(\) BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Hydroxy-functionalized hyper-cross-linked ultra-microporous
organic polymers for selective CO, capture

at room temperature

Partha Samanta, Priyanshu Chandra® and Suijit K. Ghosh™1:2

Letter

Address:

TIndian Institute of Science Education and Research (IISER), Pune.
Dr. Homi Bhabha Road, Pashan, Pune-411008, India. Fax: +91 20
2589 8022; Tel: +91 20 2590 8076 and 2Centre for Research in
Energy & Sustainable Materials, IISER Pune, Pashan, Pune, India

Email:
Sujit K. Ghosh” - sghosh@iiserpune.ac.in

* Corresponding author
Keywords:

carbon dioxide capture; hyper-cross-linked polymer; metal-organic
framework; microporous organic polymer

Abstract

Beilstein J. Org. Chem. 2016, 12, 1981-1986.
doi:10.3762/bjoc.12.185

Received: 09 July 2016
Accepted: 19 August 2016
Published: 02 September 2016

This article is part of the Thematic Series "Organic porous materials".

Guest Editor: S. Brase

© 2016 Samanta et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Two hydroxy-functionalized hyper-cross-linked ultra-microporous compounds have been synthesized by Friedel-Crafts alkylation

reaction and characterised with different spectroscopic techniques. Both compounds exhibit an efficient carbon dioxide uptake over

other gases like Nj, H, and O, at room temperature. A high isosteric heat of adsorption (Qg) has been obtained for both materials

because of strong interactions between polar -OH groups and CO, molecules.

Introduction

The increase in the earth’s average temperature, also termed as
global warming, is mainly due to the effects of greenhouse
gases. The impacts of global warming includes rising sea level,
more likelihood of extreme events (like floods, hurricanes etc.),
widespread vanishing of animal population, loss of plankton
due to warming seas. There are many heat-trapping greenhouse
gases present in the atmosphere (from methane to water
vapour), but CO, puts us at the greatest risk if it continues to
accumulate in the atmosphere. This is due to the fact that CO,
remains in the atmosphere in a time scale of hundred years in
contrast to other greenhouse gases which leave the atmosphere
with relatively smaller time scale [1]. The CO, long life in the

atmosphere provides the clearest possible rationale for carbon
dioxide capture and storage. Previously, different types of
amine solvents were employed to study the CO, capture, but the
need of high energy to regenerate the amine solutions after CO,
capture, hinders their applications further [2]. In the domain of
porous materials, zeolites, metal-organic frameworks (MOFs),
cage molecules, etc. have been introduced for selective uptake
of CO; [3-5]. In terms of surface area, tuneable porosity and
feasible host—guest interaction, MOFs have scored over other
above mentioned porous materials [6]. But the less hydrolytic
stability of metal-organic frameworks limits their real time ap-

plication [7,8]. So the search for new materials having high sur-
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face area and feasible interaction with carbon dioxide like
MOFs and with high chemical stability have become one of top
priority for researchers.

Microporous organic polymers (MOP) are a relatively new class
of porous materials, constructed from light elements like H, C,
B, N, O etc. having a large surface area, small pore size and low
skeletal density [9-12]. This type of materials has already been
used for various purposes of applications such as gas storage,
gas separation, catalysis, sensing, clean energy, etc. [13-18].
Relatively weaker coordination bonds in MOFs have been
replaced with stronger covalent bonds in this type of porous
compounds. This results in a high chemical stability of the
microporous organic polymers, which is an essential condition
for the real-time application of any compound. The last decade
has witnessed advancements in synthesizing various types of
microporous organic materials including covalent organic
frameworks (COFs), conjugate microporous polymers (CMPs),
porous polymeric networks (PPNs), porous aromatic frame-
works (PAFs), covalent triazine framework (CTFs), etc. [19-
24]. Hyper-cross-linked microporous organic polymers (HCPs)
are a subclass of this type of porous materials. Recently, hyper-
cross-linked MOPs are emerged as a new subclass, synthesized
by hyper-cross linking of basic small organic building blocks by
Friedel-Crafts reaction in the presence of the Lewis acid FeClj
(as catalyst) and formaldehyde dimethyl acetal (FDA) as the
cross linker [25-27]. Here, aromatic small organic compounds
are used to polymerise via C—C cross coupling to produce the
targeted porous and physicochemical stable organic hyper-
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cross-linked polymeric materials. One huge advantage of this
material is the low-cost synthesis, the cost-effective formalde-
hyde dimethyl acetal (FDA), FeCl3 and that organic small mole-
cules can produce very low cost materials with high yield [28].
Hyper-cross-linking prevents the close packing of polymeric
chains in this type of material to impart the intrinsic porosity.
Hyper-cross-linked polymers have been applied in the field of
gas storage, catalysis, separation and recently also in CO,
capture [29-32]. The increasing environmental pollution due to
carbon dioxide, urges us to develop new materials with high
stability, which are cost-effective and demonstrate a high effi-
ciency in CO; capture. Based on the interaction of Lewis basic
sites with carbon dioxide it has been observed that porous mate-
rials functionalised with -NH; groups or —OH groups exhibit a
selective uptake of CO, in contrast to other gases [33,34]
(Scheme 1). Inspired by this we have designed and synthesized
two hydroxy-functionalised hyper-cross-linked microporous
organic polymers for selective CO, capture at room tempera-
ture. Both compounds (HCP-91 and HCP-94) were synthesized
via hyper-cross-linked C—C coupling of hydroxyl-function-
alised aromatic rings by using a Friedel-Craftys reaction. At
different temperatures (273 K and 298 K) gas (CO,, N,, H; and
0,) adsorption experiments were carried out for both com-
pounds. HCP-91 and HCP-94 showed selective CO, capture at
both temperatures over other flue gases.

Results and Discussion
For the synthesis of HCP-91 and HCP-94, we used 4-phenyl-
phenol and 9-(hydroxymethyl)anthracene, respectively

Functionalized
Hyper-Crosslinked
Polymer (HCP)

Scheme 1: Schematic representation of selective CO, capture in a porous material.
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(Figure 1). HCP-91 and HCP-94 have been synthesized by

using a Friedel-Crafts alkylation reaction. The thus obtained a)

as-synthesized compounds were washed repeatedly with _0_o._

dimethylformamide (DMF), methanol, water, chloroform, ©

dichloromethane and tetrahydrofuran (THF) to obtain FeCl,

phase-pure hyper-cross-linked polymers. Both compounds Dichloroethane

were immersed in a CHCI3—-THF (1:1) mixture and kept for b) OH

4-5 days to exchange the high boiling solvents occluded inside

the framework with low boiling CHCl3 and THF. The solvent- O 0.0,

exchanged phases of HCP-91 and HCP-94 were then heated at FeCl,

~100 °C under vacuum to get the guest-free desolvated phases Dichloroethane

of the respective compounds. Infrared (IR) spectroscopy was O

done first to characterize the constituents of both compounds.

A broad peak at ~3000-3500 cm™! and two sharp peaks at OOO O OL HCP-94
~1465 and =1527 cm™! can be observed in HCP-91 correspond- FeCl, p .
ing to the stretching frequencies of ~OH groups and aromatic OH Dichloroethane g .’
C=C double bonds, respectively (Figure 2a). Similar to the 3

HCP-91, peaks corresponding to —OH groups and aromatic

C=C double bonds were found at ~3300-3500 cm~! and ~1643 Figure 1: a) General synthesis scheme for hyper-cross-linked poly-
_ . . . mers (HCPs) and b) synthesis schemes for HCP-91 and HCP-94.
and 1500 cm™ !, respectively (Figure 2a). Meanwhile a thermo- { ) el
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Figure 2: a) Infra-red spectra of HCP-91 (dark yellow) and HCP-94 (purple); b) N, adsorption isotherms for HCP-91 (wine red) and HCP-94 (green) at
77 K; c) SEM image of HCP-91 and d) SEM image of HCP-94.
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gravimetric analysis (TGA) was performed with both as-synthe-
sized and desolvated phases for HCP-91 and HCP-94. Because
of the occluded solvents in the as-synthesized phases of HCP-
91 and HCP-94, an initial weight loss of ~8% and =10% was
observed in the TGA, respectively (Figures S1 and S2 in Sup-
porting Information File 1). Upon desolvation guest-free phases
were obtained and in the TG curve a negligible loss was ob-
tained up to ~350 °C and =250 °C for HCP-91 and HCP-94, re-
spectively (Figures S1 and S2). As confirmation of the local
structures of the compounds, we performed solid state
13C NMR measurements (Figures S3 and S4). To investigate
the morphology of both compounds we performed a field
emission scanning electron microscope (FESEM) study. The
morphology of HCP-91 can be described as agglomerated parti-
cles consisting of small particles without any distinct shape
(Figure 2¢ and Figure S5). But in case of HCP-94, a clear
capsule-type of morphology was found in the FESEM
(Figure 2d and Figure S6).

After all characterizations and proper desolvation of both com-
pounds, we investigated their porosity. First, we measured the
N, adsorption at 77 K. The N, uptake for HCP-91 was found to
be 595 mL/g, whereas that for HCP-94 was 342 mL/g
(Figure 2b). Both low temperature N, adsorption isotherms
were of type-I category and a hysteresis was observed in de-
sorption profiles. The hysteresis in the desorption curves can be

explained in terms of a network swelling in the presence of
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condensed nitrogen [34]. The Howarth—Kawazoe pore-size dis-
tributions were calculated from low-temperature N, adsorption
data. HCP-91 and HCP-94 exhibit pore sizes of 0.59 and
0.46 nm, respectively (Supporting Information File 1, Figures
S7 and S8). According to recent literature, both compounds
belong to the ultra-microporous material domain as pore sizes
for the above mentioned compounds are lesser than 0.7 nm [35].
Carbon dioxide uptakes of 365 mL/g and 224 mL/g for HCP-91
and HCP-94, respectively, were observed when the CO, adsorp-
tion was carried out at 195 K (Figure 3a). The hysteresis in the
CO, desorption profile in case of both compounds accounts for
the interaction between hydroxy groups and CO, molecules
[33,34]. Since both compounds are ultra-microporous in nature,
BET (Brunauer—-Emmett—Teller) surface areas were calculated
from the CO, adsorption profile at 195 K (Supporting Informa-
tion File 1, Table S1).

The effective CO, uptake at 195 K encouraged us to perform a
CO, adsorption study at room temperature. HCP-91 and HCP-
94 both exhibit an adequate amount of carbon dioxide uptake at
273 K and 298 K (Figures S9 and S10, Supporting Information
File 1). At 273 K the CO, uptake was 74 mL/g for HCP-91 and
65 mL/g for HCP-94 at 1 bar (Figure 3b,d). In the case of CO,
adsorption at 298 K a similar uptake has been observed for both
compounds: 43 mL/g (HCP-91) and 45 mL/g (HCP-94) at 1 bar
(Figure 3c,e). The uptake amounts of CO, at room temperature

and 1 bar are comparable with other well performing microp-
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Figure 3: a) CO, adsorption isotherms for HCP-91 (purple) and HCP-94 (green) at 195 K; b) adsorption isotherms of CO, (wine red), N, (dark
yellow), Hy (green) and O, (blue) for HCP-91 at 273 K; c¢) adsorption isotherms of CO2 (purple), N, (orange), H, (green) and O (blue) for HCP-91 at
298 K; d) adsorption isotherms of CO5 (green), Ny (blue), Ho (dark yellow) and O, (orange) for HCP-94 at 273 K; e) adsorption isotherms of CO,
(wine red), Ny (dark yellow), H, (green) and O, (blue) for HCP-94 at 298 K and f) Qg plots for HCP-91 (dark yellow) and HCP-94 (purple).
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orous polymer compounds. Meanwhile adsorption of other
gases like nitrogen, hydrogen and oxygen (constituents of air)
were performed at 273 K and 298 K and 1 bar. Interestingly
very negligible amounts of uptake were obtained for each of
them (Figure 3b—e). This type of CO, separation over other flue
gases at room temperature can be attributed to the high interac-
tion of carbon dioxide with the framework. Both hyper-cross-
linked polymers have hydroxy groups which are polar in nature.
On the other hand CO, molecules have a quadrupole moment,
which renders a positive charge density over the carbon atom.
So the polar hydroxy groups can offer a strong dipole-quadru-
pole moment interaction with carbon dioxide molecules. For a
better understanding of the interaction between CO, and our
HCPs materials, we calculated the isosteric heat of adsorption
(Qyy) for CO,. Heat of adsorptions for both compounds has been
calculated from CO, adsorption data at 273 K and 298 K by
using the Clausius—Clapeyron equation (Figure 3f) [33]. The Oy
values for HCP-91 and HCP-94 were found to be 30.7 kJ mol™!
and 32 kJ mol™!, respectively. According to the previous
reports, this high isosteric heat of adsorption values for both the
materials indicates the strong interaction of it with CO, mole-
cules.

Conclusion

In this report, we have synthesized two hyper-cross-linked
ultra-microporous organic polymers (HCP-91 and HCP-94) by
following a cost-effective and easy synthesis route. One step
Friedel—Crafts syntheses were carried out by using hydroxy-
functionalized organic building blocks. Both compounds were
characterised thoroughly by IR spectroscopy, TG analysis, solid
state 13C NMR technique, FESEM and adsorption measure-
ments. An efficient selective carbon dioxide capture was ob-
tained for both compounds over other flue gases. High Oy,
values for both compounds ascribed the strong dipole—quadru-
pole interaction between polar —OH groups and CO, molecules.
We believe that this result will stimulate further design and fab-
rication of such low cost materials to be used as carbon dioxide

capture materials.

Supporting Information

The Supporting Information contains the experimental
section, thermo-gravimetric analysis curves, solid state

13C NMR, FESEM images, pore size distribution plots and
room temperature CO, adsorption plots.

Supporting Information File 1
Experimental and analytical data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-12-185-S1.pdf]
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