CRISPR-Cas9–Based Genomic Engineering in Keratinocytes: From Technology to Application

Jos P.H. Smits¹, Luca D. Meesters¹, Berber G.W. Maste¹, Huiqing Zhou^{2,3}, Patrick L.J.M. Zeeuwen¹ and Ellen H. van den Bogaard¹

CRISPR-Cas9 is the most straightforward genomeediting tool to date. However, its implementation across disciplines is hampered by variable genomeediting efficiencies, reduced cell viability, and low success rates in obtaining clonal cell lines. This review aims to recognize all CRISPR-Cas9-related work within the experimental dermatology field to identify key factors for successful strategies in the different keratinocyte (KC) cell sources available. On the basis of these findings, we conclude that most groups use immortalized KCs for generating knockout KCs. Our critical considerations for future studies using CRISPR-Cas9, both for fundamental and clinical applications, may guide implementation strategies of CRISPR-Cas9 technologies in the (experimental) dermatology field.

JID Innovations (2022);2:100082 doi:10.1016/j.xjidi.2021.100082

Introduction to CRISPR-Cas9 as a genomic editing tool

CRISPRs were known in the bacterial genome as hypervariable loci typically consisting of direct repeats, separated by sections of variable sequences called spacers, in the proximity of *CRISPR-Cas* genes. The mechanism of the CRISPR-Cas system to specifically target DNA for genome editing was utilized successfully for the first time in mammalian cells almost a decade ago (Cong et al., 2013; Jinek et al., 2012; Mali et al., 2013), and the functions as described extensively

¹Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands; ²Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands; and ³Department of Human Genetics, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands

Correspondence: Ellen H. van den Bogaard, Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Rene Descartesdreef 1, Nijmegen 6525 GL, The Netherlands. E-mail: Ellen.vandenBogaard@radboudumc.nl

Abbreviations: 3D, three-dimensional; AAV, adeno-associated virus; COL7, type VII collagen; EB, epidermolysis bullosa; hPSC, Human pluripotent stem cell; HPV16, human papillomavirus type 16; iKC, induced keratinocyte; iPSC, induced pluripotent stem cell; IV, ichthyosis vulgaris; JEB, junctional epidermolysis bullosa; KC, keratinocyte; RDEB, recessive dystrophic epidermolysis bullosa

Received 16 October 2021; revised 13 November 2021; accepted 18 November 2021; corrected proof published online XXX

Cite this article as: JID Innovations 2022;2:100082

(Doudna and Charpentier, 2014) and schematically visualized in Figure 1a. Many bacterial species have variants of CRISPR and *Cas* loci, with the most extensively investigated variant as a genome-editing tool being the CRISPR-Cas9 system (Makarova et al., 2011).

CRISPR-Cas9-mediated genome editing requires a Cas9guide RNA (gRNA) complex containing Cas9, CRISPR RNA (crRNA), and trans-activating CRISPR RNA (tracrRNA) (see Box 1: CRISPR Terminology). The complex can be introduced to target cells by various methods, as reviewed before (Lino et al., 2018; Shi et al., 2021). By the guidance of crRNA, the complex binds to complement DNA accompanied by a flanking protospacer adjacent motif 5'-NGG-3' for Streptococcus pyogenes Cas9 (Chylinski et al., 2013). The Cas9gRNA complex induces a double-stranded break at the target site (Deltcheva et al., 2011; Shah et al., 2013), which can be repaired by the target cell through either nonhomologous end joining (NHEJ) (Hefferin and Tomkinson, 2005) or homologydirected repair (HDR) (Liang et al., 1998). In NHEJ, the broken DNA strands are religated, either directly or after random nucleotide insertions or deletions (Takata et al., 1998). Often, this leads to frameshift mutations and premature stop codons, and therefore, this mechanism is readily used to knock out protein expression of interest. In HDR, the double-stranded breaks are repaired with the use of a sister chromatid as a homologous template strand. By multiple crossovers, DNA synthesis, and ligation, the damaged strand can be precisely repaired (Takata et al., 1998). Instead of a sister chromatid as template strand, an exogenous DNA template harboring the desired mutation or gene cassette can be introduced as single-strand or double-strand DNA, with homologous arms on the outsides (Chen et al., 2011; Radecke et al., 2010; Rouet et al., 1994).

Over the years, an increasing number of studies in the field of experimental dermatology harnessed the CRISPR-Cas9 toolbox, although current numbers are limited but increasing over the past 5 years (Figure 1b and c and Table 1). This review aims to recognize all the CRISPR-Cas9 work performed in human epidermal keratinocytes (KCs) to identify the best practices and key determinants for successful strategies in different human KC cell sources available, accompanied by critical considerations for future studies using CRISPR-Cas9, both for a fundamental and clinical application.

Delivery of the CRISPR-Cas9 machinery into KC

Cationic vectors, lentiviral vectors, or adenoviral vectors are mostly utilized for transducing the expression of Cas9 and a specific gRNA. Lentiviral vectors especially designed for this purpose, such as lentiCRISPR v2 deposited by Feng Zhang's laboratory (Sanjana et al., 2014), are readily available

JPH Smits et al.

CRISPR-Cas9 in Human Keratinocytes

Figure 1. CRISPR-Cas9-initiated genomic repair in human

keratinocytes. (a) Schematic overview of CRISPR-Cas9 mechanism (created with BioRender.com). (b, c) Graphical representation of publications using CRISPR-Cas9 in human keratinocytes, split by cell source, experimental goal, carrier system applied, and selection (marker) deployed. iPSC, induced pluripotent stem cell; PAM, protospacer adjacent motif; RNP, ribonucleoprotein; sgRNA, singleguide RNA.

Box 1. (CRISPR Terminology
CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
Cas9	CRISPR-associated protein 9
Cas9n	Cas9 nickase
dCas9	Deactivated Cas9
PAM	Protospacer adjacent motif
crRNA	CRISPR RNA
tracrRNA	Trans-activating CRISPR RNA
(s)gRNA	(Single) guide RNA
RNP	Ribonucleoprotein
HDR	Homology-directed repair
NHEJ	Nonhomologous end joining

through Addgene (Watertown, MA) (plasmid #52961) and are easily amendable to encode the gRNA sequence(s) of interest. Lentiviral infection is often very efficient and leads to random incorporation of the encoded DNA into the infected cell's genome, causing a permanent transfer-and often also permanent induction-of Cas9 and the encoded gRNA sequence. Consequently, the constitutive expression of Cas9 and gRNA increases the risk of off-target cleavage of DNA, potentially leading to unforeseen genomic changes. In addition, lentiviral delivery can result in unwanted gene rearrangements and transgene silencing (Lino et al., 2018). The use of adenovirus over lentiviruses is preferred, as adenoviruses do not integrate easily into the genome (Stephen et al., 2010). Both lentivirus and adenovirus can induce strong immunogenic responses (Nayak and Herzog, 2010; Zaiss and Muruve, 2008), complicating their suitability for in vivo therapeutic use. Therefore, adeno-associated virus (AAV) particles, which show limited immunogenicity compared with adenovirus vectors (Zaiss et al., 2002), might be more suitable. Nevertheless, the drawback of AAV is that these particles have a smaller loading capacity than adenoviruses and lentiviruses, which can limit their use with relatively large plasmids encoding such as gRNAs and Cas9.

Electroporation or transfection of Cas9 and gRNAs, either as plasmids, mRNA, or ribonucleoprotein (RNP) complexes, is nowadays often used in immortalized KCs (Table 1). These delivery methods are easy to use and can be highly efficient (especially electroporation of RNP complexes), and the transient expression of gRNAs and Cas9 limits the risk for offtarget effects.

CRISPR-Cas9 in human primary KCs

To study protein function, biological processes, or disease mechanisms, experimental cell or tissue culture models often include primary epidermal KCs of healthy individuals taken from excess skin that was removed during surgical procedures. Genetic predispositions are key in the pathogenesis of many skin diseases, from the obvious monogenetic to complex polygenic and multifactorial diseases. For example, ichthyosis vulgaris (IV) and epidermolysis bullosa (EB) are the results of homozygous (or compound heterozygous) mutations in *FLG* (for IV) and type VII collagen (COL7) gene *COL7A1* and *LAMB3* (both for EB) (Floeth and Bruckner-Tuderman, 1999; Ryynänen et al., 1991; Smith et al., 2006; Thyssen et al., 2013). Through genomic engineering, models for these monogenetic skin diseases can be created, allowing

to study the contribution of the genetic risk factors in an in vitro setting against nonengineered KCs with an identical genetic background. Potential gene therapy strategies can be developed and validated for use in vitro and eventually in vivo. So far, CRISPR-Cas9 has been used in primary KCs, mainly to knockout or correct genes, as shown in Table 1.

In 2018, a protocol for the generation of knockout human primary KCs was published (Fenini et al., 2018a). To increase the lifetime of human primary cells, they were cocultured with 3T3-J2 fibroblasts as feeder cells in the presence of proliferation-enhancing ROCK inhibitor Y-27632 (Gandham et al., 2013), whereas the CRISPR-Cas9 machinery is delivered through lentiviral transduction of plasmid DNA, including a puromycin resistance cassette. Selection of modified KCs was performed on mitotically inactivated and puromycin-resistant fibroblasts. The modified KCs were still able to differentiate and were able to form three-dimensional (3D) skin equivalents (Fenini et al., 2018b; Grossi et al., 2020). In the studies mentioned earlier, antibiotic resistance was often conferred, allowing for the selection of KCs that were successfully infected. These KCs did not undergo successful genomic editing per se. In other words, the generation of isogenic clonal cell lines that harbor precisely the intended mutations is preferred to using selection procedures that will result in a mixed cell population with unspecified genomic alterations. Indeed, clonal expansion of primary KCs is a challenge given the limited lifespan. Nevertheless, EBderived patient KCs, grown on feeder fibroblast cells and in the presence of Y-27632, were successfully targeted by CRISPR-Cas9 (Bonafont et al., 2021, 2019). Others circumvented the proliferative limitations by immortalizing the genetically altered primary KCs using a retroviral vector carrying human papillomavirus type 16 (HPV16) genes E6 and E7 before grafting experiments and organotypic 3D cultures for studies on junctional epidermolysis bullosa (JEB) (Benati et al., 2018) or Netherton's syndrome (Gálvez et al., 2020).

Most research utilizing CRISPR-Cas9 in primary KCs is focused on EB using patient-derived EB KCs, as reviewed recently (Kocher and Koller, 2021). In EB, the connection between the dermis and the epidermis is fragile, leading to severe clinical features such as blistering and subsequent debilitating infections. Using CRISPR-Cas9-induced HDR, the COL7 gene COL7A1 in KCs derived from patients with recessive dystrophic EB (RDEB) (Bonafont et al., 2021; Hainzl et al., 2017; Izmiryan et al., 2018; Kocher et al., 2021) and fibroblasts derived from patients with RDEB (Kocher et al., 2021) can be restored, leading to re-expression of COL7. The COL7-corrected KCs were able to develop into highguality skin equivalents when transplanted onto immunodeficient mice. Others showed that the use of dual single gRNA (sgRNA)-guided Cas9 nuclease can restore the COL7A1 reading frame and reinstate the expression of COL7 in the KCs derived from patients with RDEB, enabling long-term regeneration of high-quality, properly adhesive skin after grafting onto immunodeficient mice (Bonafont et al., 2019). For JEB, a similar approach was successful: primary KCs carrying the homozygous LAMB3 mutation in exon 14 were immortalized and corrected by HDR through an adenoviral vector carrying Cas9 and gRNA cassettes and a lentiviral

Primary Neurotrocyte Node of al. 2 26228 Adult primary keratinocytes Protein kockout Electroporation Plasmid vector SpCa9 NHE FAC 1 Bind of al. 2 2807794 Foreskin primary keratinocytes Gene activation Electroporation Plasmid vector SpCa9 NHE Paramid Materia SpCa9 NHE Paramid Vector SpCa9 NHE Paramid Materia SpCa9 NHE Paramid Vector SpCa9 NHE	Cell source	Publication	PMID	Cell Types (All Human)	Research Goal	Method of Introduction	Carrier	Cas9 Version	Repair	Selection
Wate rid., 20277 20277 Considior permany lecratinosytes Center activation Plexing or percent Plasmid	Primary keratinocytes	Nöske et al. (2016)	26828486	Adult primary keratinocytes	Protein knockout	Electroporation	Plasmid vector	SpCas9	NHEJ	FACS
Hand et al., 2880095. RDEB primary keratinocytes Cene correction Xiect Cationic space No. No. Kocher et al., 2888440 Adult primary keratinocytes Protein knockout lentroponation SpCase NHE Blactic Immortal et al., 2020702 Adult primary keratinocytes Protein knockout lentifCRBYR v2 Lentrivins SpCase NHE Rusci 20184 Adult primary keratinocytes Protein knockout lentifCRBYR v2 Lentrivins SpCase NHE NHE </td <td>Yue et al., 2017</td> <td>28777946</td> <td>Foreskin primary keratinocytes</td> <td>Gene activation</td> <td>Electroporation</td> <td>Plasmid vector</td> <td>hCas9 D10A</td> <td>HDR</td> <td>Puromycin</td>		Yue et al., 2017	28777946	Foreskin primary keratinocytes	Gene activation	Electroporation	Plasmid vector	hCas9 D10A	HDR	Puromycin
Rocher et al. 2017 2888469 Adult primary keratinocytes Protein Incokout IEedToporation Protein Vector SpCas9 NHI Purom Purom Finiti et al. 2018 3026752 Adult primary keratinocytes Protein Incokout LentXISPR v2 LentXirus SpCas9 NHI Purom Finiti et al. 2018 30035171 Adult primary keratinocytes Cene correction IDIV LentXirus SpCas9 NHI Purom 2018 30195791 RDEB primary keratinocytes Cene correction IDIV LentXirus SpCas9 NHI Purom 2018 3023500 Adult primary keratinocytes Cene correction LentXirus SpCas9 NHI Purom 2019 30394897 Adult primary keratinocytes Cene activation Lipofectamine Calcionic SpCas9 NHI Purom 2019 30394897 Adult primary keratinocytes Porotin knockout FuGeam HD Calcionic SpCas9 NHI Purom Consei at al. 31409528 Adult primary keratinocytes Potein knockout		Hainzl et al., 2017	28800953	RDEB primary keratinocytes	Gene correction	Xfect	Cationic vector	SpCas9	HDR	Puromycin and blasticidin
Ferini et al., 2018, 2018 292752 Adult primary keratinocytes Protein knockout lent/CRISPR v2 lentiviuu SpCave NHE Purom Emily al., 2018 300551 Adult primary keratinocytes Protein knockout Ieut/CRISPR v2 lentiviuu SpCave NHE Purom Liu et al., 2018 30025701 RDEB primary keratinocytes Cene correction IDIV Lentiviuu SpCave NHE Purom 2019 3025000 Adult primary keratinocytes Cene activation Lipofecamic Calonic SpCave NHE Purom 2019 30594489 Adult primary keratinocytes Cene activation Lipofecamic Calonic SpCave NHE Purom Coosi et al., 31409528 Adult primary keratinocytes Protein knockout Lentiviuus SpCave NHE Purom Coosi et al., 31409528 Adult primary keratinocytes Protein knockout Lentiviuus SpCave NHE Purom Lineartinocytes Dotein knockout Lentiviuus SpCave NHE Pu		Kocher et al., 2017	28888469	Adult primary keratinocytes	Protein knockout	Electroporation	Plasmid vector	SpCas9	NHEJ	Blasticidin
Ferini et al., 30096331 Adult primary keratinocytes Protein knockout Lentivina SpCas9 NHE Purom Laminyan 30195791 RDEB primary keratinocytes Gene correction IDLV Lentivina SpCas9 NHE Nnon Laminyan al. 2018 30232000 Adult primary keratinocytes CRISPR screen IentiCRISPR v2 Lentivina SpCas9 NHE Purom 2018 30038974 Adult primary keratinocytes CRISPR screen IentiCRISPR v2 Lentivina SpCas9 NHE Purom 2019 JostH49 Adult primary keratinocytes Creat activation Lipofectamine Cationic Vac		Fenini et al., 2018a	29287762	Adult primary keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin
Immission 30193791 RDEB primary keratinocytes Gene correction IDLV Lentivins SpCas9 HD Non- 101 et al., 2018. 30225000 Adult primary keratinocytes Protein knockout FuGene HD Cationic correction SpCas9 NHE Puroma- gene activation 2019 3039974 Adult primary keratinocytes CRISPR screen lentiCRISPR v2 Lentivins SpCas9 NHE Puroma- gene activation 2019 3059449 Adult primary keratinocytes Cene activation Lipofectamine Cationic correction SpCas9 NHE Puroma- gene activation 2019 3050449 Adult primary keratinocytes Protein knockout FuGene HD Cationic correction SpCas9 NHE Puroma- gene activation 2010 2016 2016 Adult primary keratinocytes Protein knockout Lipofectamine Cationic correction SpCas9 NHE Puroma- gene activation 2016 2016 2016 2016 Paratitatatatatatatatatatatatatatatatatat		Fenini et al., 2018b	30096351	Adult primary keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin
Liu et al., 2018 30225000 Adult primary keratinocytes Protein knockout FuGene HD Cationic vector SpCas9 NHE Purom and biastic 2019 3038974 Adult primary keratinocytes CRISPR screen lentiCRISPR v2 Lentivina SpCas9 NHE Purom and Disatic 2019 3054489 Adult primary keratinocytes Cene activation Lipofectamine vector Cationic vector SpCas9 NHE Purom and 2019 3052420 Adult primary keratinocytes Protein knockout FuGene HD Cationic vector SpCas9 NHE Purom vector Grossi et al., 2016 131502220 Adult primary keratinocytes Protein knockout Lipofectamine 2000 Cationic vector SpCas9 NHE Purom vector Immortalized keratinocytes Liu et al., 2016 26800339 HaCaT keratinocytes Protein knockout Lipofectamine 2000 Cationic vector SpCas9 NHE Purom vector 2018 20180 3021804 N/TERT foreskin keratinocytes Protein knockout TansfeX Cationic vector SpCas9		Izmiryan et al., 2018	30195791	RDEB primary keratinocytes	Gene correction	IDLV	Lentivirus	SpCas9	HDR	None
Silvåa et al. 30938974 Adult primary keratinocytes CRISPR screen IentiCRISPR v2 Lentivirus SpCas9 NHE Purom blactic 1 Herter et al. 30934489 Adult primary keratinocytes Cene activation Lipofectamine 2000 Cationic vector SpCas9 NHE Purom blactic 1 Jozic et al. 31302220 Adult primary keratinocytes Protein knockout FuGene HD Cationic vector SpCas9 NHE Purom blactic 1 Immortalized 2020 Liu et al. 26228041 HPV16-transformed foreskin primary keratinocytes Protein knockout Lipofectamine 2016 Cationic vector SpCas9 NHE Purom adtencovirus 2016 Dahlhoff 2880284 HaCaT keratinocytes Protein knockout Lipofectamine 2017 Cationic vector SpCas9 NHE Purom adtencovirus 2017 28880284 HaCaT keratinocytes Protein knockout TransfeX Cationic vector SpCas9 NHE Purom adtencovirus SpCas9 NHE Purom adtencovirus SpCas9 NHE Purom primary keratinocytes		Liu et al., 2018	30225000	Adult primary keratinocytes	Protein knockout	FuGene HD	Cationic vector	SpCas9	NHEJ	Puromycin
Herter et al., 2019 30594489 Adult primary keratinocytes Gene activation 2009 Lipofectamine 2009 Cationic vector GCas9 n/a FAC 100C et al., 2019 31409528 Adult primary keratinocytes Protein knockout FuGen HD Cationic vector SpCa9 NHE Purom vector 2000 vector SpCa9 NHE Purom vector SpCa9 NHE Purom vector 2016 2020 26228041 HPV16 transformed foreskin primary keratinocytes Protein knockout Lipofectamine 2000 Cationic vector SpCa9 NHE Purom vector 2016 26280349 HaCaT keratinocytes Protein knockout Lipofectamine 2000 Cationic vector SpCa9 NHE Purom vector 2016 Safkar et al., 2017 30021804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pspCa9 NHE FAC 2018 30221804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pspCa9 NHE Actionic vector pspCa9 NHE <td></td> <td>Slivka et al., 2019</td> <td>30938974</td> <td>Adult primary keratinocytes</td> <td>CRISPR screen</td> <td>lentiCRISPR v2</td> <td>Lentivirus</td> <td>SpCas9</td> <td>NHEJ</td> <td>Puromycin and blasticidin</td>		Slivka et al., 2019	30938974	Adult primary keratinocytes	CRISPR screen	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin and blasticidin
Jozic et al., 2013 31409528 Adult primary keratinocytes Protein knockout FuGene HD EntiCRISPR v2 Cationic Vector SpCas9 NHE Purom Purom Vector 2020 31502220 Adult primary keratinocytes Protein knockout LentiVRISPR v2 LentiVrius SpCas9 NHE Purom Vector 2020 2020 26228041 HPV16-transformed foreskin primary keratinocytes Protein knockout Lipofectamine Cationic Vector SpCas9 NHE Purom Vector 2016 26280349 HaCaT keratinocytes Protein knockout Lipofectamine Cationic Vector SpCas9 NHE Purom Vector 2017 Gao et al., 2017 30021804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic Vector pSPCas9 NHE FAC 2018 30221804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic Vector pSPCas9 NHE NHE 2018 30252954 HaCaT keratinocytes Protein knockout Ad5-CMV-Cas9 and Ad5-CMV-Cas9 and Ad5-CMV-Cas9 Ad50045 Adenovirus SpCas9 <		Herter et al., 2019	30594489	Adult primary keratinocytes	Gene activation	Lipofectamine 2000	Cationic vector	dCas9	n/a	FACS
Grossi al., 31502200 Adult primary keratinocytes Protein knockout lenti/CRISPR v2 Lentivirus SpCa9 NHE Puroma- puroma- lated Immortalized Liu et al., 2016 26228041 HPV16-transformed foreskin primary keratinocytes Protein knockout Lipofectamine 20000 Cationic vector SpCa9 NHE Puroma- protein knockout Lipofectamine 20000 Cationic vector SpCa9 NHE Puroma- protein knockout Adult primary keratinocytes Protein knockout Lipofectamine 20000 Cationic vector SpCa9 NHE Puroma- and adenovirus Zarkar et al., 2018 30021804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector SpCa9 NHE Puroma- and Adenovirus SpCa9 NHE Piroma- primary keratinocytes Swindell 29434599 NTERT foreskin keratinocytes Protein knockout TransfeX Cationic vector SpCa9 NHE Piroma- primary keratinocytes Benait et al., 2018 30122422 Immortalized JB adult primary keratinocytes Protein knockout IDIV Lentivirus SpCa9 NHE Puroma- primary		Jozic et al., 2019	31409528	Adult primary keratinocytes	Protein knockout	FuGene HD	Cationic vector	SpCas9	NHEJ	Puromycin
Immortalized keratinocytes Liu et al., 2016 26228041 HPV16-transformed foreskin primary keratinocytes Protein knockout Lipofectamine 3000 Cationic vector SpCas9 NHE Protein FAC Dahlhoff 28803349 HaCaT keratinocytes Protein knockout Lipofectamine 3000 Cationic vector SpCas9 NHE Protein FAC Cao et al., 2017 28588028 HaCaT keratinocytes Protein knockout Lipofectamine 3000 Cationic vector SpCas9 NHE Protein adenovirus Sarkar et al., 2018 30021804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pspCas9 NHE FAC Swindell 29434599 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pspCas9 NHE FAC Trothe et al., 2018 30122422 Immortalized JEB adult primary keratinocytes Protein knockout DIV Lentivirus SpCas9 NHE Puromy 2018 Savatsubashi 2930493 HaCaT keratinocytes Protein knockout DIV Lentivirus SpCas9 NHE </td <td></td> <td>Grossi et al., 2020</td> <td>31502220</td> <td>Adult primary keratinocytes</td> <td>Protein knockout</td> <td>lentiCRISPR v2</td> <td>Lentivirus</td> <td>SpCas9</td> <td>NHEJ</td> <td>Puromycin</td>		Grossi et al., 2020	31502220	Adult primary keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin
Dahlhoff 28805349 HACaT keratinocytes Protein knockout Lipofectamine 3000 Cationic vector SpCas9 NHEJ FAC Gao et al., 2017 2858028 HaCaT keratinocytes Protein knockout pLKO.1-puro Leinivirus and adenovirus SpCas9 NHEJ Puromy and adenovirus Sarkar et al., 2018 30021804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pSCas9 NHEJ Geneti vector Swindell 29434599 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pSCas9 NHEJ FAC Trothe et al., 2018 30222954 HaCaT keratinocytes and adult primary keratinocytes Protein knockout Adfs-CMV-Cas9 Adenovirus SpCas9 NHEJ NNEJ Benati et al., 2018 30122422 Immortalized JEB adult primary keratinocytes Protein knockout DILV Lentivirus SpCas9 NHEJ Puromy vector Sumtsubashi 29330493 HaCaT keratinocytes Protein knockout DNIA/4-gRNA- kertivirus SpCas9 NHEJ Puromy vector Sum et al., 2018 2018 30132045 HaCaT keratinocytes <td>Immortalized keratinocytes</td> <td>Liu et al., 2016</td> <td>26228041</td> <td>HPV16-transformed foreskin primary keratinocytes</td> <td>Protein knockout</td> <td>Lipofectamine 2000</td> <td>Cationic vector</td> <td>SpCas9</td> <td>NHEJ</td> <td>Puromycin</td>	Immortalized keratinocytes	Liu et al., 2016	26228041	HPV16-transformed foreskin primary keratinocytes	Protein knockout	Lipofectamine 2000	Cationic vector	SpCas9	NHEJ	Puromycin
Gao et al., 201728588028HaCaT keratinocytes Partein knockoutProtein knockoutpLKO,1-puro and adenovirusLentivirus and adenovirusSpCas9NHEJPurom ParteinSarkar et al., 201830021804N/TERT foreskin keratinocytesProtein knockoutTransfeXCationic vectorpSpCas9NHEJGenetiSwindell et al., 201829434599N/TERT foreskin keratinocytesProtein knockoutTransfeXCationic vectorpSpCas9NHEJFAC vectorTrothe et al., 201830252954HaCaT keratinocytes and adult primary keratinocytesProtein knockoutAd5-CM-cas9 sgRNAAdenovirusSpCas9NHEJNonBenati et al., 201830122422Immortalized JEB adult primary keratinocytesProtein knockoutIDIVLentivirusSpCas9NHEJPuromy PuroRSavatsubashi 20182930493HaCaT keratinocytesProtein knockoutpSicoR-CRISPR- PuroRLentivirusSpCas9NHEJPuromy Puromy Puromy Puromy PuroRSpCas9NHEJPuromy Puromy Puromy PuromyZhong et al., 20182930493HaCaT keratinocytesProtein knockoutDNAJA4-gRNA- EGFP and Cas9- puroElectroporationPlasmid vectorSpCas9NHEJPuromy Puromy Puromy Puromy PuromyZhong et al., 20183013245HaCaT keratinocytesProtein knockoutRNAi-Max ComplexRNP ComplexSpCas9NHEJNHEJZhong et al., 201830303113 <t< td=""><td>,</td><td>Dahlhoff et al., 2017</td><td>28805349</td><td>HaCaT keratinocytes</td><td>Protein knockout</td><td>Lipofectamine 3000</td><td>Cationic vector</td><td>SpCas9</td><td>NHEJ</td><td>FACS</td></t<>	,	Dahlhoff et al., 2017	28805349	HaCaT keratinocytes	Protein knockout	Lipofectamine 3000	Cationic vector	SpCas9	NHEJ	FACS
Sarkar et al., 2018 30021804 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pSpCas9 NHEJ Genetic Genetic Swindell et al., 2018 29434599 N/TERT foreskin keratinocytes Protein knockout TransfeX Cationic vector pSpCas9 NHEJ FAC Trothe et al., 2018 30252954 HaCaT keratinocytes and adult primary keratinocytes Protein knockout Ad5-CMV-Cas9 and Ad5-UG- sgRNA Adenovirus SpCas9 NHEJ NMEJ NMEJ Benati et al., 2018 30122422 Immortalized JEB adult primary keratinocytes Protein knockout DLV Lentivirus SpCas9 NHEJ NHEJ NMEJ NMEJ Sawatsubashi 2018 2930493 HaCaT keratinocytes Protein knockout pSicoR-CRISPR- PuroR Lentivirus SpCas9 NHEJ Puromy vector Sun et al., 2018 29807809 HaCaT keratinocytes Protein knockout DNAJA4-gRNA- EGFP and Cas9- puro PlaCaT keratinocytes Protein knockout Electroporation PlaCationic vector SpCas9 NHE NME Non complex Zhong et al., 2018 30410676 HaCaT keratinocytes Protein knockout <td< td=""><td rowspan="2"></td><td>Gao et al., 2017</td><td>28588028</td><td>HaCaT keratinocytes</td><td>Protein knockout</td><td>pLKO.1-puro</td><td>Lentivirus and adenovirus</td><td>SpCas9</td><td>NHEJ</td><td>Puromycin</td></td<>		Gao et al., 2017	28588028	HaCaT keratinocytes	Protein knockout	pLKO.1-puro	Lentivirus and adenovirus	SpCas9	NHEJ	Puromycin
Swindell et al., 201829434599N/TERT foreskin keratinocytesProtein knockoutTransfeXCationic vectorpSpCas9NHEJFAC VectorTrothe et al., 201830252954HaCaT keratinocytes and adult primary keratinocytesProtein knockout and Ad5-U6- sgRNAAd5-CM-Cas9 and Ad5-U6- sgRNAAdeorvirusSpCas9NHEJNonBenati et al., 201830122422Immortalized JEB adult primary keratinocytesProtein knockoutIDLVLentivirusSpCas9NHEJNon201829263274HaCaT keratinocytesProtein knockout keratinocytesProtein knockoutpSicoR-CRISPR- PuroRLentivirusSpCas9NHEJPuromy201829330493HaCaT keratinocytesProtein knockout knockoutPlasmidSpCas9NHEJPuromy201829807809HaCaT keratinocytesProtein knockout knockoutDNIA/4-gRNA- LentivirusLentivirusSpCas9NHEJPuromyZhong et al., 201830132045HaCaT keratinocytesProtein knockout keratinocytesCationic vectorSpCas9NHEJPuromyZhong et al., 201830110676HaCaT keratinocytesProtein knockout keratinocytesCationic vectorSpCas9NHEJNon complexZhong et al., 201830110676HaCaT keratinocytesProtein knockout keratinocytesCationic vectorSpCas9NHEJNon complexZhong et al., 2018301313Immortalized adult primary keratinocytesProtein knockout<		Sarkar et al., 2018	30021804	N/TERT foreskin keratinocytes	Protein knockout	TransfeX	Cationic vector	pSpCas9	NHEJ	Geneticin
Trothe et al., 201830252954HaCaT keratinocytes primary keratinocytesProtein knockout and Ad5-U6- sgRNAAdenovirus and Ad5-U6- sgRNASpCas9NHEJNon NNEJBenati et al., 201830122422Immortalized JEB adult primary keratinocytesProtein knockoutIDLVLentivirusSpCas9NHEJNon NNEJChiang et al., 201829263274HaCaT keratinocytesProtein knockout keratinocytesProtein knockout keratinocytespSicoR-CRISPR- PuroRLentivirusSpCas9NHEJPuromy Puromy vectorSawatsubashi 20182930493HaCaT keratinocytesProtein knockout knockoutElectroporation puroPlasmid vectorSpCas9NHEJPuromy Puromy vectorSun et al., 201829807809HaCaT keratinocytesProtein knockin/ knockoutElectroporation puroPlasmid vectorSpCas9NHEJPuromy Puromy vectorZhong et al., 201830132045HaCaT keratinocytesProtein knockin/ knockoutGenJet cationic vectorSpCas9NHEJNon complexZhong et al., 201830410676HaCaT keratinocytesProtein knockout keratinocytesRNAi-MaxRNP complexSpCas9NHEJNon complexZhong et al., 201830930113Immortalized adult primary keratinocytesProtein knockoutElectroporation complexRNP complexSpCas9NHEJNon complexZhong et al., 201930930113Immortalized adult primary keratinocy		Swindell et al., 2018	29434599	N/TERT foreskin keratinocytes	Protein knockout	TransfeX	Cationic vector	pSpCas9	NHEJ	FACS
Benati et al., 2012 Jumortalized JEB adult primary keratinocytes Protein knockout JDLV Lentivirus SpCas9 NHE Non Chiang et al., 20263274 HaCaT keratinocytes Protein knockout pSicoR-CRISPR-PuroR Lentivirus SpCas9 NHE Puromy Sawatsubashi 29330493 HaCaT keratinocytes Protein knockout pSicoR-CRISPR-PuroR Lentivirus SpCas9 NHE Puromy Sawatsubashi 29330493 HaCaT keratinocytes Protein knockout Electroporation Plasmid SpCas9 NHE Puromy Sun et al., 2018 29807809 HaCaT keratinocytes Protein knockout DNAJA4-gRNA-EGFP and Cas9-puro Lentivirus SpCas9 NHE Puromy 2018 30132045 HaCaT keratinocytes Protein knockout RNAi-Max RNP SpCas9 NHE NME NME 2018 30132045 HaCaT keratinocytes Protein knockout RNAi-Max RNP SpCas9 NHE NME NME 2018 30930113 Immortalized adult primary Protein knockout RNAi-Max RNP SpCas9 NHE NME		Trothe et al., 2018	30252954	HaCaT keratinocytes and adult primary keratinocytes	Protein knockout	Ad5-CMV-Cas9 and Ad5-U6- sgRNA	Adenovirus	SpCas9	NHEJ	None
Chiang et al., 29263274 2018 HaCaT keratinocytes 2018 Protein knockout knockout pSicoR-CRISPR-PuroR Lentivirus SpCas9 NHEJ Purom		Benati et al., 2018	30122422	Immortalized JEB adult primary keratinocytes	Protein knockout	IDLV	Lentivirus	SpCas9	NHEJ	None
Sawatsubashi et al., 201829330493HaCaT keratinocytesProtein knockin/ knockoutElectroporation knockoutPlasmid vectorSpCas9NHEJPuromy vectorSun et al., 201829807809HaCaT keratinocytesProtein knockoutDNAJA4-gRNA- EGFP and Cas9- puroLentivirusSpCas9NHEJPuromy PuromyZhong et al., 201830132045HaCaT keratinocytesProtein knockoutGenJetCationic vectorSpCas9NHEJPuromy PuromyZhong et al., 201830410670HaCaT keratinocytesProtein knockoutRNAi-MaxRNP complexSpCas9NHEJNHEJBonafont et al., 201930930113Immortalized adult primary keratinocytesProtein knockoutRNAi-MaxRNP complexSpCas9NHEJNHEJJames et al., 2019313191281N/TERT foreskin keratinocytes and N/TERT-1 foreskin keratinocytesProtein knockoutlentiCRISPR v2 and pXPR_011LentivirusSpCas9NHEJPuromy and plasticicHatterschide et al., 201931319135HaCaT keratinocytesProtein knockoutlentiCRISPR v2 and pXPR_011LentivirusSpCas9NHEJPuromy and plasticic		Chiang et al., 2018	29263274	HaCaT keratinocytes	Protein knockout	pSicoR-CRISPR- PuroR	Lentivirus	SpCas9	NHEJ	Puromycin
Sun et al., 2018 29807809 HaCaT keratinocytes Protein knockout DNAJA4-gRNA- EGFP and Cas9- puro Lentivirus SpCas9 NHEJ Puromy Puromy puro Zhong et al., 2018 30132045 HaCaT keratinocytes Protein knockin GenJet Cationic vector SpCas9 HDR Genetitivirus Baida et al., 2018 30410676 HaCaT keratinocytes Protein knockout RNAi-Max RNP complex SpCas9 NHEJ Non Bonafont et al., 2019 30930113 Immortalized adult primary keratinocytes Protein knockout Electroporation RNP complex SpCas9 NHEJ Non James et al., 31391281 N/TERT foreskin keratinocytes 2019 Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and blastici Choi et al., 2019 31319135 HaCaT keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and blastici		Sawatsubashi et al., 2018	29330493	HaCaT keratinocytes	Protein knockin/ knockout	Electroporation	Plasmid vector	SpCas9	NHEJ	Puromycin
Zhong et al., 201830132045HaCaT keratinocytesProtein knockinGenJetCationic vectorSpCas9HDRGenetic complexBaida et al., 201830410676HaCaT keratinocytesProtein knockoutRNAi-MaxRNP complexSpCas9NHEJNon complexBonafont et al., 201930930113Immortalized adult primary keratinocytesProtein knockoutElectroporationRNP complexSpCas9NHEJNon complexJames et al., 201931391281N/TERT foreskin keratinocytes and N/TERT-1 foreskin keratinocytesProtein knockoutlentiCRISPR v2LentivirusSpCas9NHEJPuromy and blasticiLoci et al., 201931319135HaCaT keratinocytesProtein knockoutlentiCRISPR v2LentivirusSpCas9NHEJPuromy and pLasticiChoi et al., 201931319135HaCaT keratinocytesProtein knockoutlentiCRISPR v2LentivirusSpCas9NHEJPuromy and pLastici		Sun et al., 2018	29807809	HaCaT keratinocytes	Protein knockout	DNAJA4-gRNA- EGFP and Cas9- puro	Lentivirus	SpCas9	NHEJ	Puromycin
Baida et al., 2018 30410676 HaCaT keratinocytes Protein knockout RNAi-Max RNP complex SpCas9 NHEJ Non Bonafont et al., 2019 30930113 Immortalized adult primary keratinocytes Protein knockout Electroporation RNP complex SpCas9 NHEJ Non James et al., 2019 31391281 N/TERT foreskin keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and pXPR_011 Hatterschide et al., 2019 31319135 HaCaT keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and pXPR_011 Choi et al., 2019 31319135 HaCaT keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and pXPR_011		Zhong et al., 2018	30132045	HaCaT keratinocytes	Protein knockin	GenJet	Cationic vector	SpCas9	HDR	Geneticin
Bonafont et al., 201930930113Immortalized adult primary keratinocytesProtein knockoutElectroporationRNP complexSpCas9NHEJNon NHEJJames et al., 201931391281N/TERT foreskin keratinocytes and N/TERT-foreskin keratinocytes and N/TERT-1 foreskin keratinocytesProtein knockoutlentiCRISPR v2LentivirusSpCas9NHEJPuromy and blastictHatterschide et al., 201932581101 and N/TERT-1 foreskin keratinocytes and N/TERT-1 foreskin keratinocytesProtein knockout and pXPR_011lentiCRISPR v2 and pXPR_011Lentivirus and pXPR_011SpCas9NHEJPuromy and blastictChoi et al., 201931319135HaCaT keratinocytesProtein knockout Protein knockoutlentiCRISPR v2 and pXPR_011Lentivirus SpCas9SpCas9NHEJPuromy and blastict		Baida et al., 2018	30410676	HaCaT keratinocytes	Protein knockout	RNAi-Max	RNP complex	SpCas9	NHEJ	None
James et al., 201931391281N/TERT foreskin keratinocytes protein knockoutProtein knockoutlentiCRISPR v2LentivirusSpCas9NHEJPuromy nandHatterschide et al., 201932581101 and N/TERT-1 foreskin keratinocytes and N/TERT-1 foreskin keratinocytesProtein knockout and pXPR_011lentiCRISPR v2 and pXPR_011Lentivirus spCas9SpCas9NHEJ Puromy and blastictChoi et al., 201931319135HaCaT keratinocytesProtein knockout Protein knockoutlentiCRISPR v2 lentiCRISPR v2Lentivirus SpCas9SpCas9 NHEJNHEJ Puromy and blastict		Bonafont et al., 2019	30930113	Immortalized adult primary keratinocytes	Protein knockout	Electroporation	RNP complex	SpCas9	NHEJ	None
Hatterschide 32581101 Foreskin primary keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and purper et al., 2019 and N/TERT-1 foreskin keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and purper Choi et al., 31319135 HaCaT keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy and purper 2019 2019 Puromy and purper Puromy and purper		James et al., 2019	31391281	N/TERT foreskin keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin
Choi et al., 31319135 HaCaT keratinocytes Protein knockout lentiCRISPR v2 Lentivirus SpCas9 NHEJ Puromy		Hatterschide et al., 2019	32581101	Foreskin primary keratinocytes and N/TERT-1 foreskin keratinocytes	Protein knockout	lentiCRISPR v2 and pXPR_011	Lentivirus	SpCas9	NHEJ	Puromycin and blasticidin
2013		Choi et al., 2019	31319135	HaCaT keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin

Table 1. Characteristics of Studies that Utilize CRISPR-Cas9 in Human Keratinocytes

Cell source	Publication	PMID	Cell Types (All Human)	Research Goal	Method of Introduction	Carrier	Cas9 Version	Repair	Selection
	Stump et al., 2020	30972602	HaCaT keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin
	Muraguchi et al., 2019	31122679	HaCaT keratinocytes	Protein knockout	TransIT-LT1	Cationic vector	SpCas9	NHEJ	FACS
	Walter et al., 2019	31178865	HaCaT keratinocytes	Protein knockout	Lipofectamine 2000	Cationic vector	SpCas9	NHEJ	FACS
	Hatterschide et al., 2020	32581101	Foreskin primary keratinocytes and N/TERT-1 foreskin keratinocytes	Protein knockout	lentiCRISPR v2 and pXPR_011	Lentivirus	SpCas9	NHEJ	Puromycin and blasticidin
	Casares et al., 2020	31518892	HaCaT keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin
	Gálvez et al., 2020	32637457	Immortalized primary adult keratinocytes	Protein knockout	Electroporation	RNP complex	SpCas9	NHEJ	No
	Enjalbert et al., 2020	32544098	N/TERT foreskin keratinocytes	Protein knockout	FuGene 6 and HiperFect	Cationic vector	SpCas9	NHEJ	FACS
	Kocher et al., 2020	32142798	Immortalized adult primary keratinocytes and RDEB primary keratinocytes	Gene activation and protein knockout	Electroporation	RNP complex	SpCas9	NHEJ	None
	Dabelsteen et al., 2020	32710848	N/TERT foreskin keratinocytes	Protein knockout	lentiCRISPR v2	Lentivirus	SpCas9	NHEJ	Puromycin and blasticidin
	Imahorn et al., 2020	32917957	Immortalized epidermolytic ichthyosis keratinocytes	Protein knockout	Xfect	Cationic vector	SpCas9	NHEJ	FACS
	James et al., 2020	32938703	N/TERT foreskin keratinocytes	Protein knockout	Calcium phosphate transfection	Plasmid vector	SpCas9	NHEJ	Puromycin
	Sobiak and Leśniak, 2020	33297464	HaCaT keratinocytes	Protein knockout	Lipofectamine 3000	Cationic vector	SpCas9	NHEJ	FACS
	Bonafont et al., 2021	33609734	Immortalized adult primary keratinocytes	Protein knockout	Electroporation	RNP complex	SpCas9	NHEJ	None
	Abboodi et al., 2021	33321328	HPV16-transformed foreskin primary keratinocytes	Protein knockout	Lipofectamine 3000	Cationic vector	SpCas9	NHEJ	FACS
	Wanuske et al., 2021	33354837	HaCaT keratinocytes	Protein knockout	Lipofectamine 2000	Cationic vector	SpCas9	NHEJ	FACS
	O'Keeffe Ahern et al., 2021	34363036	Immortalized primary adult keratinocytes	Protein knockout	Lipofectamine 3000	RNP complex	SpCas9	NHEJ	FACS
	Evrard et al., 2021	n/a	N/TERT foreskin keratinocytes	Protein knockout	Electroporation	RNP complex	SpCas9	NHEJ	None
	Kocher et al., 2021	34458008	Immortalized RDEB primary keratinocytes and fibroblasts	Gene correction	Electroporation	RNP complex	SpCas9 and Cas9n	HDR	None
iPSC	Sebastiano et al., 2014	25429056	Induced pluripotent stem cell– derived keratinocytes	Gene correction	Electroporation	Plasmid vector	SpCas9	HDR	Geneticin and ganciclovir
	Webber et al., 2016	28250968	Induced pluripotent stem cells	Gene correction	Electroporation	Plasmid vector	hCas9	HDR	Puromycin
	Shinkuma et al., 2016	27143720	Induced pluripotent stem cells	Gene correction	Electroporation	Plasmid vector	SpCas9	NHEJ	FACS
	Jacków et al., 2019	31818947	Induced pluripotent stem cells	Gene correction	Electroporation	RNP complex	SpCas9	HDR	FACS
	Itoh et al.,	32376152	Induced pluripotent stem cells	Gene correction	Electroporation	RNP complex	SpCas9	HDR	Puromycin

Abbreviations: Cas9n, Cas9 nickase; hCas9, human codon optimized Cas9; HDR, homology-directed repair; IDLV, integrase-deficient lentiviral particles; iPSC, induced pluripotent stem cell; JEB, junctional epidermolysis bullosa; NHEJ, nonhomologous end joining; PMID, PubMed identifier; RDEB, recessive dystrophic epidermolysis bullosa; RNP, Ribonucleoprotein; SpCas9, *Streptococcus pyogenes* Cas9.

vector carrying a wild-type *LAMB3* donor template flanked by homology arms (Benati et al., 2018). These elegant studies illustrate that CRISPR-Cas9 can be utilized for the restoration of protein expression in patient-derived KCs through highly specific approaches, for example, through the incorporation of a donor oligonucleotide by HDR or by the use of dual

Table 1. Continued

sgRNA to remove a specific DNA sequence to correct for frameshift mutations. In addition, these studies show that gene-corrected, patient-derived KCs generated are usually of high quality in terms of skin-equivalent generation and suitable for grafting onto immunodeficient mice. In principle, that would make them good candidates for ex vivo gene and cell therapy, as showcased by Hirsch et al. (2017) in the first ever total body transplantation with autologous cells that were corrected and expanded ex vivo.

Human-immortalized KCs as alternative cell source

Human primary KCs in epidermal equivalent culture models represent the in vivo epidermis quite well. However, human donor skin is not always available, primary KCs isolation is time consuming, and primary KCs have a short in vitro lifespan. This conflicts with the extensive culture protocols and serial passaging that are necessary for genome-editing strategies. Therefore, many researchers make use of immortalized KCs in studies that are usually aimed at (i) gene and protein function by full knock out (Abboodi et al., 2021), (ii) the biological consequence of a knock out on cell function or during therapeutic conditions (Abboodi et al., 2021; Casares et al., 2020; Choi et al., 2019; Dahlhoff et al., 2017; Hatterschide et al., 2019, 2020; James et al., 2019; Swindell et al., 2018; Trothe et al., 2018), (iii) validation of therapeutic target (Abboodi et al., 2021; Liu et al., 2016), or (iv) generating disease model cell lines (Enjalbert et al., 2020; Sarkar et al., 2018).

Immortalized KCs, such as the spontaneously immortalized HaCaT KCs, the N/TERT-1, and N/TERT-2G KCs, or the less used HPV16-induced immortalized KCs do not have these limitations and thus provide an alternative unlimited cell source (Boelsma et al., 1999; Smits et al., 2017). Therefore, most studies using CRISPR-Cas9 in human KCs have been performed in either of the immortalized KC cell lines (Figure 1c and Table 1). Although multiple cell sources are available, they are not equally comparable with primary KCs and are not necessarily similarly suited for genomic engineering procedures. The HaCaT KCs are frequently used as a model for KCs in vitro as both monolayer and human skin equivalents (Schoop et al., 1999). However, epidermal stratification is abnormal, aberrant epidermal differentiation protein expression is observed, and a stratum corneum is often lacking. Another drawback is that HaCaT cells show aneuploidy. Taken together, this makes HaCaT KCs less suitable for genome editing and studying epidermal differentiation. The N/TERT-1 and N/TERT-2G KC cell lines were immortalized by the introduction of the hTERT gene and by spontaneous loss of the pRB/p16INK4A cell cycle control mechanism (Dickson et al., 2000). The N/TERT KC cell lines are (largely) diploid (N/TERT-1: 47, XY + 20, N/ TERT-2G: 46, XY) and show similar differentiation characteristics to those of human primary KCs (Smits et al., 2017), which renders them more suitable for genomic intervention tools such as CRISPR-Cas9. Immortalized KCs are well-suited for fundamental studies into protein function, possible therapeutic targets, or disease modeling studies but are not applicable for in vivo treatment purposes. In contrast, KCs derived from induced pluripotent stem cells (iPSCs) would be more suitable with regard to regenerative medicine.

KCs derived from CRISPR-Cas9-edited iPSCs

Human pluripotent stem cells (hPSCs) and iPSCs offer great promise in regenerative medicine both for disease modeling and for tissue regeneration because they can proliferate in the human body (Yamanaka and Blau, 2010). Owing to their unlimited proliferation capacity (Takahashi and Yamanaka, 2006), hPSCs and iPSCs have an apparent advantage over other somatic cells or even adult stem cells in genomic-editing studies using CRISPR-Cas9, especially when clonal selection is necessary. Numerous studies reported such strategies to obtain genome-edited cells from tissues that are normally not easily retrievable (Hendriks et al., 2020; Hockemeyer and Jaenisch, 2016). In dermatological research, most studies are on iPSCs derived from patients with EB. For example, iPSCs were generated from fibroblasts derived from a patient with dominant dystrophic EB carrying a heterozygous COL7A1 mutation. Subsequently, plasmids carrying Cas9 and mutation-site-specific sgRNAs were transfected into these iPSCs before positive selection by flow cytometry. The mutation-site-specific sgRNAs ensured that the correction of the genetic sequence occurred only on the mutated allele but not on the wild type (Shinkuma et al., 2016). Others show the correction of the COL7A1 gene in RDEB iPSCs by adeno-associated genome editing (Sebastiano et al., 2014) through the introduction of three plasmids encoding Cas9, gRNA, and donor-repair template (Webber et al., 2016) or through electroporation with sgRNA/Cas9 RNP complexes (Jacków et al., 2019). Induced KCs (iKCs) derived from gene-corrected iPSCs were grafted onto immunodeficient mice, and 2 months after grafting, a normal expression of COL7A1 is shown (Jacków et al., 2019). Although the generation of genome-edited iPSCs is relatively easy, differentiation from iPSC toward iKC, especially for resembling primary KCs, is less straightforward (Kogut et al., 2014; Sah et al., 2021; Soares and Zhou, 2020). In addition, iPSC-derived KCs are often immature, compared with primary KCs derived from the skin, which is a common feature of many iPSC-derived cells (Friedman et al., 2018; Soares et al., 2019). Although the traditional air-liquid interface cultures are challenging in iPSC-derived cells, other options are available. Groundbreaking work has shown a human iPSC-based organoid culture system in which skin appendages (e.g., hair follicles and sebaceous glands) are present (Lee et al., 2020). Organoids as such would be suitable to study aspects that are impossible to study in traditional skin equivalents, such as (early) developmental processes. Empowered by CRISPR-Cas9 genomic engineering and analysis techniques at single-cell resolution, these organoid cultures are highly promising options for future research into the skin.

indefinitely and can be differentiated to almost any cell type

Future perspective for the use of CRISPR-Cas9 in experimental dermatology

To date, no clinical experiments have been performed or are registered using CRISPR-Cas9 in primary KCs to treat skin disorders, although CRISPR-Cas9–based in vivo experiments have been reported in murine models. For example, mouse tail skin was successfully electroporated with DNA plasmids (encoding gRNAs and Cas9) and RNP complexes of synthetic Cas9 and in vitro transcribed sgRNAs (Wu et al., 2017). In 2017, Hirsch et al. (2017) experimentally treated a patient with JEB with a homozygous mutation in the *LAMB3* gene, which owing to the blistering and infections had lost over 80% of his epidermis. Although this is a great example of gene therapy, it was not CRISPR-Cas9 based but was through ex vivo gene replacement by viral transduction of *LAMB3* cDNA.

Conclusion and future directions

Before in vivo CRISPR-Cas9 can be considered in clinical practice, many improvements on CRISPR-Cas9 machinery, that is, component stability, in vivo delivery, editing accuracy, nonspecific and unintended off-target effects, and control of cellular repair mechanisms are necessary (Li et al., 2018). In addition, Cas9 has been reported to elicit immune responses in mice (Chew et al., 2016; Wang et al., 2015) and humans (Simhadri et al., 2018; Wagner et al., 2019), posing a challenge for CRISPR-Cas9-based genomic engineering (Crudele and Chamberlain, 2018). Nevertheless, the impact of this immunological challenge needs to be studied in immunocompetent (humanized) animal models to assess the potential strategies to minimize the impact of anti-Cas9 antibodies and T cells. Until then, realistic and important goals for CRISPR-Cas9 implementation are to further develop in vitro human disease models to benefit preclinical research, therapeutic target discovery, and drug screening.

Monogenetic disorders of the epidermis can be modeled, and the effects of therapies can be studied extensively without the need for primary KCs, patient biopsies, or animal models. Besides KCs, other skin cell types-such as fibroblasts-are of interest too. Research on dystrophic EB pathogenesis indicated that both KCs and fibroblasts are responsible for the expression of COL7 (COL7A1), where the contribution of fibroblasts overrules that of KCs (Goto et al., 2006). Fibroblasts are considered a more robust and easier to culture type of cells than KCs, which renders them suitable for prolonged culturing and genomic engineering (Chen and Woodley, 2006) and a potential target cell type for gene and cell therapy in dystrophic EB (Izmiryan et al., 2018; Jacków et al., 2016; Kocher et al., 2021; Takashima et al., 2019; Webber et al., 2016). As this field of research expands, lessons can be taken from experimental approaches that were successful in epidermal KCs and applied to dermal fibroblasts and vice versa.

Nonspecific endonuclease activity can result in off-target unintended genomic alterations. Ever since the first application of CRISPR-Cas9 in mammalian cells, progress has been made to mitigate the incidence of off-target DNA cleavage by nonspecific endonuclease activity resulting in off-target unintended genomic alterations, as reviewed recently (Naeem et al., 2020). These strategies range from but are not limited to modification of gRNA, modification of Cas9 (e.g., deactivated Cas9 [dCas9], Cas9 nickase [Cas9n], high-fidelity Cas9), fine-tuning delivery methodology, application of base editors (dCas9 combined with deaminase and gRNA), and application of prime editing (Cas9n combined with reverse transcriptase). Therefore, besides selecting editing strategies on the basis of maximizing editing efficiencies and cell viability, different options are now available to minimize off-target risks. These should be taken into consideration depending on which safety measures are applicable for the purpose of genomic engineering.

Besides investing in methodological improvements using currently available (immortalized) KCs (e.g., target DNA site selection, sgRNA design and delivery methods, off-target DNA cleavage, NHEJ and HDR incidence and efficiency, and Cas9 activity), efforts should also be directed to the generation of new skin cell sources to increase experimental diversity and account for population, sex, and age differences. Having CRISPR-Cas9 technology at hand, more complex, multicellular, immunocompetent, and vascularized organotypic skin models with higher throughput can be developed. These innovations will further propel the implementation and acceptance of organotypic human skin models as excellent alternatives or superior experimental models to the traditional use of animals in biomedical research.

ORCIDs

Jos P.H. Smits: http://orcid.org/0000-0003-0915-8624 Luca D. Meesters: http://orcid.org/0000-0002-2554-7761 Berber G.W. Maste: http://orcid.org/0000-0002-3932-8738 Huiqing Zhou: http://orcid.org/0000-0002-2434-3986 Patrick L.J.M. Zeeuwen: http://orcid.org/0000-0002-6878-2438 Ellen H. van den Bogaard: http://orcid.org/0000-0003-4846-0287

AUTHOR CONTRIBUTIONS

Conceptualization: JPHS, LDM, BGWM, EHVDB; Funding Acquisition: EHVDB, PLJMZ; Project Administration: JPHS, EHVDB; Resources: EHVDB; Supervision: EHVDB; Visualization: JPHS, LDM; Writing - Original Draft Preparation: JPHS, BGWM, HZ; Writing - Review and Editing: JPHS, LDM, HZ, PLJMZ, EHVDB

ACKNOWLEDGMENTS

This work was supported by an LEO Foundation grant (LF18068 to EHVDB and PLJMZ) and PAST4FUTURE grant LSHM20043-HSGF (to EHVDB and HLJMZ).

CONFLICT OF INTEREST

The authors state no conflicts of interest.

REFERENCES

- Abboodi F, Buckhaults P, Altomare D, Liu C, Hosseinipour M, Banister CE, et al. HPV-inactive cell populations arise from HPV16-transformed human keratinocytes after p53 knockout. Virology 2021;554:9–16.
- Baida G, Bhalla P, Yemelyanov A, Stechschulte LA, Shou W, Readhead B, et al. Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy. Oncotarget 2018;9:34772–83.
- Benati D, Miselli F, Cocchiarella F, Patrizi C, Carretero M, Baldassarri S, et al. CRISPR/Cas9-mediated in situ correction of LAMB3 gene in keratinocytes derived from a junctional epidermolysis bullosa patient. Mol Ther 2018;26: 2592–603.
- Boelsma E, Verhoeven MC, Ponec M. Reconstruction of a human skin equivalent using a spontaneously transformed keratinocyte cell line (HaCaT). J Invest Dermatol 1999;112:489–98.
- Bonafont J, Mencía A, Chacón-Solano E, Srifa W, Vaidyanathan S, Romano R, et al. Correction of Recessive Dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing. Mol Ther 2021;29: 2008–18.
- Bonafont J, Mencía Á, García M, Torres R, Rodríguez S, Carretero M, et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-mediated gene editing. Mol Ther 2019;27: 986–98.
- Casares L, García V, Garrido-Rodríguez M, Millán E, Collado JA, García-Martín A, et al. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol 2020;28:101321.
- Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, et al. Highfrequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 2011;8:753–5.
- Chen M, Woodley DT. Fibroblasts as target cells for DEB gene therapy. J Invest Dermatol 2006;126:708–10.

JPH Smits et al.

CRISPR-Cas9 in Human Keratinocytes

- Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 2016;13:868–74.
- Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M, White EA, et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol 2018;92: e01737–17.
- Choi M, Park M, Lee S, Lee JW, Choi WJ, Lee C. Establishment of Nrf2deficient HaCaT and immortalized primary human foreskin keratinocytes and characterization of their responses to ROS-induced cytotoxicity. Toxicol In Vitro 2019;61:104602.
- Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 2013;10:726–37.
- Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819–23.
- Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 2018;9:3497.
- Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, et al. Essential functions of glycans in human epithelia dissected by a CRISPR-Cas9-Engineered human organotypic skin model. Dev Cell 2020;54:669–84.e7.
- Dahlhoff M, Gaborit N, Bultmann S, Leonhardt H, Yarden Y, Schneider MR. CRISPR-assisted receptor deletion reveals distinct roles for ERBB2 and ERBB3 in skin keratinocytes. FEBS Journal 2017;284:3339–49.
- Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011;471:602–7.
- Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 2000;20: 1436–47.
- Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096.
- Enjalbert F, Dewan P, Caley MP, Jones EM, Morse MA, Kelsell DP, et al. 3D model of harlequin ichthyosis reveals inflammatory therapeutic targets. J Clin Invest 2020;130:4798–810.
- Evrard C, Faway E, De Vuyst E, Svensek O, De Glas V, Bergerat D, et al. Deletion of TNFAIP6 gene in human keratinocytes demonstrates a role for TSG-6 to retain hyaluronan inside epidermis. JID Innov 2021;1:1–19.
- Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, et al. Genome editing of human primary keratinocytes by CRISPR/Cas9 reveals an essential role of the NLRP1 inflammasome in UVB sensing. J Invest Dermatol 2018a;138:2644–52.
- Fenini G, Grossi S, Gehrke S, Beer HD, Satoh TK, Contassot E, et al. The p38 mitogen-activated protein kinase critically regulates human keratinocyte inflammasome activation. J Invest Dermatol 2018b;138:1380–90.
- Floeth M, Bruckner-Tuderman L. Digenic junctional epidermolysis bullosa: mutations in COL17A1 and LAMB3 genes. Am J Hum Genet 1999;65: 1530–7.
- Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell 2018;23:586–98.e8.
- Gálvez V, Chacón-Solano E, Bonafont J, Mencía Á, Di WL, Murillas R, et al. Efficient CRISPR-Cas9-Mediated gene ablation in human keratinocytes to recapitulate genodermatoses: modeling of netherton syndrome. Mol Ther Methods Clin Dev 2020;18:280–90.
- Gandham VD, Maddala RL, Rao V, Jin JY, Epstein DL, Hall RP, et al. Effects of Y27632 on keratinocyte procurement and wound healing. Clin Exp Dermatol 2013;38:782–6.
- Gao S, Wang Z, Wang W, Hu X, Chen P, Li J, et al. The lysine methyltransferase SMYD2 methylates the kinase domain of type II receptor BMPR2 and stimulates bone morphogenetic protein signaling. J Biol Chem 2017;292:12702–12.
- Goto M, Sawamura D, Ito K, Abe M, Nishie W, Sakai K, et al. Fibroblasts show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J Invest Dermatol 2006;126: 766–72.

- Grossi S, Fenini G, Hennig P, Di Filippo M, Beer HD. Generation of knockout human primary keratinocytes by CRISPR/Cas9. Methods Mol Biol 2020;2109:125–45.
- Hainzl S, Peking P, Kocher T, Murauer EM, Larcher F, Del Rio M, et al. COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Mol Ther 2017;25:2573–84.
- Hatterschide J, Bohidar AE, Grace M, Nulton TJ, Kim HW, Windle B, et al. PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci USA 2019;116:7033–42.
- Hatterschide J, Brantly AC, Grace M, Munger K, White EA. A conserved amino acid in the C terminus of human papillomavirus E7 mediates binding to PTPN14 and repression of epithelial differentiation. J Virol 2020:94.
- Hefferin ML, Tomkinson AE. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair 2005;4:639–48.
- Hendriks D, Clevers H, Artegiani B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 2020;27:705–31.
- Herter EK, Li D, Toma MA, Vij M, Li X, Visscher D, et al. WAKMAR2, a long noncoding RNA downregulated in human chronic wounds, modulates keratinocyte motility and production of inflammatory chemokines. J Invest Dermatol 2019;139:1373–84.
- Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017;551:327–32.
- Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 2016;18:573-86.
- Imahorn E, Aushev M, Herms S, Hoffmann P, Cichon S, Reichelt J, et al. Gene expression is stable in a complete CIB1 knockout keratinocyte model. Sci Rep 2020;10:14952.
- Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprintfree gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci 2020;98: 163–72.
- Izmiryan A, Ganier C, Bovolenta M, Schmitt A, Mavilio F, Hovnanian A. Ex vivo COL7A1 correction for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9 and homology-directed repair. Mol Ther Nucleic Acids 2018;12:554–67.
- Jacków J, Guo Z, Hansen C, Abaci HE, Doucet YS, Shin JU, et al. CRISPR/ Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci USA 2019.
- Jacków J, Titeux M, Portier S, Charbonnier S, Ganier C, Gaucher S, et al. Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector. J Invest Dermatol 2016;136:1346–54.
- James CD, Das D, Morgan EL, Otoa R, Macdonald A, Morgan IM. Werner syndrome protein (WRN) regulates cell proliferation and the human papillomavirus 16 life cycle during epithelial differentiation. mSphere 2020;5:e00858–20.
- James CD, Prabhakar AT, Otoa R, Evans MR, Wang X, Bristol ML, et al. SAMHD1 regulates human papillomavirus 16-induced cell proliferation and viral replication during differentiation of keratinocytes. mSphere 2019;4:e00448-19.
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816–21.
- Jozic I, Sawaya AP, Pastar I, Head CR, Wong LL, Glinos GD, et al. Pharmacological and genetic inhibition of Caveolin-1 promotes epithelialization and wound closure. Mol Ther 2019;27:1992–2004.
- Kocher T, Bischof J, Haas SA, March OP, Liemberger B, Hainzl S, et al. A nonviral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids 2021;25:237–50.
- Kocher T, Koller U. Advances in gene editing strategies for epidermolysis bullosa. Prog Mol Biol Transl Sci 2021;182:81–109.
- Kocher T, March OP, Bischof J, Liemberger B, Hainzl S, Klausegger A, et al. Predictable CRISPR/Cas9-mediated COL7A1 reframing for dystrophic epidermolysis bullosa. J Invest Dermatol 2020;140:1985–93.e5.

- Kocher T, Peking P, Klausegger A, Murauer EM, Hofbauer JP, Wally V, et al. Cut and paste: efficient homology-directed repair of a dominant negative KRT14 mutation via CRISPR/Cas9 nickases. Mol Ther 2017;25:2585–98.
- Kogut I, Roop DR, Bilousova G. Differentiation of human induced pluripotent stem cells into a keratinocyte lineage. Methods Mol Biol 2014;1195:1–12.
- Lee J, Rabbani CC, Gao H, Steinhart MR, Woodruff BM, Pflum ZE, et al. Hairbearing human skin generated entirely from pluripotent stem cells. Nature 2020;582:399–404.
- Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 2018;171: 207–18.
- Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 1998;95:5172–7.
- Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018;25:1234–57.
- Liu X, Zhang Y, Wang S, Liu G, Ruan L. Loss of miR-143 and miR-145 in condyloma acuminatum promotes cellular proliferation and inhibits apoptosis by targeting NRAS. R Soc Open Sci 2018;5:172376.
- Liu YC, Cai ZM, Zhang XJ. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl 2016;18:475–9.
- Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 2011;9:467–77.
- Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823–6.
- Muraguchi T, Nanba D, Nishimura EK, Tashiro T. IGF-1R deficiency in human keratinocytes disrupts epidermal homeostasis and stem cell maintenance. J Dermatol Sci 2019;94:298–305.
- Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-cas-mediated genome editing. Cells 2020;9:1608.
- Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther 2010;17:295–304.
- Nöske K, Stark HJ, Nevaril L, Berning M, Langbein L, Goyal A, et al. Mitotic diversity in homeostatic human interfollicular epidermis. Int J Mol Sci 2016;17:167.
- O'Keeffe Ahern J, Lara-Sáez I, Zhou D, Murillas R, Bonafont J, Mencía Á, et al. Non-viral delivery of CRISPR-Cas9 complexes for targeted gene editing via a polymer delivery system[e-pub ahead of print]. Gene Ther 2021. https:// doi.org/10.1038/s41434-021-00282-6 (accessed November 12, 2021).
- Radecke S, Radecke F, Cathomen T, Schwarz K. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther 2010;18:743–53.
- Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 1994;91:6064–8.
- Ryynänen M, Knowlton RG, Parente MG, Chung LC, Chu ML, Uitto J. Human type VII collagen: genetic linkage of the gene (COL7A1) on chromosome 3 to dominant dystrophic epidermolysis bullosa. Am J Hum Genet 1991;49: 797–803.
- Sah SK, Kanaujiya JK, Chen IP, Reichenberger EJ. Generation of keratinocytes from human induced pluripotent stem cells under defined culture conditions. Cell Reprogram 2021;23:1–13.
- Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 2014;11:783-4.
- Sarkar MK, Hile GA, Tsoi LC, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis 2018;77:1653–64.
- Sawatsubashi S, Joko Y, Fukumoto S, Matsumoto T, Sugano SS. Development of versatile non-homologous end joining-based knock-in module for genome editing. Sci Rep 2018;8:593.
- Schoop VM, Mirancea N, Fusenig NE. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol 1999;112:343–53.
- Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment

of recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014;6: 264ra163.

- Shah SA, Erdmann S, Mojica FJ, Garrett RA. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 2013;10:891–9.
- Shi H, Smits JPH, van den Bogaard EH, Brewer MG. Research techniques made simple: delivery of the CRISPR/Cas9 components into epidermal cells. J Invest Dermatol 2021;141:1375–81.e1.
- Shinkuma S, Guo Z, Christiano AM. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci USA 2016;113: 5676–81.
- Simhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol Ther Methods Clin Dev 2018;10:105–12.
- Slivka PF, Hsieh CL, Lipovsky A, Pratt SD, Locklear J, Namovic MT, et al. Small molecule and pooled CRISPR screens investigating IL17 signaling identify BRD2 as a novel contributor to keratinocyte inflammatory responses. ACS Chem Biol 2019;14:857–72.
- Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 2006;38:337–42.
- Smits JPH, Niehues H, Rikken G, van Vlijmen-Willems IMJJ, van de Zande GWHJF, Zeeuwen PLJM, et al. Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Sci Rep 2017;7:11838.
- Soares E, Xu Q, Li Q, Qu J, Zheng Y, Raeven HHM, et al. Single-cell RNA-seq identifies a reversible mesodermal activation in abnormally specified epithelia of p63 EEC syndrome. Proc Natl Acad Sci USA 2019;116: 17361–70.
- Soares E, Zhou H. Pluripotent stem cell differentiation toward functional basal stratified epithelial cells. Methods Mol Biol 2020.
- Sobiak B, Leśniak W. Effect of SUV39H1 histone methyltransferase knockout on expression of differentiation-associated genes in HaCaT keratinocytes. Cells 2020;9.
- Stephen SL, Montini E, Sivanandam VG, Al-Dhalimy M, Kestler HA, Finegold M, et al. Chromosomal integration of adenoviral vector DNA in vivo. J Virol 2010;84:9987–94.
- Stump CL, Feehan RP, Jordan T, Shantz LM, Nowotarski SL. Knocking down raptor in human keratinocytes affects ornithine decarboxylase in a post-transcriptional Manner following ultraviolet B exposure. Amino Acids 2020;52:141–9.
- Sun YZ, Ren Y, Zhang YJ, Han Y, Yang Y, Gao YL, et al. DNAJA4 deficiency enhances NF-kappa B-related growth arrest induced by hyperthermia in human keratinocytes. J Dermatol Sci 2018;91:256–67.
- Swindell WR, Beamer MA, Sarkar MK, Loftus S, Fullmer J, Xing X, et al. RNAseq analysis of IL-1b and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front Immunol 2018;9:80.
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126: 663–76.
- Takashima S, Shinkuma S, Fujita Y, Nomura T, Ujiie H, Natsuga K, et al. Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa with CRISPR/Cas9. J Invest Dermatol 2019;139: 1711–21.e4.
- Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998;17: 5497–508.
- Thyssen JP, Godoy-Gijon E, Elias PM. Ichthyosis vulgaris: the filaggrin mutation disease. Br J Dermatol 2013;168:1155–66.
- Trothe J, Ritzmann D, Lang V, Scholz P, Ü Pul, Kaufmann R, et al. Hypotonic stress response of human keratinocytes involves LRRC8A as component of volume-regulated anion channels. Exp Dermatol 2018;27:1352–60.
- Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyüz L, Reinke P, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 2019;25:242–8.

JPH Smits et al.

CRISPR-Cas9 in Human Keratinocytes

- Walter E, Vielmuth F, Wanuske MT, Seifert M, Pollmann R, Eming R, et al. Role of Dsg1- and Dsg3-mediated signaling in pemphigus autoantibodyinduced loss of keratinocyte cohesion. Front Immunol 2019;10:1128.
- Wang D, Mou H, Li S, Li Y, Hough S, Tran K, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 2015;26:432–42.
- Wanuske MT, Brantschen D, Schinner C, Stüdle C, Walter E, Hiermaier M, et al. Clustering of desmosomal cadherins by desmoplakin is essential for cell-cell adhesion. Acta Physiol (Oxf) 2021;231:e13609.
- Webber BR, Osborn MJ, McElroy AN, Twaroski K, Lonetree CL, DeFeo AP, et al. CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa. NPJ Regen Med 2016;1.
- Wu W, Lu Z, Li F, Wang W, Qian N, Duan J, et al. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 2017;114:1660–5.
- Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010;465:704–12.

- Yue J, Gou X, Li Y, Wicksteed B, Wu X. Engineered epidermal progenitor cells can correct diet-induced obesity and diabetes. Cell Stem Cell 2017;21: 256–63.e4.
- Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adenoassociated virus vectors. J Virol 2002;76:4580–90.
- Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther 2008;15:808–16.
- Zhong G, Li H, Bai J, Pang S, He C, Du X, et al. Advancing the predictivity of skin sensitization by applying a novel HMOX1 reporter system. Arch Toxicol 2018;92:3103–15.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/