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SZEITZ et al.

1. The first mass spectrometry–based proteomic analysis on small-cell lung can-
cer (SCLC) cell lines, reporting unique proteomic profiles of its proposed
molecular subtypes.

2. SCLC subgroups detected by proteomics are consistent with mRNA-based
subtypes.

3. Unique proteomic profiles of SCLC subtypes highlight potential subtype-
specific therapeutic vulnerabilities and diagnostic biomarkers.



Received: 26 May 2022 Revised: 31 August 2022 Accepted: 6 September 2022

DOI: 10.1002/ctm2.1060

RESEARCH ARTICLE

In-depth proteomic analysis reveals unique subtype-specific
signatures in human small-cell lung cancer

Beáta Szeitz1 Zsolt Megyesfalvi2,3,4 Nicole Woldmar5,6 Zsuzsanna Valkó2,3

Anna Schwendenwein3 Nándor Bárány2,3,7 Sándor Paku7 Viktória László2,3

Helga Kiss4,8 Edina Bugyik2,7 Christian Lang3 Attila Marcell Szász2,9

Luciana Pizzatti6 Krisztina Bogos2 Mir Alireza Hoda3 Konrad Hoetzenecker3

György Marko-Varga5 Peter Horvatovich10 Balázs Döme2,3,4,11

Karin Schelch12 Melinda Rezeli5

1Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
2National Korányi Institute of Pulmonology, Budapest, Hungary
3Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
4Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
5Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund
University, Lund, Sweden
6Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil
7First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
8University of Pécs, Pécs, Hungary
9Department of Bioinformatics, Semmelweis University, Budapest, Hungary
10Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
11Department of Translational Medicine, Lund University, Lund, Sweden
12Center for Cancer Research, Medical University of Vienna, Vienna, Austria

Correspondence
Balázs Döme, Department of Thoracic
Surgery, Medical University of Vienna,
Waehringer Guertel 18-20, 1090 Vienna,
Austria.
Email: balazs.dome@meduniwien.ac.at

Melinda Rezeli, Division of Clinical
Protein Science & Imaging, Department
of Clinical Sciences (Lund) and
Department of Biomedical Engineering,
Lund University, Lund, Sweden.
Email: melinda.rezeli@bme.lth.se

Abstract
Background: Small-cell lung cancer (SCLC) molecular subtypes have been
primarily characterized based on the expression pattern of the following key tran-
scription regulators: ASCL1 (SCLC-A), NEUROD1 (SCLC-N), POU2F3 (SCLC-P)
and YAP1 (SCLC-Y). Here, we investigated the proteomic landscape of these
molecular subsets with the aim to identify novel subtype-specific proteins of
diagnostic and therapeutic relevance.
Methods: Pellets and cell media of 26 human SCLC cell lines were sub-
jected to label-free shotgun proteomics for large-scale protein identification

Beáta Szeitz and Zsolt Megyesfalvi contributed equally.

Balázs Döme, Karin Schelch, and Melinda Rezeli share the last authorship.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

Clin. Transl. Med. 2022;12:e1060. wileyonlinelibrary.com/journal/ctm2 1 of 24
https://doi.org/10.1002/ctm2.1060

https://orcid.org/0000-0001-6414-0537
https://orcid.org/0000-0001-8799-8624
https://orcid.org/0000-0003-4373-5616
mailto:balazs.dome@meduniwien.ac.at
mailto:melinda.rezeli@bme.lth.se
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1060


2 of 24 SZEITZ et al.

and quantitation, followed by in-depth bioinformatic analyses. Proteomic data
were correlated with the cell lines’ phenotypic characteristics and with public
transcriptomic data of SCLC cell lines and tissues.
Results: Our quantitative proteomic data highlighted that four molecular sub-
types are clearly distinguishable at the protein level. The cell lines exhibited
diverse neuroendocrine and epithelial–mesenchymal characteristics that var-
ied by subtype. A total of 367 proteins were identified in the cell pellet and
34 in the culture media that showed significant up- or downregulation in one
subtype, including known druggable proteins and potential blood-based mark-
ers. Pathway enrichment analysis and parallel investigation of transcriptomics
from SCLC cell lines outlined unique signatures for each subtype, such as
upregulated oxidative phosphorylation in SCLC-A, DNA replication in SCLC-
N, neurotrophin signalling in SCLC-P and epithelial–mesenchymal transition
in SCLC-Y. Importantly, we identified the YAP1-driven subtype as the most dis-
tinct SCLC subgroup. Using sparse partial least squares discriminant analysis,
we identified proteins that clearly distinguish four SCLC subtypes based on
their expression pattern, including potential diagnostic markers for SCLC-Y (e.g.
GPX8, PKD2 and UFO).
Conclusions: We report for the first time, the protein expression differences
among SCLC subtypes. By shedding light on potential subtype-specific thera-
peutic vulnerabilities and diagnostic biomarkers, our results may contribute to a
better understanding of SCLC biology and the development of novel therapies.

KEYWORDS
diagnostic biomarkers, molecular targets, proteomics, secretome, small-cell lung cancer,
subtype, transcriptomics

1 INTRODUCTION

Small-cell lung cancer (SCLC) represents about 13%–15%
of all lung cancers and with a 5-year survival rate of less
than 7%, it remains one of the most lethal forms of malig-
nant diseases.1–3 It has a very aggressive course and is
characterized by extensive chromosomal rearrangements,
high mutation burden and almost universal inactivation
of the tumour suppressor genes TP53 and RB1.1,4 There-
fore, the vast majority of SCLC patients are diagnosed
with extensive-stage disease when surgery is not feasible,
and the treatment options are mostly limited to cytotoxic
chemotherapy and radiation.4 Importantly, targeted ther-
apies for these patients have so far failed, and the success
of immunotherapy in non-SCLC has not been reflected in
SCLC.3,5
Although SCLC has been formerly considered a homo-

geneous disease with a single morphological type, recent
advances in SCLC research have led to the develop-
ment of subtype-specific classifications primarily based

on neuroendocrine (NE) features and unique molecu-
lar profiles.3,6,7 Accordingly, SCLC can be classified into
NE-high andNE-low subtypes based on the expression pat-
tern of key NE markers (i.e. SYP, CHGA, NCAM1/CD56
and GRP).1,8 To further elucidate the clinicopathologi-
cal relevance of NE subtypes, Zhang et al. developed a
numeric score to evaluate the degree of NE differentia-
tion in SCLC.7 By using the top 50 genes most strongly
associated with NE differentiation, they successfully sep-
arated NE high and low subsets of SCLC tumours and cell
lines and showed that these subtypes had widely different
growth properties and morphology.7 Of note, some SCLCs
lack NE differentiation and are termed non-NE tumours.6
Importantly, the NE differentiation also serves as a frame-
work for the recently emerged molecular subtypes.6 These
newly proposed molecular subgroups (SCLC-A, SCLC-
N, SCLC-P and SCLC-Y) have been defined based on
the expression pattern of transcription factors ASCL1,
NEUROD1, POU2F3 and YAP1, respectively.4,6 SCLC-
P and SCLC-Y show a non-NE phenotype, whereas
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SCLC-A and SCLC-N are classified as NE tumours (NE
high and low, respectively).4,6 Moreover, our group also
found recently that high POU2F3 expression is associ-
ated with improved survival outcomes, whereas elevated
ASCL1 expression is an independent negative prognostica-
tor in surgically treated SCLC patients,9 highlighting the
prognostic relevance of SCLC subgroups. So far, the vast
majority of SCLC profiling studies have been conducted
by analysing transcriptomic data and gene expression pro-
files of clinical samples and preclinical models, such as
patient-derived and circulating tumour cell-derived SCLC
xenografts.6,8,10,11 Although recent immunohistochemistry
(IHC) analyses confirmed that subtype-specific markers
are indeed detectable in human tumour tissue samples,
these studies failed to distinguish a unique YAP1-driven
subtype.12 Of note, based on tumour expression data
analysis by non-negative matrix factorization, Gay et al.
proposed a unique inflamed (SCLC-I) subtype character-
ized by an inflamed gene signature as an alternative to
the YAP1-defined subtype.13 Additionally, not all previ-
ously expected RNA-based correlation patterns between
subtype markers and NE features could have been val-
idated by IHC either.12 Therefore, subtype classification
based on transcriptional profiling might not be exclusively
representative concerning protein expression.
Mass spectrometry (MS)-based proteomics enables a

large-scale analysis of complex biological systems, such
as cells, tissues or blood plasma. Parallel detection and
quantitation of thousands of proteins, including those
with lower abundance, is feasible with modern high-
resolution mass spectrometers and advanced sample
preparation workflows, thus achieving a better under-
standing of molecular interactions and signalling path-
ways in cancer.14,15 The scarcity of available material has
so far hindered a comprehensive proteomic examination
of SCLC tissues, whereas the proteome of non-SCLC tis-
sues were thoroughly mapped previously.16,17 To date,
proteomic studies considered SCLC as a single entity and
compared SCLC samples with normal bronchial epithe-
lial tissues,18 non-SCLC cell lines19 or carcinoid tumour
tissues.20 Of note, these studies reported relatively low
number of identifiable proteins, ranging from 193 to 1991.
A proteomic study of 949 cancer cell lines from 28 tis-
sue types, including 57 SCLC cell lines, was published
only recently, in which a total of 8498 proteins were
quantified.21
In the current work, we conducted a comparative

proteomic analysis of SCLC subtypes using cell lines cat-
egorized based on the relative expression of four key
transcription factors. Our label-free shotgun proteomic
approach assessing both the cell pellet (CP) and culture
media (CM) resulted in the confident quantification of

nearly 9000 proteins. This comprehensive proteomic eval-
uation of SCLC cell lines integrated with knowledge from
existing transcriptomic datasets can give a clearer defini-
tion of SCLC subtypes andmight provide insights into their
specific features that govern therapy response.

2 MATERIALS ANDMETHODS

2.1 Cell culture

Human SCLC cell lines were maintained in RPMI-1640
with 10% fetal calf serum (Sigma Chemical Co.), 100 U/ml
penicillin and 10 mg/ml streptomycin (Sigma Chemical
Co.) at 37◦C in a humidified incubator with 5% CO2.
SCLC cell lines were either purchased from ATCC or
kindly provided by our collaborators. All cell lines were
regularly checked for mycoplasma contamination using
the luminescence-basedMycoAlert mycoplasma detection
kit (Lonza) with supernatant from cells cultured for >3
days and used within 10 passages after authentication.
The cell lines and their key characteristics are listed in
Table 1.

2.2 RNA isolation and qPCR

Cells were incubated in T25 flasks until 70% confluency.
Total RNA was isolated with TRIzol reagent and reverse
transcribed with MMLV reverse transcriptase (Thermo
Fisher Scientific) according to the manufacturer’s proto-
col. Gene expression was analysed by quantitative poly-
merase chain reaction (qPCR) using TaqMan gene expres-
sion assays on the Applied Biosystems 7500 Fast Real-Time
PCR System (Assay IDs: ASCL1: Hs00269932_m1, NEU-
ROD1: Hs00159598_m1, POU2F3: Hs00205009_m1, YAP1:
Hs00371735_m1, GAPDH: Hs02786624_g1; Thermo Fisher
Scientific). Gene expression was calculated as 2−ΔCt using
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as
reference gene.22

2.3 Sample processing for proteomics

CPs and CM from 26 cell lines were processed and sub-
jected to anMS-based proteomic analysis. In brief, the CPs
were solubilized with protein extraction buffer (25 mM
dithiothreitol [DTT], 10% sodium dodecyl sulphate (SDS),
100 mM triethylammonium bicarbonate [TEAB], pH 8),
incubating for 5 min at 95◦C with 500 rpm shaking. The
volume of the buffer was adjusted to the number of cells
in each sample, that is 250 μl of protein extraction buffer
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TABLE 1 Cell lines included in the study, and their general characteristics

Cell line ID
Other cell
line ID Subtype

Cell line
origin Chemotherapy Culture type

DMS153 CRL-2064 SCLC-A Metastatic Post-chemo Semi-adherent
DMS53 CRL-2062 SCLC-A Lung Chemo-naïve Adherent
H146 HTB-173 SCLC-A Metastatic Chemo-naïve Suspension
H1688 CCL-257 SCLC-A Metastatic Chemo-naïve Adherent
H1882 CRL-5903 SCLC-A Metastatic N/A Adherent
H209 HTB-172 SCLC-A Metastatic Chemo-naïve Suspension
H378 CRL-5808 SCLC-A Lung Post-chemo Suspension
SHP77 CRL-2195 SCLC-A Lung N/A Adherent
GLC4 N/A SCLC-N Pleural eff. Chemo-naïve Suspension
H1694 CRL-5888 SCLC-N Lung N/A Semi-adherent
H2171 CRL-5929 SCLC-N Pleural eff. Post-chemo Suspension
H446 HTB-171 SCLC-N Pleural eff. N/A Adherent
H524 CRL-5831 SCLC-N Metastatic Post-chemo Suspension
H82 HTB-175 SCLC-N Metastatic N/A Semi-adherent
N417 CRL-5809 SCLC-N Lung N/A Suspension
COR-L311 N/A SCLC-P Lung Post-chemo Suspension
H1048 CRL-5853 SCLC-P Pleural eff. N/A Adherent
H211 CRL-5824 SCLC-P Lung Post-chemo Suspension
H526 CRL-5811 SCLC-P Metastatic Chemo-naïve Suspension
CRL-2066 DMS 114 SCLC-Y Lung Chemo-naïve Adherent
CRL-2177 SW1271 SCLC-Y Lung N/A Adherent
H1341 CRL-5864 SCLC-Y Metastatic N/A Adherent
H196 CRL-5823 SCLC-Y Pleural eff. Post-chemo Adherent
H372 N/A SCLC-Y Metastatic N/A Adherent
H841 CRL-5845 SCLC-Y Lung Post-chemo Adherent
HLHE N/A SCLC-Y Metastatic N/A Adherent

Note: Pleural eff., pleural effusion.
Abbreviations: N/A, not available; SCLC, small-cell lung cancer.

was added to samples containing 5 M cells. Proteins were
extracted via a 20 min sonication at 4◦C (Bioruptor Plus,
Diagenode) with 40 cycles (15 s on/15 s off), followed by a
brief centrifugation at 20000 × g at 18◦C, discarding the
cell debris. Protein determination was performed using
a Pierce 660 nm Protein Assay kit (Thermo Scientific),
following the manufacturer’s instructions.
Additionally, the filteredCMsampleswere concentrated

using spin concentrators (5K 4ml,Agilent Technologies) to
∼100 μl. Protein determination was performed with Nan-
oDrop (DeNovix DS-11 FX +). Prior to digestion, SDS was
added to a final concentration of 3%, and 100 mM TEAB
was added to increase the pH. Reduction was performed
with 10 mM DTT and a 1 h incubation at 37◦C.
Protein digestion for both the CP and media (100 μg of

proteins per sample) was accomplished using the S-Trap
technology (ProtiFi) with few modifications, as previously

described by our group.23 In brief, the samples were alky-
lated with 50 mM iodoacetamide and acidified with 1.2%
phosphoric acid (final concentration). Then, S-Trap bind-
ing buffer was added (90% methanol, 100 mM TEAB)
to 7× the final sample volume, and the samples were
transferred to the S-Trap 96-well digestion plate. Captured
proteins were washed four times with 200 μl S-Trap bind-
ing buffer and brief centrifugations (2 min at 1000 × g).
Digestion buffer (50 mM TEAB) containing LysC at 1:50
enzyme-to-protein ratio was added on top of the filters,
incubating for 2 h at 37◦C. Next, digestion buffer contain-
ing trypsin at 1:50 enzyme-to-protein ratio was added to
the samples, incubating overnight at 37◦C. On the follow-
ing day, the peptides were eluted in three steps, first with
80 μl of digestion buffer, then with 80 μl of 0.2% formic
acid, and finally with 80 μl of 50% acetonitrile (ACN) con-
taining 0.2% formic acid. All peptides were dried down
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in a vacuum concentrator. Peptide determination was
performed for all samples using Pierce Quantitative Col-
orimetric Peptide Assay kit (Thermo Scientific), following
the manufacturer’s instructions.

2.4 Nano LC–MS/MS analysis

The nLC–MS/MS analysis was performed on a Q Exac-
tiveHF-Xmass spectrometer coupled to aDionexUltiMate
3000 RSLCnano UPLC system (Thermo Scientific), with
an EASY-Spray ion source. Peptides from CPs and media
were injected in triplicates (1.5 and 1 μg, respectively), uti-
lizing two MS methods detailed later. All samples were
loaded onto an Acclaim PepMap 100 C18 (75 μm × 2 cm,
3 μm, 100 Å, nanoViper) trap column and separated on an
Acclaim PepMap RSLC C18 column (75 μm × 50 cm, 2 μm,
100 Å) (Thermo Scientific) using a flow rate of 300 nl/min,
a column temperature of 60◦C. A 145-min gradient was
applied for separation, using solvents A (0.1% formic acid)
and B (0.1% formic acid in 80% ACN), increasing solvent B
from 2% to 25% in 115 min, then to 32% in the next 10 min,
and to 45% in 7 min. Finally, the gradient increased to 90%
solvent B in 8 min, continuing for another 5 min.
Regarding the MS approach, peptides from the CP were

analysed with one data-dependent acquisition (DDA) and
two data-independent acquisitions (DIA), whereas pep-
tides from the CM were analysed with two DDA and one
DIA runs.
The top 20DDAmethodwas appliedwith fullMS1 scans

at m/z 375–1500, resolution of 120000 (at 200 m/z), tar-
get AGC value of 3 × 106 and maximum injection time of
100 ms. Fragmentation was done with an NCE of 28, and
the isolation window was set to 1.2 m/z. MS2 scans were
acquired with a resolution of 15000 (at 200 m/z), target
AGC value of 1 × 105, maximum injection time of 50 ms,
ion selection threshold of 8 × 103 and dynamic exclusion
of 40 s.
For the DIA analysis, a complete acquisition cycle con-

sisted of 3 MS1 full scans, each followed by 18 MS2 DIA
scans with variable isolation windows. MS1 full scans were
acquired at m/z 375–1455, with a resolution of 120000 (at
200m/z), target AGC value of 3 × 106 andmaximum injec-
tion time of 50 ms. The MS2 scans were acquired with a
resolution of 30000 (at 200m/z), fragmentation with NCE
of 28, target AGC value of 1 × 106, automatic maximum
injection time, fixed first mass of 200m/z and the variable
isolation windows were 13.0, 16.0, 26.0 and 61.0 m/z (with
27, 13, 8 and 6 loop counts, respectively).
See Table S1 for details on biological and technical

repeats. Samples were run in a randomized order, in two
distinct batches.

2.5 Proteomic data processing

2.5.1 Database search

Database search was done on Proteome Discoverer v2.4
using SEQUEST HT search engine combined with spec-
tral library search, using the UniProtKB human database
(accessed on 15 January 2019) and Proteome Tools spec-
tral libraries. Dynamic modifications included oxidation
of methionine and N-terminal acetylation, whereas car-
bamidomethylation of cysteine was implemented as a
static modification. Precursor tolerance was set to 10 ppm
and fragment mass tolerance was set to 0.02 Da. Addition-
ally, a maximum of two missed cleavages were allowed,
and a false discovery rate (FDR) of 1% was set both on
peptide and protein levels. For protein quantitation, the
top three average methods were used (i.e. it was calcu-
lated based on the average of top three peptide abundances
unique to the protein group).

2.5.2 Post-processing

The data-processing steps were performed separately for
the CP and CM samples. Both the processing and the
statistical tests were performed in R v.4.2.024 unless spec-
ified otherwise. See https://github.com/bszeitz/SCLC_
proteomics for details on all used packages.
The raw protein intensities were log2-transformed, and

individual measurements were median normalized by
centring their intensities around the global median. Mea-
surements from the same batch were then checked for
outliers. After removal of low-qualitymeasurements in the
CM data (see Table S1 for details on removed samples),
themedian intensity of proteins in repeatedmeasurements
from the same MS vial and in the same batch was used
for further analysis. Proteins with no quantitative values
in any samples were removed, leading to the 9570 and
6425 proteins in the CP and CM, respectively. A strong
batch effect that was independent from other factors was
observed in the data (Figure S1a); therefore, differences in
protein expression caused by batch effect were removed
using univariate linear regression. Proteins that had no
quantitative values in one of the batches were excluded
from the batch effect correction. Consequently, the vari-
ance explained by the subtype increased (Figure S1b), and
the technical and biological replicates from the same cell
line showed high similarity according to unsupervised
hierarchical clustering results (Figure S1c). All replicates
from the same cell line were, therefore, averaged by taking
their arithmetic mean.

https://github.com/bszeitz/SCLC_proteomics
https://github.com/bszeitz/SCLC_proteomics
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For statistical analyses, the expression table was filtered
for proteins with min. 80% valid values across samples,
resulting in 8405 and 5408 proteins in the CP and CM,
respectively. Missing value imputation was performed in
Perseus v.1.625 using imputation based on normal distribu-
tion (width = 0.3, down shift = 1.8). The protein intensity
histogram per sample, also highlighting the frequency dis-
tribution of imputed values, is shown on Figure S1d for the
samples with the highest missing value content. Addition-
ally, potential ‘on/off proteins’ were also sought out during
the filtering step. The ‘on/off proteins’ were defined as pro-
teins that were present in min. 85% of the samples in one
subtype and simultaneously, in max. 15% of the samples
in the other subtypes (‘on’), or in max. 15% of the sam-
ples in one subtype and simultaneously, in min. 85% of
the samples in the other subtypes (‘off’). These proteins,
together with the filtered and imputed expression table
elements, were also examined as part of the analysis of
subtype-specific proteins.

2.5.3 Annotation of secreted, cell-surface,
plasma and ‘druggable’ proteins

To map secreted proteins from the list of identified pro-
teins, three secretome databases were utilized: Human
Protein Atlas (The Human Protein Atlas v20.1 and
Ensembl v92.38, retrieved on 11 April 2021),26 SPRomeDB
(accessed on 7 April 2021)27 and MetazSecKB (accessed on
7April 2021).28 These databaseswere created using curated
experimental evidence and a number of prediction tools
that do not completely overlap. All proteins mentioned in
at least two databases were considered secreted proteins.
In sum, 422 and 636 secreted proteins were detected in the
CP and CM, respectively, out of which 295 and 514 were
also quantified in min. 80% of the samples.
Additionally, information from the Human Pro-

tein Atlas (The Human Protein Atlas v21.1, https://
www.proteinatlas.org/humanproteome/blood+protein,
accessed on 23 July 2022) was used to annotate proteins
detectable in human blood plasma by immunoassay,
MS or proximity extension assays. This was supple-
mented with a list of proteins actively secreted into the
blood (https://www.proteinatlas.org/search/sa_location%
3ASecreted+to+blood). In total, 3076 and 3126 plasma
proteins were identified in the CP and CM, respectively,
of which 2763 and 2823 were quantified in at least 80%
of the samples. Among the proteins actively secreted in
the blood, 229 and 334 were found in the CP and CM,
respectively, and 172 and 278 proteins were quantified in
min. 80% of the samples.
Two databases were downloaded to retrieve a list of cell-

surface proteins, namely The Cancer Surfaceome Atlas29

(http://fcgportal.org/TCSA/Download.php, accessed on 28
July 2022) and the in silico human surfaceome by Bausch-
Fluck et al.30 (http://wlab.ethz.ch/surfaceome/, accessed
on 28 July 2022). In the CP and CM, we found a total of
682 and 549 cell-surface proteins that are included in both
databases, of which 477 and 416 were quantified in at least
80% of the samples.
To annotate ‘druggable’ proteins with subtype specific

profiles, we used The druggable proteome database
available at the Human Protein Atlas website (https://
www.proteinatlas.org/humanproteome/tissue/druggable,
accessed on 22 October 2021), which contains the
protein targets of the current Food and Drug Admin-
istration (FDA)-approved drugs, including enzymes,
transporters, ion channels, and receptors. Functional
annotations were collected from the UniProt31 website
(https://www.uniprot.org/, Release 2022_03) for selected
proteins, and the list of FDA-approved drugs that directly
interact with those proteins as part of their mechanism
of action was gathered from the DrugBank database
(www.drugbank.ca).32

2.6 External data retrieval and
processing

2.6.1 Transcriptomic data of SCLC tissue
samples

ThemRNAdata of SCLC tissue samples was accessed from
cBioPortal33,34 on 24May 2021, downloadingGeorge et al.’s
work.8 Only samples that were also categorized by Rudin
et al.6 were further analysed (52 samples out of 81). This
resulted in 38 SCLC-A, 5 SCLC-N, 7 SCLC-P and 2 SCLC-
Y samples. These 52 samples’ Fragments per kilobase
million (FPKM) values were utilized to perform the single-
sample gene set enrichment analysis (ssGSEA), as well
as the log-transformed mRNA Z-scores (where Z-score
was calculated compared to the expression distribution of
all samples), were used to assess the expression profile
differences between selected transcripts across subtypes
(SCLC-A/N/P/Y).

2.6.2 Genomic and transcriptomic data
of SCLC cell lines

Mutation and RNA-Seq data (gene count data, normal-
ized using RNA-Seq by Expectation-Maximization, i.e.
RSEM method) of Cancer Cell Line Encyclopedia (CCLE)
cancer cell lines were accessed on 28 June 2022 and 23
August 2021, respectively, from the Cancer Dependency
Map website, https://depmap.org/portal/.35 Compared to

https://www.proteinatlas.org/humanproteome/blood%2Bprotein
https://www.proteinatlas.org/humanproteome/blood%2Bprotein
https://www.proteinatlas.org/search/sa_location%3ASecreted%2Bto%2Bblood
https://www.proteinatlas.org/search/sa_location%3ASecreted%2Bto%2Bblood
http://fcgportal.org/TCSA/Download.php
http://wlab.ethz.ch/surfaceome/
https://www.proteinatlas.org/humanproteome/tissue/druggable
https://www.proteinatlas.org/humanproteome/tissue/druggable
https://www.uniprot.org/
http://www.drugbank.ca
https://depmap.org/portal/
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our set of cell lines, only five cell lines are not included
in the mutation table (GLC4, HLHE, H1882, N417, H372),
and two additional cell lines are not present in the RNA
sequencing table (H378 and H1688). The RNA-Seq data
contains themeasurements from 50 SCLC cell lines, which
were also categorized into subtypes by Rudin et al.6
(26 SCLC-A, 12 SCLC-N, 4 SCLC-P and 8 SCLC-Y). The
transcriptomic data was further processed via limma R
package v.3.46.0,36 following the standard RNA-Seq data-
processing steps. This included normalization factor cal-
culation with default settings, filter of low-expressed genes
(only genes with minimum one expression value equal to
or higher than 50 should be kept; fulfilled by 9237 genes)
and voom transformation with default settings where
model matrix included the subtype assignment. This was
followed by differential expression analysis described in
detail in Section 2.7. Log2 CPM counts were calculated
using the ‘cpm’ function from edgeR v.3.32.137–39 in which
prior count was set to 3 (i.e. the average count to be added
to each observation to avoid zeros in the dataset during
log2-transformation). This expression matrix was used to
display the differential expression of selected transcripts
across subtypes.

2.6.3 Drug sensitivity data of SCLC cell lines

CancerRxGene drug sensitivity data40 (Release 8.3, avail-
able from June 2020) was downloaded from the FTP Server
of the Wellcome Sanger Institute (ftp://ftp.sanger.ac.uk/
pub/project/cancerrxgene/releases/current_release/) on
18 July 2022. Both the Genomics of Drug Sensitivity in
Cancer 1 (GDSC1) and GDSC2 datasets were investigated.
In total, the subtype classification of 38 SCLC cell lines is
known,6 of which 20 were also measured by proteomics in
our study (the missing cell lines: DMS153, GLC4, H1882,
H372, HLHE, N417). The logarithmic IC50 values of these
cell lines for selected drugs were then compared across
the subtypes or were correlated with protein abundance.

2.7 Statistics and bioinformatics

2.7.1 Differential expression analyses

Differential expression analyses for the proteomic data
were performed via ANOVA, followed by multiple testing
correction (Benjamini–Hochberg, BH) of ANOVA p-values
and Tukey’s honestly significant difference (HSD) post
hoc tests. Comparisons were done between culture types
(adherent, suspension) and subtypes (SCLC-A, -N, -P,
-Y). A protein was considered significant for a compar-
ison if both the ANOVA FDR and the corresponding

pairwise Tukey’s HSD test p-value were less than 0.05.
Subtype-specific proteins were selected based on the fol-
lowing criteria: ANOVA FDR < 0.05, as well as Tukey’s
HSD test p < 0.05 for all comparisons of the subtype of
interest against the other subtypes. Differential expression
analysis for the CCLE RNA-Seq data was performed via
limma by fitting a linear model for the six subtype compar-
isons, followed by Empirical Bayes smoothing of standard
errors.Multiple testing correctionwith theBHmethodwas
applied and FDR< 0.05was considered significant. For the
transcriptomic dataset by George et al., pairwise Wilcoxon
tests were performed on the Z-scored values to check gene
expression differences between the subtypes. Significance
level was set to nominal p < 0.05.
Overrepresentation analyses (ORAs) were conducted

using clusterProfiler v.3.18.141,42 and ReactomePA
v.1.34.0.43 The default list of human genes was used
as background.

2.7.2 Neuroendocrine and
epithelial–mesenchymal transition scores

Two previously published gene sets were used to introduce
a scoring system for the NE and epithelial–mesenchymal
transition (EMT) characteristics of cell lines. For NE char-
acteristics, a 50-gene NE signature built for SCLC cell
lines described by Zhang et al.7 was examined. The num-
ber of NE (i.e. markers involved in NE differentiation)
and non-NE markers present in our CP data was 19 and
17, respectively (Figure S3a). NE score was calculated the
following way for each cell line:
NE score = (Mean Z-score of NE markers) − (Mean Z-

score of non-NE markers).
Similarly, a gene signature with 22 epithelial and 15mes-

enchymal genes published by Kohn et al.44 was examined,
from which 12 and 10 corresponding proteins were quanti-
fied in our CP data (Figure S3b). EMT score was calculated
the following way for each cell line:
EMT score = (Mean Z-score of mesenchymal markers)

− (Mean Z-score of epithelial markers).

2.7.3 Consensus clustering

Samples were grouped in an unsupervised manner using
the consensus clustering algorithm, implemented in the
ConsensusClusterPlus R package v.1.54.0.45 The basis of
clustering was the samples’ global protein expression pro-
file (filtered and imputed) in the CP dataset, which was
further restricted to only those proteins that have an SD
above 1.25. This list of proteins included protein products
of POU2F3 and YAP1, both showing large SD (SD = 1.40

ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/current_release/
ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/current_release/
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and 2.05, respectively), whereas NEUROD1 did not show
sufficiently large variance (SD= 0.50), and ASCL1was not
quantified in enough samples to be included in the list.
The resulting proteome data (including the expression of
1157 proteins without Z-score normalization) were resam-
pled 1000 times via the bootstrapmethodwith a probability
of 0.8 for selecting any item (i.e. sample) and any feature
(i.e. protein). The bootstrap sample datasets were clus-
tered using the partitioning around medoids method with
the Pearson distance and complete linkage, exploring the
range of two to seven clusters. The visual inspection of con-
sensusmatrices, aswell as the silhouette plots forK= 4 and
K = 5 revealed that a cleaner separation of the clusters can
be achieved with K = 4; moreover, the average silhouette
width was higher for K = 4. Based on these observations,
and considering the relatively lownumber of samples, con-
sensus clustering with K= 4 was used as sample grouping.
Graphical outputs from the ConsensusClusterPlus R pack-
age and silhouette plots for K = 4 and K = 5 are shown in
Figure S4a–c. Silhouette information was computed using
the ‘silhouette’ function from R package ‘cluster’ v.2.1.1.

2.7.4 Gene set enrichment analysis

Pre-ranked GSEA (pGSEA) was performed via the ‘GSEA’
function of the clusterProfiler R package for all six sub-
type comparisons. As input, the hallmark,46 KEGG,47
Reactome,48 Gene Ontology biological process49,50 and
oncogenic curated gene sets were used, downloaded from
the Molecular Signatures Database (MSigDB) v.7.4,51,52 as
well as a ranked list of genes/proteins (based on the mul-
tiplication of the FC and −log10 (p-value of pairwise test),
calculated for all proteins/genes used in the statistical anal-
yses). The pairwise test was the Tukey’s HSD post hoc test
for proteomics, whereas for CCLE RNA-Seq, the p-values
were derived from the moderated t-test statistic. The BH
method was used for p-value adjustment in pGSEA. To
obtain the list of subtype-characteristic gene sets, the fol-
lowing filter was applied on the pGSEA results: p < 0.01 in
all comparisons of the subtype of interest against the other
subtypes with an unequivocal sign (either positive or neg-
ative) normalized enrichment score (NES). Gene sets with
a p< 0.01 for at least one comparison are listed in Table S4.
The relationship between proteomic and transcriptomic
results was examined on these subtype-specific gene sets
as follows: if a gene set in one dataset (either proteomic
or transcriptomic) was found to be characteristic for a sub-
type, and the p-value of the same gene set was less than
0.1 in relevant comparisons of the other dataset, as well
as its NES values showed the same direction, the gene set
was declared significant in both proteomics and transcrip-
tomics. In contrast, if the gene set in the other dataset did

not meet the previous criteria, the gene set was declared
significant in only one dataset. A visual explanation for the
filtering steps can be seen in Figure S5 and a summary of
the obtained results in Table S4.
ssGSEA53 was performed on the transcriptomic dataset

by George et al., using only transcripts with sum
FPKM higher than 50, and only one transcript for each
gene was retained (the transcript with the highest sum
FPKM value). This resulted in an expression matrix
with 13542 transcripts. It should be noted that differ-
ent transcripts from the same gene may have different
biological functions; however, we cannot preserve such
depth of information in this analysis. The NES was cal-
culated for subtype-specific gene sets as defined earlier
(the list can be accessed in Table S4), with the script
available on https://github.com/broadinstitute/ssGSEA2.
0 (accessed on 05 February 2022). The parameters were
set as follows: sample.norm.type = ‘rank’, weight = 0.75,
statistic = ‘area.under.RES’, output.score.type = ‘NES’,
nperm= 1000, min.overlap= 5, and correl.type= ‘z.score’.
The gene sets were then filtered for the most represen-
tative gene sets (Table S4), and ssGSEA results for these
are depicted in Figure S6. For visualization purposes, NES
values of each gene set were min.–max. scaled across the
samples.

2.7.5 Sparse partial least squares
discriminant analysis

The sparse partial least squares discriminant analysis
(sPLS-DA) was performed via the mixOmics R package
v.6.14.0,54 following the guidelines provided on its website
(http://mixomics.org/case-studies/splsda-srbct/, accessed
on 27 July 2021). The full CP and CM data (filtered and
imputed) were analysed separately. First, a PLS-DAmodel
was fittedwith 10 components to evaluate the performance
and to select the optimal number of components for the
final model. The performance plot showed that five and
four components with centroid distance measure are suf-
ficient for good performance (0.169 and 0.476 balanced
error rate) in the CP and CM data, respectively (Figure
S7a). Then sPLS-DA model was tuned, estimating the
classification performance with respect to the number of
selected variables in themodel.Maximumnumber of com-
ponentswas set to five and four inCP andCM, respectively,
threefold cross-validation was used which was repeated 50
times, and centroid distance measure was selected. As a
result, the settings of the final model were the following in
CP: (1) optimal number of components is 3, (2) the number
of proteins to select on each component are 45, 30 and 7. In
the case of CM, the settings of the final model: (1) optimal
number of components is 2; (2) the number of proteins to

https://github.com/broadinstitute/ssGSEA2.0
https://github.com/broadinstitute/ssGSEA2.0
http://mixomics.org/case-studies/splsda-srbct/
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select on each component are 8 and 15. The sample plots of
the first three components in CP (Figure S7b) showed that
SCLC-Y is well separated on the first component, SCLC-A
and -N are distinguishable on the second component and
adding the third component further discriminates SCLC-
P from the rest. Similarly, the first two components were
visualized for CM, displaying that SCLC-Y is best separated
on the first component, whereas SCLC-A/P can be dis-
tinguished from SCLC-N on the second component. The
classification performance of these final sPLS-DA models
were 0.113 and 0.484 with centroid distance for CP and
CM, respectively (Figure S7c). Additionally, selected pro-
teins in each component with their loading weight and
stability (i.e. ratio of howmany times it was selected across
the cross-validation runs) were extracted. The selected pro-
teins are shown in Supplementary Figure S8. To select
the transcripts showing the best match with proteomic
results, transcripts were ranked based on the multipli-
cation of the fold change (FC) and −log10 (p-value of
pairwise test).

2.7.6 Visualizations

Individual clustering settings for heat map visualizations
were hierarchical clustering, Euclidean distance and com-
plete linkage, unless specified otherwise in the figure
legends. Heat maps were plotted using ComplexHeatmap
R package v.2.6.2.55 Principal component analyses (PCAs)
and principal variance component analyses (PVCAs) were
done on the Z-scored protein expression tables. PCA
biplots were drawn using the ggbiplot R package v.0.55
(https://github.com/vqv/ggbiplot). Further visualizations
were done using R v.4.2.0 and GraphPad Prism v.8 for
Windows, GraphPad Software, San Diego, California USA,
www.graphpad.com.

3 RESULTS

3.1 Molecular heterogeneity of SCLC
cell lines detected via proteomics

We characterized 26 cell lines derived from primary or
metastatic human SCLC lesions (Table 1) using label-free
proteomic analysis. A total of 10161 proteins were iden-
tified and quantified (9570 and 6425 proteins in CP and
CM, respectively), and the majority of these proteins were
quantified in minimum 80% of the samples (8405 and 5408
proteins in CP andCM, respectively). Altogether, we anno-
tated 699 secreted proteins, 800 cell-surface proteins, 3440
proteins detectable in human blood plasma, of which 367
are actively secreted into the blood, and 289 ‘druggable’

proteins in our cell lines. The CM consisted of relatively
more secreted and plasma proteins, highlighting its added
value in the search for potential blood-based biomarkers.
First, according to theirASCL1,NEUROD1, POU2F3 and

YAP1 mRNA expression patterns – we grouped the cell
lines into one of the four respective subgroups: SCLC-A,
SCLC-N, SCLC-P and SCLC-Y (eight, seven, four and seven
cell lines, respectively) (Figure 1A, upper panel). These
transcription factors also showed increased protein levels
in their respective subtype (Figure 1A, lower panel).
In general, we identified several members of the Myc

proto-oncogene (MYC) family universally expressed across
our samples, such as MYC and protein L-Myc (MYCL),6 or
the transcription activator nuclear factor 1 B-type (Figure
S2a).56 The protein products of TP53 and RB1 genes, which
are well known to be genetically altered in SCLC,57–59 were
quantified in 100.0% and 88.5% of the cell lines, respec-
tively, independent of the previously described TP53 and
RB1 mutational status of the cell lines35 (Figure S2b). Sev-
eral well-accepted subtype markers3 showed the expected
protein expression profile across the subtypes (Figure S2c),
such as chromogranin-A (SCLC-A marker), anthrax toxin
receptor 1 (SCLC-Nmarker), advillin (SCLC-Pmarker) and
multiple integrins (SCLC-Y markers) (Figure 1B).
The cell lines were further characterized by their NE

and EMT features. NE scores built from 19 NE and 17
non-NE markers,7 and EMT scores based on 12 epithelial
and 10 mesenchymal markers,44 were calculated for each
cell line (Figure S3a,b). The mean protein abundances of
NE, non-NE, epithelial andmesenchymal markers in each
sample are shown in Figure 1D, whereas the mean NE and
EMT scores across the subtypes are depicted in Figure S3c.
As expected, most SCLC-A cell lines expressed NE and
epithelial markers more strongly than non-NE and mes-
enchymal markers (MNE score = 0.71, MEMT score = −0.70).
SCLC-N was found to be a rather NE subtype with mixed
epithelial–mesenchymal characteristics (MNE score = 0.56
and MEMT score = 0.39). SCLC-P exhibited moderate non-
NE characteristics in our dataset (i.e. lower than SCLC-A
and -N, but higher than SCLC-Y); however, a high expres-
sion of epithelial markers was detected (MNE score = −0.05
andMEMT score =−0.61) in this subtype. In contrast, SCLC-
Y cell lines exhibited prominent non-NEandmesenchymal
traits (MNE score = −1.35 and MEMT score = 0.75). In line
with these findings, delta-like protein 3 (DLL3) protein,
an inhibitory Notch pathway ligand,60 was expressed in
decreasing amounts from SCLC-A to SCLC-Y, indicating
the Notch pathway’s gradual activation (Figure S2c).
Comparing NE and EMT scores between cell lines with

different properties, such as culture type, cell line ori-
gin and treatment with chemotherapy, we found that
adherent cell lines harbour significantly lower NE scores
than the non-adherent ones (Figure S3d–f). In addition, a

https://github.com/vqv/ggbiplot
http://www.graphpad.com
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F IGURE 1 Proteomic analysis of small-cell lung cancer (SCLC) cell lines highlights molecular heterogeneity: (A) The mRNA expression
of key genes ASCL1, NEUROD1, POU2F3 and YAP1 to determine the molecular subtypes (top). Data is shown as mean ± SD of the
2−ΔCt × 1000 value, normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Each dot represents one cell line and is the mean of
two biological replicates performed in triplicates. The significance of Mann–Whitney U tests is indicated above the boxplots (*p < 0.05;
**p < 0.01; ***p < 0.001). Bottom panel shows label-free quantitation (LFQ) values derived from the proteomic analysis, shown as mean ± SD
of each cell line, for each defined subtype. Missing values are indicated by an x. The significance of independent t-tests is indicated above the
boxplots (*p < 0.05; **p < 0.01; ***p < 0.001); (B) protein expression profile of four well-known subtype markers (from left to right: CHGA,
ANTXR1, AVIL and ITGA5, markers for SCLC-A, -N, -P and -Y, respectively). The significance of independent t-tests is indicated above the
boxplots (*p < 0.05; **p < 0.01; ***p < 0.001); (C) mean Z-score values for neuroendocrine (NE) and non-NE markers in each cell line (left),
and mean Z-score values for epithelial and mesenchymal markers (right)
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significant negative correlation was observed between NE
and EMT scores (Figure S3g).

3.2 Manifestation of heterogeneous in
vitro growth characteristics in the
proteome

Although maintained in the same in vitro conditions, the
cell lines showed significantly different growth character-
istics. Specifically, out of the 26 cell lines, 10 (38.5%) grew
in suspension, 3 (11.5%) in a semi-adherent form and the
other 13 (50.0%) grew adherent on the plastic (Figure 2A).
Adherent and non-adherent cell lines showed clearly dis-
tinct protein expression profiles (Figure 2B,C). In total, 270
and 148 proteins were significantly (BH adjusted p < 0.05)
downregulated in suspension cell lines compared to adher-
ent cell lines in the CP and CM, respectively, whereas
244 and 244 proteins were significantly upregulated in
suspension cell lines in the CP and CM, respectively
(Figure 2B,C, left). An ORA of differentially expressed
proteins, separately for CP and CM but combining up-
and downregulated proteins, showed that KEGG path-
ways such as protein processing in endoplasmic reticulum,
lysosome and glycosaminoglycan degradation were signif-
icantly (p < 0.05) enriched both in CP and CM, as well as
other pathways such as endocytosis in CP and gap junction
in CM were overrepresented, thereby supporting the phe-
notypic cell line differences on protein level (Figure 2B,C,
right and Table S2).

3.3 Proteome-based SCLC subgroups
match with mRNA-based subtyping

To investigate whether proteomic subtyping correlates
with the mRNA-based classification, unsupervised con-
sensus clustering of the CP samples was performed based
on the most variable proteins (Figure S4a–c). The anal-
ysis revealed four clusters in the proteomic data, which
agrees with themRNA-based subtyping (Figure 3A). A dis-
crepancy was detected in only one cell line (H1882), which
was classified in the SCLC-A subgroup according to the
qPCR data and in the SCLC-P subset based on the pro-
teomic results. Of note, this cell line also displayed a higher
POU2F3 mRNA expression than other SCLC-A cell lines
(Figure 3A). Additionally, two adherent SCLC-A samples
(H1688, DMS53) were rather separated from their group
members (Figure S4c). Notably, SCLC-Y samples exhibited
the most distinct protein expression profile. The previous
observations are also well reflected on a PCA plot of the CP
samples (Figure 3B). The CM samples, on the other hand,
exhibit a rather heterogeneous expression profile based on

their most variable proteins, and the PCA plot showed no
apparent separation according to the mRNA-based sub-
type classification (Figure 3C). Correspondingly, PVCA
revealed that the molecular subtypes were less prominent
contributors to protein expression variability in CM com-
pared to CP (Figure 3D). Furthermore, culture type was
identified as an important contributor to the proteomic
profiles of SCLC cell lines, which was more pronounced
in CM.

3.4 Multi-omic portraits of SCLC
subtypes outline potential subtype-specific
vulnerabilities

According to the high concordance between mRNA-
and proteome-based subtypes, we used the mRNA-based
classification system in differential expression analyses
between subtypes. We found 367 and 34 subtype-specific
proteins (ANOVA BH adjusted p < 0.05, Tukey’s HSD post
hoc p < 0.05), the levels of which differ in a given subtype
compared to all the three other subtypes in the CP and
CM data, respectively (Table S3). This also included four
proteins with on/off characteristics in the CP data, namely
achaete-scute homolog 1 (ASCL1; ‘on’ in SCLC-A), regu-
lator of G-protein signalling 22 (RGS22; ‘on’ in SCLC-P),
neurexophilin-4 and puratrophin-1 (NXPH4 and PKHG4;
‘off’ in SCLC-Y). All subtype-specific proteins (including
those fromCPandCM)were then subjected to the pathway
analysis (Table S3).
In order to more systematically investigate the underly-

ing biology of SCLC subtypes, in addition to identifying
subtype-specific proteins, we also performed a pathway-
based comparison of subgroups using pGSEAs. We looked
for significant pathways that were concordantly activated
or suppressed in a certain subtype compared to the other
three subtypes. To do this, all pairwise subtype compar-
isons were performed, using the full list of quantified
proteins (n= 8405) from theCP data. Furthermore, we per-
formed the same analysis on the RNA-Seq data of 50 SCLC
cell lines fromCCLE35 (n= 9237 genes) and finally assessed
the relationship between proteomic and transcriptomic
results (Table S4). These steps are described in detail in
Section 2 and Figure S5.
Significantly overrepresented (p < 0.05) KEGG pro-

cesses in SCLC-A according to subtype-specific proteins
(n = 33) include oxidative phosphorylation (OXPHOS),
as well as phenylalanine metabolism and leukocyte
transendothelial migration (Figure 4A). Consistent with
this, pGSEA results also showed upregulation of OXPHOS
and respiratory chain elements based on proteomic data.
Positive regulation of neural precursor cell proliferation
was supported by both datasets, whereas transcriptomics
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F IGURE 2 In vitro growth characteristics mirrored in the proteome: (A) Pie chart and representative images (taken on a Zeiss Axiovert
40 C microscope) of the different culture types of small-cell lung cancer (SCLC) cell lines (n = 26). Scale bar = 100 μm; (B) volcano plot
depicting the results of differential expression analysis results between suspension and adherent cell lines (left) with the corresponding
enrichment map of the overrepresented KEGG pathways (right) in the cell pellet (CP) data; (C) volcano plot depicting the results of
differential expression analysis between suspension and adherent cell lines (left) with corresponding enrichment map of the overrepresented
KEGG pathways (right) in the culture media (CM) data
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F IGURE 3 The mRNA-based classification of small-cell lung cancer (SCLC) subtypes correlates with proteomic data: (A) Heat map of
consensus clustering results using proteins from the cell pellet (CP) data showing high variation (>1.25 SD). Samples are sorted according to
their cluster assignments and their representative protein expression profiles are shown; (B) principal component analyses (PCA) plot of the
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showed the activation of the subpalliumdevelopment gene
set in SCLC-A (Figure 4B).
Subtype-specific proteins in SCLC-N (n = 54) con-

tributed to the significant overrepresentation of KEGG
pathways, such as cell cycle, phagosome, riboflavin
metabolism and peroxisome proliferator-activated recep-
tor signalling pathway (Figure 4C). SCLC-N could be
further characterized by the suppression of epidermis
development processes based on pGSEA. Proteomic data
also outlined the downregulation of immune response,
cytokine signalling, cell adhesion and cytoskeleton orga-
nization, as well as upregulation of transcription and DNA
replication (Figure 4D).
Considering SCLC-P specific proteins (n = 32), three

significantly enriched KEGG pathways were detected,
namely phospholipase D signalling, lysosome as well
as other glycan degradation (Figure 4E). Furthermore,
pGSEA showed activation of the neurotrophin signalling
pathway and the lamellipodium organization gene set in
SCLC-P (Figure 4F).
Regarding SCLC-Y, multiple KEGG pathways were

significantly overrepresented in the context of subtype-
specific proteins (n = 271), such as extracellular matrix
(ECM)-receptor interaction, focal adhesion, spliceosome,
peroxisome or O-glycan biosynthesis (Figure 5A). Sim-
ilarly, a bulky list of processes showed upregulation
in SCLC-Y compared to other subtypes according to
pGSEA, such as ECM organization, cytokine-mediated
signalling, interleukin signalling, inflammatory response,
EMT, response to growth factors, cell-substrate adhesion
and mitogen-activated protein kinase (MAPK) cascade.
Transcriptomic data showed an activation of apoptotic
pathways and the Janus kinase-signal transducer and
activator of transcription signalling, whereas proteomics
revealed the upregulation of signalling by Rho-GTPases, as
well as activation of transmembrane transporter disorder-
related processes. Moreover, DNA repair, protein acetyla-
tion and chromatin modification were found downregu-
lated in this subtype, as detected by the proteomic data
(Figure 5B).
In order to verify the subtype-specificity observed in

our cell lines in SCLC tissues as well, we investigated the
behaviour of representative gene sets (n = 33) of subtype-
specific processes outlined earlier in the SCLC tissue
transcriptomic dataset published by George et al.8 ssGSEA

identified 22 gene sets for which subtype-specificity was
confirmed to some extent in the tissue data (Figures 5C and
S6). Of these, OXPHOS activation in SCLC-A, upregulated
DNA replication and downregulated immune response in
SCLC-N, as well as more active EMT and suppressed DNA
repair in SCLC-Y could be highlighted. Neither of the
subtype-specific processes in SCLC-P could be verified by
tissue transcriptomics.

3.5 Proteomic analysis identifies
potential diagnostic markers and druggable
targets for SCLC subtypes

In addition to differential expression analysis, sPLS-DA
(Figure S7) was performed separately for CP and CM to
identify the proteins that aremost suitable for subtype clas-
sifications based on their expression patterns (i.e. potential
IHC- or blood-basedmarkers). The analysis resulted in 104
proteins (82 and 23 in theCP andCMdatasets, respectively;
one protein was detected in both datasets) showing clearly
distinct profiles between at least two subtypes (Figure S8).
The proteins selected by sPLS-DA could be separated into
the following expression pattern categories: upregulated in
SCLC-A versus -N, upregulated in SCLC-N versus SCLC-A,
upregulated in SCLC-P (vs. other subtypes), upregulated
in SCLC-Y and downregulated in SCLC-Y (Figure 6A). Of
note, 35 and 17 out of the 104 proteins showed either clear
up- or downregulation in the SCLC-Y subtype, respec-
tively. For several markers, the expression pattern was
matching with transcriptomic data from SCLC tissues (top
three is shown in Figure 6B). Notably, eight of such pro-
teins were found to be overexpressed in SCLC-Y, including
probable glutathione peroxidase 8 (GPX8), pyruvate dehy-
drogenase kinase isoform 2 (PDK2) and tyrosine–protein
kinase receptor UFO (AXL) (Figures 6B and S9a).
Among the proteins confirmed on tissue transcriptome

level, six are also detectable in human blood plasma by
MS, namely tyrosine–protein kinase receptor UFO (AXL,
upregulated in SCLC-Y), basal cell adhesion molecule
(BCAM, upregulated in SCLC-A vs. -N), GTP-binding pro-
tein 1 (GTPBP1, upregulated in SCLC-N vs. -A), keratin-18
(KRT18, upregulated in SCLC-A vs. -N), noelin (OLFM1,
upregulated in SCLC-N vs. -A) and phospholipase C-
gamma-2 (PLCG2, upregulated in SCLC-P). The most

CP data using the most variable (>1.25 SD) proteins. Cell lines are coloured according to the subtype and shape corresponds to culture type.
Normal data ellipses are also drawn for each subtype (probability = 68%); (C) PCA plot of the culture media (CM) data using only the most
variable (>1.25 SD) proteins. Cell lines are coloured according to the subtype and shape corresponds to culture type; (D) principal variance
component analysis (PVCA) reveals the contribution of subtype and culture type to the proteomic profile differences in CP and CM. The
residual variation (noted as ‘residual’) represents the remaining biological and technical variance in the dataset which could not be attributed
to the abovementioned factors.
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F IGURE 4 Subtype-specific biological processes in small-cell lung cancer (SCLC)-A/N/P. Significantly overrepresented KEGG pathways
(p < 0.05) derived from the list of subtype-specific proteins, as well as the members of these pathways (red and blue colours mean up- and
downregulated in the given subtype compared to the other subtypes, respectively) are shown on the left side of the panel. The characteristic
gene sets for each subtype, as determined by pre-ranked gene set enrichment analysis (pGSEA), are shown on the right side of the panel. The
x axis indicates the average normalized enrichment score (av. NES) in proteomics for comparisons SCLC-A versus -N/P/Y, SCLC-N versus
-A/P/Y, or SCLC-P versus -A/N/Y, whereas y axis indicates the av. NES in transcriptomics. Dots refer to individual gene sets, which are
summarized by keywords. Gene set activation or suppression supported by both omic data is shown in purple, whereas green and blue means
gene sets supported only by proteomics or transcriptomics, respectively. (A and B) SCLC-A, (C and D) SCLC-N and (E and F) SCLC-P
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F IGURE 5 Subtype-specific biological processes in small-cell lung cancer (SCLC)-Y and processes verified using tissue transcriptomics:
(A) Significantly overrepresented KEGG pathways (p < 0.05) derived from the list SCLC-Y specific proteins, as well as the members of these
pathways (red and blue means up- and downregulated in SCLC-Y, respectively); (B) the characteristic gene sets for SCLC-Y determined by
pre-ranked gene set enrichment analysis (pGSEA). The x axis indicates the average normalized enrichment score (NES) in proteomics for
comparisons SCLC-Y versus -A/N/P, whereas the y axis indicates the average NES in transcriptomics. Dots show the individual gene sets,
which are then summarized by keywords. Colouring is based on whether the gene set activation or suppression was detected by both
proteomics and transcriptomics (purple), or only by proteomics (green) or transcriptomics (blue). (C) The average value of NESs per subtype
for SCLC tissue samples, derived from single-sample gene set enrichment analysis (ssGSEA) for some representative gene sets where the
subtype specificity was also supported by the tissue data.
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F IGURE 6 Proteins with diagnostic and therapeutic relevance in small-cell lung cancer (SCLC) subtypes: (A) The proteins selected by
partial least squares discriminant analysis (sPLS-DA), which are suitable for separating the subtypes based on their expression profile. Results
from cell pellet (CP) and culture media (CM) are displayed on the top and bottom heat map, respectively. Proteins with the best matching
expression profiles between cell line proteomics and tissue transcriptomics are highlighted; (B) gene expression differences of the best
matching transcripts showing subtype-specific expression profile. The significance of Wilcoxon tests is indicated above the boxplots
(*p < 0.05; **p < 0.01; ***p < 0.001); (C) the ln(IC50) values of the cell lines for drugs selected from the Genomics of Drug Sensitivity in Cancer
1 (GDSC1) database (from left to right: dasatinib, pazopanib, and vorinostat), as a function of the measured protein expression. The results of
the Pearson correlation analysis are indicated above the scatter plots. Dots are coloured according to the cell line’s subtype assignment.
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TABLE 2 Potentially targetable subtype-specific proteins

Protein name
(gene name) Dataset Specificity Annotation

FDA-approved drugs
with pharmacological
action

Aromatic-l-amino-acid
decarboxylase (DDC)

CP ↑ in A Enzyme that catalyses dopamine and
serotonin synthesis

Benserazide, carbidopa,
methyldopa

Ephrin type-A receptor 2
(EPHA2)

CP ↑ in Y Receptor tyrosine kinase involved in
contact-dependent bidirectional
signalling with neighbouring cells

Dasatinib, regorafenib

Histone deacetylase 1
(HDAC1)

CP ↑ in A/N/P Histone deacetylase with regulatory
function in transcriptional processes

Romidepsin, vorinostat

Integrin alpha-V (ITGAV) CP ↑ in Y Integrin, receptor for a wide array of
proteins. CD marker

Antithymocyte
immunoglobulin,
levothyroxine

Integrin beta-1 (ITGB1) CP ↑ in Y Integrin, receptor for a wide array of
proteins. CD marker

Antithymocyte
immunoglobulin

Mast/stem cell growth
factor receptor kit (KIT)

CP and CM ↑ in P Receptor tyrosine kinase, acts as
cell-surface receptor for the cytokine
KITLG/SCF. CD marker

Ancestim, imatinib,
lenvatinib, pazopanib,
regorafenib, ripretinib,
sorafenib, sunitinib,
tivozanib

Abbreviations: ↑, higher expression; A, SCLC-A; CD, cluster of differentiation; CM, culturemedia; CP, cell pellet; FDA: Food andDrugAdministration; N, SCLC-N;
P, SCLC-P; SCLC, small cell lung cancer; Y, SCLC-Y.

promising blood-based biomarker from this list is the
protein UFO, which has been previously detected via
immunoassay as well.
Finally, we investigated whether among the proteins

detected by differential expression analysis or sPLS-DA (a
total of 418 unique proteins), we could find ‘druggable’
proteins61 (i.e. drug targets approved by FDA). We iden-
tified six of such proteins, listed in Table 2, as potential
targets for subtype-specific therapies: aromatic-L-amino-
acid decarboxylase (DDC, overexpressed in SCLC-A),
ephrin type-A receptor 2 (EPHA2), integrin alpha-V and
beta-1 (ITGAV, ITGB1, overexpressed in SCLC-Y), histone
deacetylase 1 (overexpressed in SCLC-A/N/P vs. SCLC-Y),
and mast/stem cell growth factor receptor Kit (KIT, over-
expressed in SCLC-P). Multiple drugs that directly interact
with the aforementioned proteins as part of their mech-
anism of action could be delineated (Table 2). Moreover,
SCLC cell lines have already been tested against seven
of these drugs (CancerRxGene database40), namely dasa-
tinib (targeting EPHA2), vorinostat (targeting HDAC1),
imatinib, pazopanib, sorafenib, sunitinib and tivozanib
(all targeting KIT). We therefore investigated whether the
subtypes showed differences in sensitivity to these drugs,
either in GDSC1 or in GDSC2 datasets (Figure S9b). Gener-
ally, we found that lower EPHA2, KIT and HDAC1 protein
abundance in our cell lines were indicative of increased
resistance to the drugs targeting these proteins (Figure 6C)
according to the GDSC1 dataset. This trend was not veri-
fied by the GDSC2 dataset for dasatinib; however, median

IC50 values of some KIT-targeting drugs (pazopanib, suni-
tinib, tivozanib) were lowest in SCLC-P cell lines, as well
as SCLC-Y subtype’s higher resistance to vorinostat could
be validated (Figure S9b).

4 DISCUSSION

Although clinically SCLC is still regarded as a homo-
geneous tumour type with NE characteristics, it was
described decades ago that besides the ‘classical’ form
of SCLC with suspension growth type and NE pheno-
type, a ‘variant’ form (NE-low type) of SCLC also exists,
mainly forming adherent cell cultures.62,63 In addition,
tumours lacking NE differentiation (non-NE) have been
also described recently.6 In our SCLC cell line panel,
50.0% of the samples grew adherently, whereas the other
half semi-adherently or in suspension. A significant pos-
itive relationship between the adherent phenotype and
the non-NE features was observed. Importantly, the pro-
teomic landscape of the examined cell lines also mirrored
these phenotypic differences, and proteins associated with
several pathways involved in cell adhesion were iden-
tified as differentially expressed between adherently or
in-suspension-growing cell lines, including glycosamino-
glycan degradation and endocytosis or gap junction.
Recent profiling studies highlighted that the NE and

non-NE classes of SCLC can be further divided into addi-
tional subtypes, namely SCLC-A and -N (NE-high and



SZEITZ et al. 19 of 24

NE-low, respectively) and SCLC-P and -Y (non-NE types).6
Our cell lines were also categorized accordingly using
qPCR, resulting in eight, seven, four and seven ASCL1+,
NEUROD1+, POU2F3+ and YAP1+ cell lines, respectively.
In the global proteomic data, these transcription factors
showed higher abundances in their respective subtype,
with only the elevated level of neurogenic differentia-
tion factor 1 (NEUROD1) in SCLC-N cell lines being not
significantly different in all three comparisons.
According to the protein expression of NE and non-NE

markers described by Zhang et al.,7 as expected, SCLC-A
and -N cell lines showed NE features, whereas those in the
SCLC-P and -Y groups were associated with rather non-NE
protein profiles. This is in line with the results of a recent
IHC-based study on human tissue specimens, in which the
authors also found that the likelihood of POU2F3 expres-
sion in SCLC is quantitatively linked with the level of
NEmarker expression and SCLC-P tumours are character-
ized by the near-complete absence of NE differentiation.64
Therefore, including POU2F3 as a potential additional
diagnostic marker might represent an appealing approach
for the diagnosis of SCLC tumours that lack or exhibit
minimal level of standard NE markers.64 Meanwhile,
in another study, the same group also showed that the
expression of conventional markers linked with NE differ-
entiation is substantially higher inASCL1- andNEUROD1-
defined tumours (vs. ASCL1/NEUROD1-double-negative
tumours), which as well corresponds with our findings.12
Regarding epithelial and mesenchymal traits, a study on
SCLC cell lines65 outlined that SCLC-P and -Y carry epithe-
lial and mesenchymal attributes, respectively, whereas
SCLC-A and -N subtypes have mixed characteristics. Our
proteomic study, based on the epithelial and mesenchy-
mal markers established by Kohn et al.,44 confirmed these
observations. Interestingly, the EMT score was not influ-
enced by the cell lines’ site of origin. Our data also showed
that strong NE or EMT characteristics tend to be mutually
exclusive.
Importantly, we could categorize our SCLC cell lines

into four subgroups based on their comprehensive cellu-
lar proteomic profiles, which agreed with the pre-defined
mRNA-based subtypes (only one cell line was misclassi-
fied in proteomics). Of note, the overall high variability of
cell media proteins compared to cellular proteins probably
interferedwith the detection of subtype-specific signatures
in this dataset (MSD in CP = 0.85,MSD in CM = 1.20). Another
driver of the proteomic differences was the culture type,
affecting both the CP and CM.
To describe the unique traits of SCLC subtypes, we

examined the differentially expressed proteins between
subtypes and performed a multi-omic pathway-level anal-
ysis using the expression differences of all quantified
proteins (from our dataset) and transcripts (from CCLE

transcriptomic data of SCLC cell lines) across the subtypes.
Accordingly, we uncovered a list of potential subtype-
specific therapeutic vulnerabilities.
Due to the well-known regulatory role of ASCL1 in

neural differentiation,66 neural precursor cell proliferation
and subpallium development–related proteins showed a
concordant upregulation in SCLC-A subtype. Interest-
ingly, proteomic data clearly indicated that the activation
of OXPHOS and respiratory chain elements are strongly
specific for SCLC-A. It has been recently described that
cell lines not expressing MYC (characteristic for SCLC-
A6,8) relies more on oxidative metabolism67 suggesting
that SCLC-A tumours might be susceptible to OXPHOS
inhibitors.68
SCLC-N cell lines, which predominantly formed sus-

pension cultures in our study, showed a concordant
downregulation of cell adhesion pathways. Harvesting the
protein-level data also highlighted the increased activity
of DNA replication and transcription and the depletion
of cytokine-mediated signalling in this subtype. Interest-
ingly, a similar trend was described in a study where gene
expression differences between SCLC and normal tissue
were addressed.69
In the epithelial-like SCLC-P cell lines, upregulation of

the lamellipodium organization pathway was observed,
which constitutes a crucial step in EMT leading to
increased cell motility and invasive capacities.70 In addi-
tion, upregulation of neurotrophin signalling foreshad-
ows that poly(adenosine diphosphate-ribose) polymerase
(PARP) inhibitors can be effective therapeutic agents for
SCLC-P as previously proposed,13 as prolonged PARP acti-
vation was found to contribute to neurotrophin-induced
neuronal death.71 Moreover, our data suggests that direct
targeting of neurotrophin signalling might be an appropri-
ate treatment option in POU2F3-driven SCLC.72
SCLC-Y cell lines formed a clearly defined subgroup

in our SCLC samples. A unique finding in the pro-
teomic datawas the downregulation of protein acetylation,
chromatin modification (driven by the decreased levels
of several histone acetyltransferases) and DNA double-
strand break repair pathways in this subtype. Moreover,
we also detected overexpression of theMAPK-cascade and
Rho-GTPase signalling members in this subtype. Rho is
crucial for YAP/TAZ activity73; therefore, the upregula-
tion of the latter pathways can be expected in YAP1+ cell
lines. Recently, Caeser et al. reported that in SCLC-A,
the activation of the MAPK pathway rather has inhibitory
functions, compared to SCLC-N/P cell lines. However, no
cell lines from the SCLC-Y subtype were tested by these
authors.74 In line with the adherent nature of the YAP1-
driven cell lines, we also observed that focal adhesion,
ECM organization and cell–substrate protein pathways
were uniformly upregulated in the SCLC-Y subgroup, just
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as peroxisome and endocytosis-related proteins. Tlem-
sani et al. described that SCLC-Y cell lines demonstrate
high presenting and native immune predisposition.65
Additionally, these cells also have the highest antigen-
presenting machinery scores, thus anticipating that the
SCLC-Y subtypemight be sensitive to immune-checkpoint
inhibitors.65 In line with this, we also identified a dis-
tinctive upregulation of cytokine-mediated signalling and
inflammatory response in this subtype.
Of note, controversies around SCLC-Y still exists,

because comprehensive immunohistochemical and
histopathologic analyses of SCLC subtypes in patient sam-
ples failed to identify a distinct YAP1-driven subtype.12 In
contrast, our preclinical proteomic study clearly identifies
a unique SCLC-Y subtype among the examined cell lines.
Accordingly, a significant proportion of the 104 proteins
with diagnostic relevance was linked to SCLC-Y. The most
promising biomarkers for SCLC-Y include GPX8, PKD2
and UFO, from which UFO is also potentially detectable
in the human blood plasma. This is of clinical importance
because the lack of appropriate tissue samples highlights
the diagnostic relevance of blood-based biomarkers.
Indeed, so far only a single study attempted to define a
panel of subtype-specific blood-based biomarkers.75 In
their study, however, the authors examined the diagnostic
relevance of circulating cell-free DNA, not proteins.75
Regarding the potential SCLC-Y markers identified in our
study, gene expression of GPX8 was previously correlated
with YAP1 expression in SCLC cell lines.76 Little is known
about the role of protein kinase D (PKD) in SCLC, but
a previous study has shown that PKD is activated in
cell lines H69, H345 and H510 via a protein kinase C-
dependent pathway activation.77 The AXL gene (encoding
the UFO protein) is associated with the mesenchy-
mal phenotype and a potential target for overcoming
resistance to epidermal growth factor (EGF) receptor
inhibitors.78
Our data outlined six proteins that show remarkable dif-

ferences in abundance across the subtypes and are also
FDA-approved drug targets, namely DDC (overexpressed
in SCLC-A), EPHA2, ITAV and ITB1 (corresponding to
genes EPHA2, ITGAV and ITGB1, overexpressed in SCLC-
Y), HDAC1 (downregulated in SCLC-Y) and KIT (upreg-
ulated in SCLC-P). Cells with high levels of ASCL1 also
showed stronger expression of DDC,79 whereas EPHA2,
a non-NE marker,7 was previously described as upregu-
lated in SCLC-Y.65 Overexpression of integrins in SCLC-Y
contributes to chemotherapy resistance through the sup-
pression of chemotherapy-induced apoptosis.80 In line
with this, our group previously reported a positive corre-
lation between YAP1 protein abundance and resistance to
chemotherapeutic agents in SCLC cell lines.9 An HDAC
inhibitor resistance in SCLC-Y, foreshadowed by HDAC1

downregulation in our study, was also reported recently.81
KIT protein is a known SCLC-Pmarker.82 Importantly, our
hypothesis that subtype-specific overexpression of proteins
indicates sensitivity to certain drugs was supported by data
from CancerRxGene.40 In particular, we confirmed that
KIT-targeting drugs, such as pazopanib, are potentially
adequate to target POU2F3-driven SCLCs, whereas YAP1-
driven tumours are more resistant to vorinostat (targeting
HDAC1).
Among others, the main advantage of cell line–based

studies is that one can examine pure populations of
homogeneous tumour cells without admixed stromal or
inflammatory cells. This is of scientific importance in drug
sensitivity assays and subtyping studies such as the cur-
rent one.83,84 Importantly, our proteomic data from cell
lines showed a notable overlap with transcriptomic data
from SCLC tissue samples in terms of subtype-specific
pathways, suggesting that in vitro investigations of SCLC
cell lines are useful in characterizing SCLC tissue sub-
types. A comprehensive multi-omic investigation of SCLC
tissue and cell line data by Gay et al. demonstrated the
same, namely that SCLCs can be subcategorized both in
the presence and absence of tumour microenvironment.13
Cell lines, however undoubtedly not ideal models for

profiling studies, offer many advantages that complement
the use of tumour tissues and animal models for the
examination of SCLC.83 Nevertheless, some study limi-
tations should be underscored. Although we confirmed
several previously described subtype markers, and our
results are largely consistent with previous transcrip-
tomic data for subtype-specific pathways, the total number
of cell lines included was relatively small. Additionally,
given that all YAP1-driven cell lines had adherent culture
type, no subsequent analyses were feasible to investi-
gate subtype and culture type separately. Therefore, the
influence of culture type on the distinct characteristics
of SCLC-Y is still unclear. It is also important to note
that unique up- or downregulation of pathways in a
subtype might not translate to dependency or indepen-
dency from those pathways, as interconnected biologi-
cal processes and numerous regulatory factors including
feedback and feed-forward loops interfere with such pro-
cesses. The lack of appropriate treatment-related data
on some cell lines represents another potential study
limitation. This is partly because the majority of the
examined cell lines were established in the past cen-
tury, and therefore, the clinicopathological data concern-
ing the tumour they were derived from could not be
retrieved even after an in-depth literature search. Notably,
however, neither the NE/mesenchymal characteristics
nor the protein expression profile differed significantly
according to the presence or absence of chemotherapy
(data not shown).
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Taken together, our results should primary be con-
sidered hypothesis-generating for future studies, and all
finding should be examined in light of the abovemen-
tioned limitations. Accordingly, proteomic analyses of
larger SCLC cohorts, preferably including fresh tissue sam-
ples of patients with homogeneous treatment histories, are
needed to validate our findings.

5 CONCLUSIONS

To conclude, this is the first large-scale proteomic study
in human SCLC cell lines concerning the newly defined
molecular subtypes. We report that SCLC cell lines can
be divided into four distinct subtypes by MS-based pro-
teomics, which accords well with the qPCR-based classi-
fication. Importantly, a distinct YAP1-driven subtype with
specific proteomic features could be also distinguished.
Comprehensive proteomic profiling of these subtypes has
uncovered a list of candidate subtype-specific therapeu-
tic vulnerabilities for this once enigmatic cancer. Addi-
tionally, we also identified several potential IHC- and
blood-based biomarkers that might facilitate subtype diag-
nosis in the future. Altogether, our results might pave the
way for future subtype-specific personalized therapeutic
approaches in SCLC.
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