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Background-—Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis
development; however, little is known about the regulation of PLTP. The effect of hepatic prodomain of furin (profurin) expression
on PLTP processing and function is investigated.

Methods and Results-—We used adenovirus expressing profurin in mouse liver to evaluate PLTP activity, mass, and plasma lipid
levels. We coexpressed PLTP and profurin in human hepatoma cell line cells and studied their interaction. We found profurin
expression significantly reduced plasma lipids, plasma PLTP activity, and mass in all tested mouse models, compared with controls.
Moreover, the expression of profurin dramatically reduced liver PLTP activity and protein level. We further explored the mechanism
using in vivo and ex vivo approaches. We found that profurin can interact with intracellular PLTP and promote its ubiquitination and
proteasomal degradation, resulting in less PLTP secretion from the hepatocytes. Furin does not cleave PLTP; instead, it forms a
complex with PLTP, likely through its prodomain.

Conclusions-—Our study reveals that hepatic PLTP protein is targeted for proteasomal degradation by profurin expression, which
could be a novel posttranslational mechanism underlying PLTP regulation. ( J Am Heart Assoc. 2018;7:e008526. DOI: 10.1161/
JAHA.118.008526.)
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P hospholipid transfer protein (PLTP) expression is upreg-
ulated in different pathological conditions associated

with an increased risk of coronary heart disease (CHD), such
as obesity,1,2 insulin resistance,3 and type 2 diabetes

mellitus.4 Fifteen years ago, we reported that serum PLTP
activity was increased in patients with CHD.5 Despite many
unresolved questions, we have since suggested that PLTP
might be a therapeutic target for CHD. In the past decade,
most human studies showed a positive association between
plasma PLTP activity and atherosclerosis.6–9 Using a PLTP
gene score, constructed by a combination of 2 PLTP tagging
single-nucleotide polymorphisms, Vergeer et al reported that
PLTP gene variation, which confers lower hepatic PLTP
transcription and plasma PLTP activity, leads to decreased
risk of cardiovascular events among 5 cohorts comprising a
total of 4658 cases and 11 459 controls.10 In the Framing-
ham Heart Study, which comprised a total of 2679 partici-
pants with 187 first events being ascertained during
10.4 years of follow-up, Robins et al found that higher plasma
PLTP activity predicted a first cardiovascular event, defined as
fatal or nonfatal CHD and stroke, among men.11 Moreover,
PLTP activity is also positively correlated with left ventricular
systolic dysfunction.12,13 Recently, we found that, after
controlling for a variety of baseline variables, plasma PLTP
activity levels were a strong and independent predictor of all-
cause mortality in 5 years, and higher PLTP activity had higher
mortality.14 Contradictorily, PLTP mass was lower in a small
group of patients with CHD compared with controls,15
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although it seems clear that the plasma PLTP protein concen-
tration does not represent the preferred marker of PLTP-
associated risk.16,17 In addition, reported effects of PLTP on
peripheral artery disease are both limited and inconsistent.18,19

In mouse models, it has been demonstrated that global
PLTP deficiency reduces atherosclerotic lesion size,20

whereas its overexpression shows the opposite effect.21

Global PLTP deficiency in mice is also associated with a
reduced thrombotic response22 and a reduced abdominal
aortic aneurysm.23 In rabbits, overexpression of PLTP
increases atherosclerotic lesions after a high-fat diet feeding,
compared with controls.24 In general, PLTP is a risk factor of
atherosclerosis in animal models.

Proprotein convertase subtilisin/kexins (PCSKs) belong to
a family of calcium-dependent serine endopeptidases. This
family is composed of 9 members, including PCSK 1 to 9.
PCSK3, also known as furin, is synthesized as prefurin. The
“pre” signal peptide is removed in the endoplasmic reticulum
(ER), and the full-length protein (amino acids 25–794;
110 kDa) is further processed by autocleavage in the
secretory pathway to generate the N-terminal prodomain
(prodomain of furin [profurin]; amino acids 25–107; 14 kDa)
and mature, enzymatically active furin-cat (amino acids 108–
794; 96 kDa), containing a C-terminal membrane binding
domain25 (Figure S1). Furin-cat is a type I transmembrane
protein cycling between the Golgi, plasma membrane, and
lysosome compartments, whereas profurin undergoes rapid
intracellular degradation.25 It is well known that proprotein
convertases can mediate processing of various cellular
proteins. Profurin is effective in inhibiting the processing of
various cellular precursors, including nerve growth factor,26

vascular endothelial growth factor-C,27 and beta-amyloid-
converting enzyme1.28 Treatment with profurin markedly
reduces C57BL/6 and low-density lipoprotein (LDL) receptor

knockout mouse plasma lipid levels.29,30 Notably, profurin
expression inhibits PCSK3, PCSK5, and PCSK6.26,29

Although PLTP is one of the major modulators of lipopro-
tein metabolism and the development of atherosclerosis, little
is known about the regulation of PLTP. In this study, we
investigated an unexpected finding that plasma PLTP activity
can be dramatically suppressed by profurin expression in the
liver, and we explored the mechanism.

Methods
We agree to make the data and materials available on request.
The corresponding author, Xian-Cheng Jiang, PhD, at Down-
state Medical Center, State University of New York, will
maintain availability of such data and materials.

Mice and Diets
LDL receptor knockout mice, apolipoprotein E (apoE)
knockout mice, and wild-type (WT) mice (8 weeks old) on
a C57BL/6 background were purchased from Jackson
Laboratory (Bar Harbor, ME). Human PLTP transgenic mice
were a gift from Dr R. de Crom (Erasmus Medical Center,
the Netherlands). Animals were on a homogeneous C57BL/
6 background (9 generation backcrosses). Experimental
animals were housed in a temperature- and humidity-
controlled room with a 12:12-hour light-dark cycle. We used
both male and female mice (10 weeks old). Mice were fed a
chow diet. Mouse adenovirus treatment included control
adenovirus without a transgenic expression cassette (AdV-
null) or adenovirus encoding human profurin (AdV-profurin;
291011 viral particles/mouse) via the tail vein (n=6 in each
group). Experiments involving animals were conducted with
the approval of State University of New York Downstate
Medical Center Institutional Animal Care And Use Commit-
tee. The procedures followed were in accordance with
institutional guidelines.

Antibodies and Materials
Monoclonal antibody for human PLTP was a gift from Dr John
Albers (Department of Medicine, Northwest Lipid Metabolism
and Diabetes Research Laboratories, University of Washing-
ton, Seattle, WA). Antibodies against Flag, b-actin, ubiquitin,
and albumin are from Sigma and Abcam. AdV-profurin and
AdV-null were generated as previously described.29 Complete
protease inhibitor cocktail tablets were purchased from Roche
(05892970001). Nitrobenzoxadiazole (NBD)-labeled phospho-
ethanolamine (N-360) was purchased from Molecular Probe
(Life Technologies). MG132 (SML1135) was purchased from
Sigma (Merck, Germany).

Clinical Perspective

What Is New?

• Liver prodomain of furin expression dramatically suppresses
plasma phospholipid transfer protein activity, resulting in
reduction of atherosclerosis in mouse models.

• Hepatocyte prodomain of furin expression reduces
apolipoprotein B–containing secretion through promoting
phospholipid transfer protein proteasomal degradation.

What Are the Clinical Implications?

• Phospholipid transfer protein liver-specific inhibitor, such as
prodomain of furin, could be a novel therapeutic approach in
the effort to moderate plasma very-low-density lipoprotein/
low-density lipoprotein levels.
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Lipid Assays
Plasma samples were collected on day 3 after adenovirus
injection. Mice were fasted for 4 hours and bled from the
retro-orbital plexus under isoflurane anesthesia using hep-
arinized microcapillary tubes. Blood was centrifuged at

10 000g for 10 minutes at 4°C, and plasma was separated
and used for the analysis and/or stored at �70°C. Total
cholesterol and phospholipids were determined using com-
mercially available kits (Wako Pure Chemical Industries Ltd,
Richmond, VA).
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Figure 1. Adenovirus (AdV)–prodomain of furin (profurin) treatment reduces plasma and hepatocyte
phospholipid transfer protein (PLTP) activity, as well as plasma lipid levels. Low-density lipoprotein receptor
(LDLr) knockout (KO), apolipoprotein E (ApoE) KO, and wild-type (WT) mice were injected with AdV-null and
AdV-profurin. Plasma was collected on day 3. A, LDLr KO mouse PLTP activity measurement. B, ApoE KO
mouse PLTP activity measurement. C, WT mouse plasma PLTP activity measurement. D, PLTP activity in
primary hepatocyte homogenate. E, PLTP activity in primary hepatocyte culture medium. F, Liver PLTP
mRNA expression measured by real-time polymerase chain reaction. G, Plasma total cholesterol levels. H,
Plasma total phospholipid levels. Values are mean�SEM (n=6). *P<0.001.
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PLTP Activity Assay
PLTP activity was determined following the method reported
previously, with brief modification.31 Before the assay, the
donor and acceptor were prepared. The donor liposome labeled
with NBD-phosphoethanolamine was in a stable and self-
quenched status before use. The donor (3 lL) and acceptor
(3 lL) were combined with plasma (3–5 lL) or concentrated
cultured media (3–10 lL) in a final volume of 100 lL buffer
(10 mmol/L Tris, 0.15 mol/L NaCl, 2 mmol/L EDTA, pH=7.4)
at 37°C in a 96-well black microplate to allow the transfer of
NBD-phosphoethanolamine mediated by PLTP. The fluores-
cence was detected every 10 minutes using a multifunctional
microplate reader (Infinity F200; TECAN, Austria; excitation,
465 nm/emission, 535 nm). The transfer rate was expressed
as pmol/lL per minute.

Primary Hepatocyte Isolation
Primary hepatocyte was isolated from WT and human
PLTP transgenic mice on day 3 after AdV-null and AdV-profurin
injection. The procedure was same as we reported before.20

Cell Culture and Transfection
The human hepatoma cell line (Huh7) was cultured in 5% CO2

at 37°C in DMEM containing 100 U/mL penicillin and

100 lg/mL streptomycin supplemented with 10% (v/v) fetal
bovine serum (Invitrogen). The cells were transfected with
jetPEI (PolyPlus), according to the manufacturer’s instruc-
tions. For 1 well of a 24-well plate, 1 lg of DNA (600 ng of
PLTP-Flag or cholesteryl ester transfer protein-Flag plasmid,
400 ng of pcDNA with profurin or a-1 antitrypsin Portland
variant plasmid) and 2 lL of jetPEI were used. The culture
media were changed to serum-free DMEM at 24 hours after
transfection. The medium was collected at 48 hours
after transfection. The cells were lysed and collected after
centrifugation at 12 000g for 10 minutes at 4°C. For MG132
treatment, Huh7 cells were treated with 1 lmol/L MG132 for
7 hours.

Protein Isolation, Electrophoresis, and Western
Blot Analysis
Total protein extraction from mouse liver and cultured cells
for Western blot analysis was described previously.32 Proteins
were isolated using cell lysis buffer with complete protease
inhibitor cocktail tablets and PhoStop cocktail, which pre-
serves phosphorylated sites in the presence of protease
inhibitors. Densitometry analysis was conducted using Image-
Pro Plus software, version 6.0 (Media Cybernetics Corp,
Bethesda, MD).
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Figure 2. Adenovirus (AdV)–prodomain of furin (profurin) treatment reduces plasma phospholipid
transfer protein (PLTP) activity and plasma lipid levels. Human PLTP transgenic mice (male and female)
were injected with AdV-null and AdV-profurin. Plasma was collected on day 3. A, Plasma PLTP activity
assay. B, Plasma total cholesterol levels. C, Plasma total phospholipid levels. D, Fast protein liquid
chromatography, male mouse plasma cholesterol distribution. Values are mean�SEM (n=6). *P<0.001.
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PLTP mRNA Measurement
Total RNA from different tissues was extracted with RNeasy
Mini kit reagents (Qiagen). RNA (2 lg) was reverse tran-
scribed using a kit from Applied Biosystems, and PLTP mRNA
levels were determined by real-time polymerase chain reac-
tion, as we did previously.33 The primers used for reverse
transcription–polymerase chain reaction were as follows:
PLTP forward, 5CATGCGGGATTCCTCACC3; and PLTP reverse,
5GAGGGGGCACTACAGGCTAT3.

Statistical Analysis
Results are expressed as mean�SEM. The statistical signifi-
cance of the difference between 2 data means was determined
with a 2-tailed exact Mann-Whitney test, and differences
among multiple groups were assessed by 1-way ANOVA,
followed by the Student-Newman–Keuls test. A difference for
which P was <0.05 was considered statistically significant.

Results

Hepatic Profurin Expression Reduces Plasma
PLTP Activity, Protein, and Plasma Lipids
In our previous study, we found that hepatic profurin
expression significantly reduces plasma cholesterol,

triglyceride, apolipoprotein B (apoB), and apolipoprotein A-I
levels in LDL receptor knockout mice, resulting in reduction of
atherosclerotic lesion formation.30 The lipid-lowering effects
of profurin are not completely understood. However, the
phenotype of profurin expression is reminiscent of hepatic
PLTP deficiency in mice.34,35 Therefore, we hypothesized that
profurin is involved in PLTP regulation. First, we measured
plasma PLTP activity in LDL receptor knockout and apoE
knockout mice and found that AdV-profurin treatment
dramatically reduces plasma PLTP activity in these mice,
compared with controls (Figure 1A and 1B). AdV-profurin
treatment also significantly reduced plasma cholesterol levels,
apoB levels, and atherosclerotic lesions in apoE knockout
mice (Figure S2A through S2C). The results were similar to
those obtained from LDL receptor knockout mice.30

Then, we repeated the previously described experiments in
WT (male, C57BL/6) mice and measured plasma and liver
PLTP activity in the mice. We found that AdV-profurin
treatment also dramatically reduced plasma PLTP activity
(Figure 1C). Consistently, profurin decreased PLTP activity of
primary mouse hepatocytes in both lysates and culture media
(Figure 1D and 1E). However, profurin expression had no
effect on liver PLTP mRNA expression (Figure 1F), indicating a
posttranslational effect on PLTP activity. In addition, AdV-
profurin treatment substantially reduced plasma cholesterol
and total phospholipid levels (Figure 1G and 1H), which are in
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Figure 3. Adenovirus (AdV)–prodomain of furin (profurin) treatment reduces plasma and liver phospholipid transfer protein (PLTP). Human
PLTP transgenic mice were injected with AdV-null and AdV-profurin. Plasma was collected on day 3. A, The effect of AdV-profurin on plasma
PLTP (n=5). The liver homogenates were harvested for Western blot analysis from male and female mice (n=4). B and C, The effect of AdV-
profurin on male and female PLTP transgenic mouse hepatic PLTP. Values were presented as mean�SEM. *P<0.05.
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line with the lipid phenotype seen in hepatic PLTP-deficient
mice.36 Similar results were observed in female C57BL/6
mice (Figure S3).

We next used human PLTP transgenic mice to perform
similar experiments for the following reasons: (1) to test the
interaction of human profurin and human PLTP in vivo;
(2) antibody excellent for human PLTP detection is on our
hand; (3) to exclude the possibility that profurin reduces PLTP
expression at a transcriptional level; and (4) to confirm the
results observed in LDL receptor knockout, apoE knockout,
and WT mice. In fact, AdV-profurin treatment dramatically
reduced plasma PLTP activity (Figure 2A), plasma total
cholesterol (Figure 2B), and total phospholipids (Figure 2C)
in both male and female PLTP transgenic mice. We also
measured lipoprotein distribution using fast protein liquid
chromatography and found both non–high-density lipoprotein
(HDL)-cholesterol and HDL-cholesterol were dramatically
reduced (Figure 2D).

To further determine human PLTP protein level in the
plasma of PLTP transgenic mice, we performed

immunoblotting using a specific anti-human PLTP monoclonal
antibody. Actually, the plasma PLTP protein level was
significantly reduced after profurin treatment (Figure 3A).
Moreover, PLTP protein level in liver homogenate from human
PLTP transgenic male and female mice was measured.
Accordingly, AdV-profurin treatment significantly decreased
intracellular PLTP protein levels in the liver, compared with
controls (Figure 3B and 3C).

Profurin Expression Promotes Intracellular PLTP
Degradation
To investigate how expressed profurin decreases PLTP
activity, we coexpressed profurin in increasing amounts with
PLTP-Flag (with a C-terminal Flag tag that did not interfere
with protein activity) in Huh7 cells, a human hepatoma cell
line, and found that PLTP secretion was reduced in the culture
media and lysate in a dose-dependent manner (Figure 4A).
However, profurin had no effect on cholesteryl ester transfer
protein, a protein in the same gene as PLTP (Figure 4B). We
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Figure 4. Effect of prodomain of furin (profurin) on cellular phospholipid transfer protein (PLTP) levels and
apolipoprotein B (apoB) secretion. Human hepatoma cell line (Huh7) cells were cotransfected by PLTP-Flag
(600 ng) or cholesteryl ester transfer protein (CETP)-Flag (600 ng) and different concentrations of profurin
expression vectors (0, 50, 100, 200, and 400 ng) with pcDNA control vector (400, 350, 300, 200, and
0 ng). After 2-day transfection, medium was collected and cells were lysed. PLTP-Flag or CETP-Flag and
profurin protein levels (anti–enhanced green fluorescent protein) were measured by Western blot analysis.
A, The effect on PLTP. B, The effect on CETP. Blots are representative of 3 experiments. Huh7 cells were
treated with adenovirus (AdV)-profurin, then PLTP activity and apoB in the cell culture medium were
measured. C, PLTP activity. D, ApoB levels measured by ELISA (Mybiosource, ABG20796). Values are
mean�SEM (n=5). *P<0.05.
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next evaluated profurin expression on apoB secretion, a PLTP
involved process20,37,38; we found that AdV-profurin treated
Huh7 cells reduced cell PLTP activity and apoB secretion
(Figure 4C and 4D).

We then hypothesized that profurin promotes the intracel-
lular degradation of PLTP. Cultured cells expressing PLTP in
the presence of MG132, a specific and potent proteasome
inhibitor, resulted in significantly increased amount of PLTP
protein (Figure 5A, lane 4 versus lane 2). However, cultured
cells coexpressing profurin and PLTP showed less reduction of
PLTP protein when they were treated with MG132 (Figure 5A,
lane 5 versus lane 4), compared with absence of MG132
(Figure 5A, lane 3 versus lane 2), indicating at least protea-
somal degradation is involved in this process.

Lanes 4 and 5 of Figure 5A demonstrate multiple forms of
PLTP protein, consistent with the ubiquitination and possible
degradation products. To test it, we transfected Huh7 cells
with PLTP-Flag, which were further incubated with MG132 or
vehicle. The anti-ubiquitin antibody was used to do the
coimmunoprecipitation assay, and PLTP was shown to be
highly ubiquitinated (Figure 5B).

To see whether profurin interacts with PLTP, we coex-
pressed PLTP-Flag and HA-tag-furin (with an N-terminal HA tag
that did not interfere with activity) in Huh7 cells. We found
that anti-HA-tag antibody can pull down a complex that
contains PLTP (Figure 5C). HA was linked to the N-terminal of
furin, which can be autocleaved into 2 parts (HA-profurin and
furin-cat); thus, the interaction between furin and PLTP is
most likely through profurin.

It is known that profurin expression inhibits furin (PCSK3),
PCSK5, and PCSK6.26,29 Besides the direct interaction of
profurin on PLTP degradation, are these protein convertases
involved in the reduction of PLTP by profurin? a-1 Antitrypsin
Portland variant is a general protein convertase inhibitor,
whereas prodomain of PCSK5 is an inhibitor for both PCSK3
and PCSK5. We coexpressed PLTP-Flag and plasmid contain-
ing either a-1 antitrypsin Portland variant cDNA or prodomain
of PCSK5 in Huh7 cells and found both a-1 antitrypsin
Portland variant and prodomain of PCSK5 have no effect on
intracellular PLTP levels (Figure 6A and 6B). Thus, profurin
specifically mediates PLTP intracellular degradation, which is
not likely through its ability to inhibit the proprotein conver-
tase activities.

Can expression of profurin affect ER stress, which
mediates apoB degradation?39 To answer this question, we
measured the mRNA levels of binding immunoglobulin
protein and X-box binding protein 1s, which are both ER
stress-related proteins; after AdV-profurin treatment, we
found that X-box binding protein 1s mRNA was significantly
reduced, whereas binding immunoglobulin protein had no
change (Figure S4). Thus, ER stress-associated apoB degra-
dation seems not play a role here.

To further test the influence of profurin expression on
intracellular PLTP, we also isolated primary hepatocytes from
AdV-null and AdV-profurin treated PLTP transgenic mouse
liver, and then treated with MG-132 or vehicle. We found that
MG-132 treatment can prevent profurin-mediated PLTP
degradation in hepatocytes (Figure 7A and 7B).

To test the observed phenotype is related with endogenous
furin, we measured plasma PLTP activity in liver-specific furin-
deficient mice.40 Indeed, the deficient mice have significantly
higher PLTP activity in the circulation (Figure 7C). It is
possible that furin could decrease PLTP expression by
cleaving it. However, our results showed it is unlikely to
happen. We incubated recombinant human PLTP-Flag with
different concentrations of recombinant HA-tag-furin for

A

B
Vector

PLTP-flag
HA-furin
Input

IB: anti-flag

IP: anti-HA
IB: anti-flag

+    +           +
+    +

+     +

C

pcDNA

Figure 5. Effect of prodomain of furin (profurin) on cellular
phospholipid transfer protein (PLTP) degradation. A, Effect of
MG132 on PLTP-Flag protein level in human hepatoma cell line
(Huh7) cell lysates cotransfected with or without profurin. B, PLTP
is polyubiquitinated after MG132 treatment in Huh7 cells, which
was validated by coimmunoprecipitation using an anti-ubiquitin
antibody, and then Western blot analysis was performed with an
anti-Flag antibody. C, Furin forms a complex with PLTP. HA-tag-
furin/PLTP-Flag complex was coimmunoprecipitated using an
anti-HA tag antibody, and then Western blot analysis was
performed with anti-Flag antibody. Blots are representative of 3
experiments. IB indicates immunoblot.
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4 hours. Then, Western blot analysis was performed with an
anti-Flag antibody, and no PLTP cleavage was detected
(Figure 7D).

Discussion
We reported previously that adenovirus-mediated hepatic
profurin expression resulted in a significant reduction of
atherosclerotic lesion development and plasma LDL-choles-
terol in LDL receptor knockout mice, despite the fact that
hepatic profurin expression markedly decreased HDL-
cholesterol.29 Furthermore, metabolic studies revealed lower
secretion of apoB and triglycerides in very-low-density
lipoprotein (VLDL) particles. More important, short-term
hepatic profurin expression did not result in hepatic lipid
accumulation.30 However, the underlying mechanism by which
profurin decreases apoB-containing lipoproteins is unknown.

In this study, we disclosed an interaction between profurin
and PLTP. We found the following: (1) profurin significantly
and dramatically reduces plasma PLTP activity in all tested
mouse models, including LDL receptor knockout, apoE
knockout, and WT mice, compared with controls; (2) profurin
decreases PLTP at posttranslational level; (3) profurin pro-
motes PLTP ubiquitination and ER/proteasome-associated
degradation; and (4) furin can form a complex with PLTP, likely
through profurin, and furin cannot mediate PLTP cleavage.

One of the surprising findings is that hepatic profurin
expression reduces plasma PLTP activity (Figure 1A through
1C; Figure 2A), and this is because of reduction of PLTP mass

in the circulation (Figure 3A). PLTP belongs to a family of lipid
transfer/lipopolysaccharide-binding proteins, including
lipopolysaccharide-binding protein, bactericidal/permeability-
increasing protein, and cholesteryl ester transfer protein.41

PLTP can be secreted by the liver.35 Human PLTP transgenic
mice, with a high level of liver expression, showed a 2.5- to
4.5-fold increase in PLTP activity in plasma, compared with
controls.42 The reason to use human PLTP transgenic mice in
this study is that human PLTP monoclonal antibody is
available. Indeed, we observed that human PLTP expression
in primary hepatocytes from PLTP transgenic mice was
suppressed by profurin treatment (Figure 3B and 3C). We
believe that same situation also occurs in WT mice, when
profurin is expressed in the liver. More important, the
observed phenotype is related with endogenous furin,
because liver-specific furin-deficient mice had significantly
higher PLTP activity in the circulation (Figure 7C).

Why is regulation of PLTP important? We have found that
PLTP deficiency causes a significant impairment in hepatic
secretion of VLDL in mouse models.20 Likewise, it has been
reported that animals expressing human PLTP transgene
exhibit hepatic VLDL overproduction.43,44 The group of
Lagrost and colleagues24 found that human PLTP transgenic
rabbits showed a significant increase of LDL, but not of HDL,
in the circulation. Okazaki et al reported that, in concert with
the increase in triglyceride synthesis, the increased PLTP
activity permits triglyceride incorporation into large VLDLs.45

Dashti and colleagues found that PLTP played a major role in
the initiation of apoB-containing particle assembly in mouse
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primary hepatocytes.37 More important, human genome-wide
association studies and many others have shown that human
PLTP levels are positively associated with plasma triglyceride
and apoB levels.7,46 We reason that PLTP activity is involved in
promoting VLDL lipidation, because PLTP activity and triglyc-
eride enrichment are 2 factors regulating PLTP-mediated HDL
enlargement,47,48 a process similar to VLDL lipidation.49

Furin is one of the proprotein convertases responsible for
the proteolytic cleavage of certain proteins for their biological
functions. For instance, furin reduces endothelial lipase
function through direct inactivating cleavage of the enzyme

and through activating cleavage of angiopoietin-like protein 3,
an endogenous inhibitor of endothelial lipase.29 Furin could
decrease PLTP expression by cleaving it. However, our results
showed it is unlikely to happen (Figure 7D). Thus, furin/PLTP
interaction does not result in proteolytic cleavage of PLTP by
furin; rather, it results in targeting PLTP for intracellular
degradation. Moreover, this degradation seems to be profurin
specific, because inhibition of other protein convertases has
no such activity (Figure 6A and 6B).

It is not unusual that proprotein convertases have
functions other than their proteolytic activity. It is well known
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that PCSK9-mediated LDL receptor degradation is indepen-
dent of its enzymatic activity.50 When PCSK9 is bound to
the LDL receptor, mainly after extracellular interaction
between LDL receptor and LDL particle, the LDL receptor is
degraded and is no longer recycled back to the cell
membrane surface to bind and ingest more LDL particles.51

The difference between PCSK9-mediated LDL receptor
degradation and profurin-mediated PLTP degradation is that
the former occurs in the lysosome and the latter occurs in
the proteasome. Further studies are required to answer the
question of whether endogenous profurin is a significant
player in regulating hepatic PLTP secretion and plasma lipid
levels.

We summarized our finding in Figure 7E. We believe the
following: (1) PLTP is involved in apoB particle lipidation and
secretion in the liver20,24,37,43,44; without PLTP, VLDL produc-
tion is greatly reduced.20,37 (2) Profurin could regulate PLTP
through promoting apoB particle intracellular degradation. The
mechanism could be that profurin and PLTP form a complex
that then initiates ubiquitination and degradation.

Our study reveals that hepatic PLTP protein is targeted for
proteasomal degradation by profurin, which could be a novel
posttranslational mechanism by which PLTP is regulated. Our
early work demonstrated that liver PLTP is responsible for
VLDL production. PLTP liver-specific inhibitor, such as profu-
rin, could be a novel therapeutic approach in the effort to
moderate plasma VLDL/LDL levels.
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SUPPLEMENTAL MATERIAL



Supplemental Figure Legends:

Figure S1. Maturation of Furin. Following signal peptide removal and 
translocation, the furin prodomain (profurin) acts as an intramolecular chaperone and 
autoinhibitor to facilitate folding and autocleavage of Furin in the secretory pathway, resulting in 
the active conformation (Furin-cat). 

Figure S2. AdV-profurin treatment reduces apoE KO mouse plasma cholesterol 
levels, apoB levels, and atherosclerotic lesion area. (A) plasma cholesterol 
distribution, measured by FPLC. (B) plasma apoB levels measured by Western blot.  (C) 
5 month old apoE KO mouse atherosclerotic lesion measurement (en face).  Values were 
presented as mean ± S.E., n=7, *P<0.01.  

Figure S3. AdV-profurin treatment reduces plasma PLTP activity, cholesterol and 
phospholipid in female WT mice. On day 3 after mice were injected with AdV-null and 
AdV-profurin, plasma PLTP activity (A), cholesterol (B) and phospholipid (C) were measured, 
respectively. Values were mean ± SD, N=6. *P<0.001. 

Figure S4. BiP and XBP1s mRNA measurement. On day 3 after mice were injected 
with AdV-null and AdV-profurin, liver BiP and XBP1s mRNAs were measured by Real-
time PCR. Values were presented as mean ± S.E., n=4, *P<0.01.  
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Figure S4.
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