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A B S T R A C T   

Many preclinical and clinical observations support that functional magnetic resonance imaging (MRI), such as 
diffusion weighted (DW) and dynamic contrast enhanced (DCE) MRI, might have a predictive value for radio-
therapy. The aim of this review was to assess the current status of quantitative MRI on hybrid MR-Linacs. In a 
literature research, four publications were identified, investigating technical feasibility, accuracy, repeatability 
and reproducibility of DW and DCE-MRI in phantoms and first patients. Accuracy and short term repeatability 
was < 5% for DW-MRI in current MR-Linac systems. Consequently, quantitative imaging providing accurate and 
reproducible functional information seems possible in MR-Linacs.   

1. Introduction 

Functional magnetic resonance imaging (MRI) has been shown in a 
number of recent studies to provide not only beneficial information for 
target volume delineation [1,2], but more importantly also prognostic 
information with respect to outcome after radiotherapy (RT) [3,4]. In 
terms of quantitative MRI techniques in a clinical context, so far mainly 
diffusion weighted imaging (DWI) and dynamic contrast enhanced 
(DCE) MRI have been used to predict RT response [5,6]. DWI is a 
functional MRI technique to visualize diffusion properties of water in 
tissues and thus cellular density [5], whereas DCE measures tissue 
perfusion and permeability [6]. 

There is growing evidence that diffusion weighted (DW) MRI may 
provide prognostic information to predict RT treatment outcome in head 
and neck cancer (HNC) [7–11]. Also for other tumor sites, such as brain 
tumors [12,13], cervical cancer [14] or rectal cancer [15], the prog-
nostic value of DW MRI for RT outcome prognosis has been shown. The 
majority of these studies correlated functional biomarkers derived from 
functional MRI before the start of RT with observed outcome following 
therapy. Some studies also investigated the optimal time point of 

imaging and showed that biomarkers acquired in the first weeks of 
therapy might be beneficial for prognosis prediction [16]. Vandecaveye 
et al. [16] reported that DW MRI during RT allowed for a more accurate 
response prediction compared to anatomical imaging and correlated 
significantly to two-year loco-regional control (LRC) in HNC. 

Other studies showed that also DCE MRI may yield prognostic in-
formation with respect to RT outcome [6,17]. For example, Halle et al. 
identified a prognostic parameter from DCE MRI data to predict RT 
response in cervical cancer [17]. Consequently, functional MRI yielded 
promising results in the light of developing prognostic models for RT 
outcome prediction. Such predictive models relating quantitative bio-
markers derived from functional MRI to RT outcome might serve in the 
future as a basis for RT interventions aiming for personalized dose 
prescriptions. However, the direct use of functional imaging information 
for RT dose optimization requires quantitative imaging information 
[18,19]. 

Studies on optimal imaging time points are ongoing. Those are 
challenging due to a limited availability of imaging appointments and 
high burden to the patient when using separate, stand-alone MRI 
scanners. 
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Recently, combined devices of MRI and linear accelerator (MR- 
Linac) have been introduced clinically [20–25], which allow for daily 
online-adaptive MR-guided RT [26–31]. Two different systems with 
magnetic field strengths of 0.35 T [32] and 1.5 T [33] are currently 
commercially available. In addition to daily anatomical MRI during RT, 
MR-Linac treatment machines provide an optimal basis for un-biased 
biomarker studies, as functional imaging can be done sequentially, at 
any time point during RT [34]. A recent review by Datta et al. [34] 
discussed challenges related to the technical implementation of func-
tional MRI techniques on combined MR-Linac systems. However, the MR 
scanner design in combined MR-Linacs is different compared to diag-
nostic MR-scanners in terms of technical parameters such as gradient 
strength, slew rate and eventually also field strength as well as the use of 
radio-opaque radiofrequency coils adapted to the RT-specific patient 
positioning [32,35]. Therefore, after implementation of functional MRI 
on MR-Linacs, their capacity to provide quantitative imaging and thus 
accurate, repeatable and reproducible quantitative imaging biomarkers 
(QIB) needs to be investigated before initiating clinical studies [36,37]. 
Consequently, the aim of this work was to review the current status 
regarding technical and clinical validation of quantitative imaging using 
hybrid MR-Linac systems. 

2. Methods 

A literature research was performed in the database PubMed (www. 
pubmed.ncbi.nlm.nih.gov) using the search terms “MR-Linac / MRI- 
Linac” AND “functional / quantitative MRI” OR “diffusion-weighted 
imaging” to assess the current status of functional MRI using combined 
MR-Linacs. Search results were screened for original papers. Reviews 
and studies investigating issues related to stand-alone MRI scanners 
during RT were excluded from analysis. 

3. Results 

A total of eight articles were found during the literature research, out 
of which two were review articles focusing on the management of lung 
cancer using MR-Linacs [31] and on the technical challenges when 
implementing functional MRI [34]. Two articles were not related to 
combined MR-Linac systems. After curation of the search results, four 
articles were reviewed and will be discussed in the following. 

3.1. 0.35 T MR-Linac / MR-guided tri-cobalt 60 system 

Yang et al. [38] have demonstrated the general feasibility of 
acquiring longitudinal DWI on the combined 0.35 T MRI-guided tri- 
cobalt 60 radiotherapy system, the precursor of today’s 0.35 T MRI- 
Linac. In this study, a multi-slice spin echo single-shot echo planar im-
aging (EPI) pulse sequence to measure diffusion was implemented and 
tested in phantom studies. Tests were performed on the diffusion 
phantom recommended by the Quantitative Imaging Biomarker Alliance 
(QIBA) [37] which contains inserts with different known diffusion co-
efficients. Results of this phantom study demonstrated that apparent 
diffusion coefficients (ADC) measured on the 0.35 T MRI-guided RT 
system matched with the reference ADC values within < 5% error. 
Furthermore, this study provided proof-of-principle data in six patients 
with head-and-neck cancer (HNC) or sarcoma, where ADC value 
changes during fractionated RT were acquired and reported [38]. 

As DW MRI using single-shot EPI suffers not only from limited res-
olution but also from severe spatial distortion and potentially inaccurate 
ADC value determination at low field strengths, the same group devel-
oped a diffusion prepared turbo spin echo (TSE) readout sequence to 
measure diffusion in tumors [39]. Similarly, a QIBA diffusion phantom 
was used to benchmark the accuracy and repeatability of the TSE-DW 
MRI sequence in addition to assessing geometrical distortions using a 
spatial integrity phantom. The spatial integrity of the TSE sequence was 
shown to be < 1 mm within a radius of 100 mm which was much lower 
compared to the EPI sequence for DW imaging [39]. Experiments with 
the diffusion phantom demonstrated that both sequences provided ac-
curate quantitation of ADC at a temperature of 0 ◦C, which was < 3% 
with respect to the reference values. At room temperature, EPI-based 
ADC values showed 8% of variation compared to reference, whereas 
TSE based ADC determination was accurate within 4%. TSE experiments 
showed reasonable repeatability with a coefficient of variation < 5% 
[39]. Also in this study, proof of concept was provided for clinical us-
ability of DW MRI using TSE sequences, although using longer acquisi-
tion times compared to EPI-based DWI, by reporting preliminary clinical 
experience on six patients. 

Wojcieszynski et al. reported on the semi-quantitative use of MRI 
contrast agents to improve tumor visibility for online contouring and 
tracking on a 0.35 T MRI-guided RT system in 5 patients [40]. This 
initial report on clinical feasibility demonstrated increased signal-to- 
noise ratios of contrast-enhanced MRI at hybrid MRI-guided RT ma-
chines, which may be a first step towards future usage of DCE-MRI at 
MRI-Linac systems. 

Fig. 1. Assessment of accuracy and repeatability with respect to ADC determination based on DW MRI at the 1.5 T MR-Linac using a dedicated diffusion phantom. 
(A) Diffusion Phantom (Model 128, Qalibre MD, Boulder, USA) containing inserts prepared with different known diffusion coefficients. (B) Regions of interest used to 
analyze ADC values in the different probe areas, acquired with an EPI-based DW MRI sequence (b = 0, 200, 500 s/mm2; TE/TR = 117/6683 ms; voxel size: 1.53 ×
1.53 × 4 mm3). (C,D) Bland-Altman plots showing accuracy and short term repeatability of ADC assessed in four measurements on two different days, including bias 
(full line) and LoA (limits of agreement, dashed line). (C) Accuracy of ADC assessment with a bias of − 2.5⋅10-6 mm2/s and LoA ± 26.8⋅10-6 mm2/s. (D) Repeatability 
analysis presents a bias of 0.6%, LoA = ±7.6%. Median accuracy and reproducibility were − 0.31% and 0.31%, respectively. 
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3.2. 1.5 T MR-Linac 

In a recent multi-center phantom study, the performance of the 1.5 T 
MR-Linac system regarding quantitative MRI was assessed [41]. In this 
study, four MR-Linac systems at four different institutes were used to 
investigate accuracy, repeatability and reproducibility of measuring T1- 
and T2-relaxation times, ADC values and DCE imaging using dedicated 
phantoms. Kooreman et al. showed bias and limits of agreement (LoA) of 
11 ± 238 ms and − 6 ± 63 ms for T1- and T2-relaxometry, respectively. 
For ADC determination, a bias of (0.007 ± 0.027)⋅10-3 mm2/s were 
found in addition to a short term repeatability of 0 ± 9%. A median 
relative coefficient of variation of 0.6 was reported to DCE MRI on the 
MR-Linac systems. Reproducibility was shown to be 11.2% for T1, 2.9% 
for T2, 2.2% for ADC, and 18.4% for DCE [41]. Consequently, this study 
demonstrated that quantitative MRI on the 1.5 T MR-Linac is feasible, 
repeatable, and accurate within the observed limits. These are important 
requirements for a future use of MR-Linac for response monitoring and 
RT interventions based on daily quantitative MRI. 

4. Discussion 

This literature review demonstrates that so far only a few studies 
were carried out to investigate the use of MR-Linac systems for the 
acquisition of functional and quantitative imaging [38–41]. Those few 
studies report that on both currently commercially available MR-Linac 
systems, DWI and also DCE MRI seems to be technically feasible in 
dedicated phantoms and also in first proof-of-concept patient exami-
nations. Accuracy and short term repeatability was shown to be below 
5% for DW MRI in the 0.35 T and also in the 1.5 T MR-Linac. Fig. 1 
presents an example, where accuracy and repeatability of DWI were 
assessed on a 1.5 T MR-Linac using a dedicated phantom. Clinical usage 
of combined MR-Linacs seems to be feasible even though the systems 
present with MR system specifications (e.g. gradient strength, slew rate, 
etc.) which are different to state-of-the-art diagnostic systems, as accu-
racy and reproducibility of quantitative imaging has been demonstrated 
in first experiments. 

Nevertheless, most studies so far investigated quantitative imaging 
characteristics of MR-Linacs only in phantom experiments. In order to 
overcome the first translational gap according to [36], not only technical 
validation in phantom studies but also clinical validation studies of 
proposed quantitative imaging biomarkers are needed. Therefore, sys-
tematic assessment of sequential quantitative MRI in patients with 
different tumors needs to be carried out as a next research step towards 
quantitative MRI-based personalized RT interventions. To realize this, 

the MR-Linac is an optimal tool, as it inherently provides the opportu-
nity for sequential imaging during fractionated RT. Test-retest studies in 
patient cohorts are required to investigate reproducibility of quantita-
tive parameters measured on combined MR-Linacs. Such test–retest 
experiments in addition to studies assessing cross-correlations with 
quantitative MRI obtained from diagnostic MRI scanners are absolutely 
necessary before biomarker studies with outcome correlations can be 
done. In Fig. 2, a proof-of-concept data set is shown where DWI was 
performed in a HNC patient during RT on the MR-Linac and mean tumor 
ADC values were compared to those measured with a diagnostic MR 
system. In addition, also questions about optimal imaging time points 
for assessing quantitative information with prognostic information and 
optimal timing of quantitative MR-based interventions may be answered 
with patient studies at the MR-Linac in the near future. 

So far published data on accuracy and repeatability of DW MRI on 
hybrid MR-Linacs were concerning mean ADC values averaged over bulk 
tumor or phantom regions [38,39,41]. However, biological in-
terventions such as e.g. dose painting based on functional MR infor-
mation measured on combined MR-Linacs require spatially resolved 
information about diffusion properties of the tumor to identify resistant 
sub-regions. To quantify the level of accuracy and reproducibility of 
voxel-based DW MRI on MR-Linacs, further phantom and patient studies 
are needed. Furthermore, not only quantitative information acquired 
accurately, but also reproducibly and with a high level of repeatability is 
required. In addition, geometrically accurate images are needed for dose 
painting interventions. Consequently, DWI needs to be characterized in 
terms of geometrical distortions. Due to potentially significant geo-
metric distortions of > 1 mm, Gao et al. [39] have developed and 
implemented a diffusion prepared TSE sequence on the 0.35 T MR- 
guided tri-cobalt 60 system. This sequence does not suffer from 
geometrical distortions but comes with much lower signal-to-noise ra-
tios, which causes much longer acquisition times. Therefore, optimal 
quantitative imaging protocols suitable for longitudinal patient studies 
need to be carefully selected to provide optimal trade-offs for different 
aspects providing geometrically useful, accurate information measured 
in a realistic time frame. However, sequence parameters need to be 
chosen in a way to take into account the technical characteristics and 
related limitations of the respective MR systems and may thus differ 
from settings of comparable sequences on modern diagnostic MRI 
scanners. 

In conclusion, first studies have shown the potential of combined 
MR-Linacs for quantitative imaging providing accurate and reproducible 
functional information in tumor tissues comparable to diagnostic MR 
scanners. With the ability of providing sequential functional information 

Fig. 2. Sequential DWI measurements acquired on the 1.5 T MR-Linac (Unity, Elekta AB, Stockholm, Sweden) in a HNC patient. This patient was treated in the 
context of a phase 2 feasibility trial (NCT04172753), which had been approved by the ethics committee of the University Hospital Tübingen, and gave written 
informed consent. (A) Anatomical T1-weighted MRI acquired on the 1.5 T MR-Linac after two weeks of RT (fraction 10) with gross tumor volume (GTV) delineated. 
(B) ADC map derived from EPI-based DW MRI (b = 200, 500, 800 s/mm2, TE/TR = 107/10392 ms, voxel size: 3 × 3 × 4.8 mm3). (C) Mean ADC values in the tumor 
region sequentially assessed during the course of fractionated RT, in comparison to two DW-MRI scans acquired at a diagnostic 3 T MR scanner (Vida, Siemens 
Healthineers, Erlangen, Germany). The error bars visualize the standard deviation of the ADC distribution inside the GTV. ADC values are continuously increasing 
during RT, which may be a sign of individual treatment response. 
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during the whole course of fractionated RT, geometrically aligned with 
the RT plan, future use for investigating prognostic quantitative imaging 
biomarkers appears feasible. However, as most studies so far presented 
only phantom experiments, test–retest studies in clinical cohorts are 
required as a next step towards quantitative MR-based RT interventions. 
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