosidases and two types of fucosidases, 1,2-α-l-fucosidase and 1,3-1,4-α-
l-fucosidase, are needed. Fucosidases were also correlated to sialidases, which may act
on both α-2,3 and α-2,6 linkages found in sialylated HMOs [2]. These results indicate
that glycosidases that may potentially hydrolyze HMOs as well as glycans associated
with mucin, sharing similar monomers, are strongly correlated and frequently found in
the same MAG. Some HMOs-degrading enzymes were also strongly associated with the
α-galactosidases characteristic of B. bifidum, confirming the glycolytic profiles elucidated
for this species in previous sections. It should be noted that α-galactosidases have been
reported only in specific bifidobacterial species [43] and may play a major in the metabolism
of α-GOS like raffinose or stachyose, that are commonly added to infant formula [6].
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Figure 4. Correlation network illustrating positive and negative associations between glycosidase activities capable of
degrading galacto- and fructo-oligosaccharides (GOS and FOS) as well as human milk oligosaccharides (HMOs), encoded
in metagenome-assembled genomes (MAGs) from all species identified (bifidobacteria or not). Blue lines indicate positive
associations, while saffron lines suggest negative associations. Line thickness is in proportion to magnitude. Specific
activities included in each glycosidase family can be found in Supplementary Materials Table S3.
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Figure 5. Correlation network illustrating positive and negative associations between glycosidase activities capable of
degrading galacto- and fructo-oligosaccharides (GOS and FOS) as well as human milk oligosaccharides (HMOs), encoded in
metagenome-assembled genomes (MAGs) from Bifidobacterium. Blue lines indicate positive associations, while saffron lines
suggest negative associations. Line thickness is in proportion to magnitude. Specific activities included in each glycosidase
family can be found in Supplementary Materials Table S3.

4. Conclusions

A total of 1806 metagenome-assembled genomes (MAGs) corresponding to 177 dif-
ferent species have been recovered from 487 infant and adult metagenomes. Most MAGs
recovered were taxonomically identified as Escherichia coli, Faecalibacterium prausnitzii,
and Ruminococcus gnavus. Up to 203 MAGs have been recovered from the following
Bifidobacterium species: B. adolescentis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. longum,
B. pseudocatenulatum and B. scardovii. Glycosidase activities annotation using the carbohydrate-
active enzymes database (CAZy) coupled to mathematical modeling using machine-
learning algorithms allowed elucidating characteristic glycosidase profiles for B. adolescentis,
B. bifidum, B. breve, B. longum and B. pseudocatenulatum MAGs, showing high accuracy
rates (>90%) when tested on an independent set of samples. GH5 44, GH32, and GH110
glycosidase families comprising hexosaminidases, fructosidases, fructosyl transferases
and α-galactosidases were characteristic of B. bifidum, while β-galactosidases and hex-
osaminidases from GH1, GH2, GH5 and GH20 were characteristic of B. adolescentis, B. breve
and B. pseudocatenulatum. Potential hydrolytic profiles of B. longum were characterized
by the presence of GH1 and GH30 families involving β-galactosidases and fucosidases.
Correlation networks of glycosidase activities revealed that glycosidases able to metabolize
α- and β-GOS as well as HMOs were strongly correlated and are frequently present within
the same MAG. The study of Bifidobacterium MAGs allows comparing metabolic profiles of
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species found in individuals following specific dietary interventions as well as assessing
metabolic complementarities between bifidobacteria and non-bifidobacteria species found
in the same participant. The data analysis strategy presented in this work is of particular
interest to gain a better understanding of the carbohydrate metabolism of bifidobacteria,
and this design could be easily translated to other health-promoting microorganisms in
future works.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9051034/s1, Figure S1: Comparative account of different three algorithms
used for classification of metagenome-assembled genomes (MAGs) of B. adolescentis, B. bifidum,
B. breve, B. longum and B. pseudocatenulatum based on their glycosidase activities: random forest
(RF), generalized linear model elastic-net (glmnet) and artificial neural network (ANN). Differences
between models were calculated via their resampling distributions (number of resamples = 10).
a No statistically significant (p > 0.05) differences between models were found; Table S1: Number of
metagenome-assembled genomes (MAGs) recovered (n = 1806) per species and strains identified
(n = 177); Table S2: Number of metagenome-assembled genomes (MAGs) recovered per diet type.
GOS: galacto-oligosaccharides, FOS: fructo-oligosaccharides; Table S3: Glycosidase activities of
interest included in selected CAZy families; Table S4: Sensitivity, specificity, precision, recall, F1
coefficients and balanced accuracy rates for artificial neural network (ANN) random forest (RF) and
generalized linear model elastic-net (glmnet) computed to classify metagenome-assembled genomes
(MAGs) of B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum based on their
glycosidase activities; Table S5: Variable importance coefficients of artificial neural network (ANN)
computed to classify metagenome-assembled genomes (MAGs) of B. adolescentis, B. bifidum, B. breve,
B. longum and B. pseudocatenulatum based on their glycosidase activities. Importance coefficients
were determined by the sum of the product of raw input-hidden and hidden-output connection
weights; Table S6: Variable importance coefficients of random forest (RF) computed to classify
metagenome-assembled genomes (MAGs) of B. adolescentis, B. bifidum, B. breve, B. longum and
B. pseudocatenulatum based on their glycosidase activities. Importance coefficients were determined
by the permutation of the out-of-bag-error; Table S7: Variable importance coefficients of generalized
linear model elastic-net (glmnet) computed to classify metagenome-assembled genomes (MAGs)
of B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum based on their glycosidase
activities. Importance coefficients were determined by calculating the area under the ROC (receiver
operating characteristic) curve.
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