
RESEARCH ARTICLE

Bayesian analysis of isothermal titration

calorimetry for binding thermodynamics
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Abstract

Isothermal titration calorimetry (ITC) is the only technique able to determine both the

enthalpy and entropy of noncovalent association in a single experiment. The standard data

analysis method based on nonlinear regression, however, provides unrealistically small

uncertainty estimates due to its neglect of dominant sources of error. Here, we present a

Bayesian framework for sampling from the posterior distribution of all thermodynamic

parameters and other quantities of interest from one or more ITC experiments, allowing

uncertainties and correlations to be quantitatively assessed. For a series of ITC measure-

ments on metal:chelator and protein:ligand systems, the Bayesian approach yields uncer-

tainties which represent the variability from experiment to experiment more accurately than

the standard data analysis. In some datasets, the median enthalpy of binding is shifted by

as much as 1.5 kcal/mol. A Python implementation suitable for analysis of data generated

by MicroCal instruments (and adaptable to other calorimeters) is freely available online.

Introduction

Isothermal titration calorimetry (ITC) is a widely used biophysical technique for measuring

the binding affinity between small molecules and biological macromolecules (such as proteins

and RNA [1–4]), as well as between proteins [5]. In addition to simple two-component (one-

to-one) binding processes, ITC may also be used to study more complex processes such as

competitive binding [1, 6], binding cooperativity [7], and binding events coupled to changes

in the protonation state [8, 9] or tautomeric state [10] of one or more components. Provided

reaction rates are slower than cell mixing times, ITC can even be used to study the kinetics of

association [11–15].
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Here, we focus on the thermodynamics of simple two-component association (one-to-one

binding). A unique and powerful property of ITC is that it can not only determine the free

energy of binding (ΔG), but also decompose it into enthalpy (ΔH) and entropy (ΔS) without

having to resort to multiple experiments at different temperatures to determine these quanti-

ties via the van’t Hoff equation. This decomposition has been used to draw conclusions into,

for example, how entropy is related to antibody flexibility [16] and ordering of disordered

loops [17] during antibody affinity maturation. It has also been used to suggest that iterative

improvements in generations of drugs result in their interactions being increasingly driven by

enthalpy [18]. Furthermore, it has been used to suggest how force fields might be improved

[19].

It is possible to perform enthalpy-entropy decomposition with ITC because the instrument

not only detects a binding process, but can determine the heat of binding. The raw data from

an ITC instrument is the differential power required to maintain the titrand in a sample cell

(usually a macromolecule dissolved in buffer) at the same temperature as a reference cell as

a titrant (usually a small molecule ligand) is injected into the former. The experimental data

D can be summarized as the measured heats of injection, D � fq1; q2; . . . ; qNg obtained by

integrating the differential power over the duration of each injection. Thermodynamic param-

eters are then determined by fitting binding heat models (expressions for the heat in terms of

unknown thermodynamic and experimental parameters) to the integrated heat [20]. The stan-

dard protocol for parameter estimation, implemented in the Origin software package [21] dis-

tributed with the popular MicroCal VP-ITC instrument [22], uses a nonlinear least squares fit

to estimate the association constant Ka, enthalpy ΔH, and stoichiometry n (number of binding

sites per mole of receptor), along with their estimated uncertainties.

Unfortunately, this established procedure for analyzing ITC data does not accurately deter-

mine uncertainties for enthalpy-entropy decomposition because it fails to account for all rele-

vant sources of error. In a large-scale interlaboratory study (ABRF-MIRG’02) of a model

protein: small molecule binding reaction—the binding of carboxybenzenesulfonamide (CBS)

to bovine carbonic anhydrase II (CAII)—the variation among the reported ITC binding con-

stant and enthalpy from 14 participants was more than an order of magnitude larger (and up

to three orders of magnitude larger) than standard errors reported by the individual least

squares analyses [23].

Spectrophotometric results suggested that titrant concentration errors were likely a major

cause of this unexpectedly large variation. The standard analysis method accounts for error in

the titrand concentration by treating the stoichiometry n as a free parameter that can take any

real and positive value. On the other hand, the titrant concentration, likely an important

source of discrepancies among laboratories [24], is often treated as exactly known. While pre-

cise titrant concentrations are systematically achievable [25], strong evidence suggests that

large (10–20%) errors in titrant concentration are widespread even amongst laboratories

skilled in biomolecular calorimetry [23]. It is possible to explicitly treat titrant concentration

error in nonlinear least squares fitting [25], but this is not typically performed.

In addition to concentration error, another important source of error that is frequently

neglected is the so-called first injection anomaly, in which the heat of injection from the first

injection is smaller than expected. The anomaly often emerges due to backlash in the motor-

ized screw mechanism used to drive the syringe plunger [26]; if the last operation of the

plunger prior to the first injection is upwards, then less titrant will be injected via a subsequent

downward movement of the plunger. This issue may be overcome by executing a short down-

ward movement of the plunger prior to insertion into the sample cell. Another contributing

factor to the first injection anomaly is leakage of titrant out of the syringe during instrument

equilibration. Because the initial injection generally carries the largest magnitude of heat per
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mole of titrant injected, the first injection anomaly (or the inability to account for it) can lead

to significant errors in reported measurements.

Here we introduce a new data analysis protocol that accounts for these sources of error and,

as we shall show, more accurately estimates the uncertainty in derived thermodynamic param-

eters—especially entropy and enthalpy. The approach is modular; additional sources of uncer-

tainty or variability can be modeled through simple extensions of the model. Importantly, this

analysis procedure also allows the joint uncertainties in entropy and enthalpy to be resolved,

an essential requirement to evaluating hypotheses regarding entropy-enthalpy compensation.

Our approach is based on Bayesian statistics, which uses the posterior probability distribution,

pðθjDÞ / pðDjθÞ pðθÞ: ð1Þ

where pðDjθÞ is the likelihood, a conditional probability of observing data D (in our case, the

injection heats {q1,. . ., qN}) given unknown thermodynamic parameters θ. p(θ) is the prior
probability, a function describing foreknowledge of the parameters θ before conditioning this

distribution on the observed data D from this experiment.

A Bayesian analysis has several significant potential advantages over the standard analysis

protocol, including:

1. Multimodal posteriors: Bayesian analysis makes no assumptions about the shape of the

posterior. Therefore, it can treat multimodal posteriors in which two or more distinct sets

of parameters describe the data. On the other hand, the standard analysis assumes a multi-

variate Gaussian, which is based on a single mode.

2. Nonlinear parameter correlation: It is feasible to determine whether parameters are corre-

lated, even if correlations are nonlinear.

3. Modularity: Additional sources of uncertainty can be incorporated in a modular fashion

simply by adding more random variables (nuisance parameters) with associated priors.

4. Integration of multiple experiments: It is possible to incorporate information from multi-

ple measurements and even from multiple experimental techniques. The posterior proba-

bility of a parameter is simply the product of posteriors for each measurement. Information

from control experiments, such as a blank titration or prior standard measurements, can be

incorporated into the prior.

5. Optimal experimental design: New experiments that maximize the gain of new informa-

tion can be automatically identified. By using techniques from Bayesian experimental

design [27], one can choose among many potential experiments those that would maximize

the gain of new information, either sequentially or in batches.

To clarify, it is possible for analyses based on nonlinear regression to integrate some of

these features. In nonlinear regression, parameter distributions are inherently non-Gaussian

and two-dimensional contour plots of different parameters may have non-ellipsoid shapes,

indicating nonlinear correlations [28, 29]. It is also possible to integrate multiple experiments

with a global fit [30]. However, these features are not available in the standard protocol.

Recently, Duvvuri et al. [31] described a new python package for the Bayesian analysis of

ITC experiments. For the analysis of single experiments, their results were consistent with Ori-

gin. They were also able to integrate data from multiple buffers, titrant/titrand ratios, and tem-

peratures. However, they did not perform substantial error analysis.

Our present work is based on a different new python package and we more carefully con-

sider the uncertainty of different analysis protocols. The primary criterion we use to evaluate

and compare analysis protocols is based on interval estimates. Interval estimates have
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somewhat different meanings in Bayesian and frequentist statistics. In frequentist statistics, the

α% confidence interval is expected to contain the true value α% of the time. A confidence inter-

val is inaccurate if the percentage of estimated intervals that contain the true value deviates

from α%. In Bayesian statistics, the credible interval is not necessarily intended to contain the

true value a specific percentage of the time; it is simply a region that contains α% of the poste-

rior probability. Nonetheless, for the purposes of comparing uncertainties, we evaluate

whether the Bayesian credible interval (BCI) obtained from our model serves as an accurate

confidence interval compared to the confidence interval from the standard nonlinear regres-

sion protocol (NlRCI). Previously, BCIs have been shown to work well as confidence intervals

for binding thermodynamics and reference scattering patterns in analyses of X-ray scattering

experiments of protein:ligand binding [32].

Methods

Simulated isothermal titration calorimetry data

To assess the accuracy of BCIs in a context where all sources of error are known, we simulated

ITC data in which the integrated heat is given by,

qi ¼ q�i ðDG;DH;DH0; ½R�0; ½L�sÞ þ �i; ð2Þ

where q�i is the model integrated heat at injection i for an ITC without instrument noise, given

by Eq S3 in S1 Appendix. It is a function of several parameters,

• ΔG: the free energy of binding,

• ΔH: the enthalpy of binding,

• ΔH0: the enthalpy of dilution and stirring per injection, and

• [L]s and [R]0: the concentrations of titrant in the syringe and of the titrand in the cell,

respectively.

In the simulated curves, ΔG = −10 kcal/mol, ΔH = −5 kcal/mol, and ΔH0 = 0.5 μcal. The

concentrations were drawn from lognormal distributions with the stated values of 0.1 mM for

[R]0 and 1 mM for [L]s and with uncertainty 10%. �i represents error in the measurement of qi
and was modeled as normal variable with zero mean and standard deviation of 1 μcal. The

number of injections was 24 (i 2 [1, 24]). A total of 50 simulated heat curves were generated.

Titration of Mg(II) into EDTA

In order to assess the effectiveness of the Bayesian approach in describing the true uncertainty

in the experimental measurements, we studied a simple complexation reaction—the 1:1 bind-

ing of Mg(II) to the chelator EDTA—for which multiple experimental replicates can be easily

collected. The entire ITC experiment was repeated from scratch—with all solutions prepared

completely independently so that any concentration errors would be fully independent—a

total of 14 times. This is critical, as simply repeating the experimental measurement with the

same stock solutions would not capture the true experimental variability. For each trial, the

titrant (MgCl2), titrand (EDTA), and buffer (50 mM Tris-HCl pH 8.0) were weighed and dis-

solved to prepare solutions at the two planned concentrations for the titrant MgCl2 and the

titrand EDTA. In the first five trials, we prepared the titrant and titrand concentrations as 1.0

mM and 0.1 mM, respectively. In the other nine trials, the titrant and titrand concentrations

were prepared as 0.5 mM and 0.05 mM, respectively.

Bayesian ITC
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Magnesium chloride hexahydrate [MgCl2�(H2O)6] was purchased from Fisher Scientific

(Catalog No. BP214-500, Lot No. 006533) and anhydrous ethylenediaminetetraacetic acid

(EDTA) was purchased from Sigma-Aldrich (Catalog No. E6758-500G, Batch No. 034K0034).

Tris base was purchased from Fisher Scientific (Catalog No. BP154-1, Lot No. 082483). Buffer

was prepared by weighing Tris base, adding MilliQ water, and adjusting the final pH to 8.0 by

dropwise titration with HCl or NaOH. Solutions were prepared by weighing powder and add-

ing the appropriate amount of buffer, neglecting the volume occupied by powder, to make a

concentrated solution (15 mM for MgCl2 and 1.0 mM for EDTA). To maximize the number

of significant figures, at least 0.1 g of MgCl2 and 0.01 g of EDTA were weighted out. The solu-

tions were then further diluted with buffer to prepare the titrant and titrand. For example, to

prepare a 0.1 mM solution of EDTA, a pipetman was used to measure 9 parts buffer to 1 part

of 1.0 mM EDTA.

ITC measurements were performed on a MicroCal VP-ITC calorimeter. The experiments

consisted of a total of 24 injections, with the first injection programmed to deliver 2 μL of

titrant (MgCl2) into the sample cell, and the remaining 23 injections programmed to deliver

12 μL. Data was collected for 60 s prior to the first injection and 300 s for each injection. The

injection rate for all injections was 0.5 μL/s. All experiments were conducted at 298.1 K, and

the reference power was fixed at 5 μcal/s.

The baseline was corrected and injection heats integrated using NITPIC [33].

Titration of phosphonamidate-type inhibitors into thermolysin

To demonstrate our approach on protein:ligand systems, we also analyzed titrations of phos-

phonamidate-type inhibitors into thermolysin initially described in Krimmer et. al. [34]. For

each individual measurement, lyophilized thermolysin powder was freshly weighed (1.5–2

mg) and dissolved in an appropriate volume of buffer to achieve a concentration of 30 μM.

The concentration was confirmed by ultraviolet absorption at 280 nm. Prior to measurement,

the thermolysin soluton was centrifuged for 8 min at 8150 g. In contrast, one solution was pre-

pared for all measurements with each ligand by dissolving the pure powder (0.3–0.4 mg) in

buffer without the addition of DMSO. A MX5 microbalance from Mettler Toledo (Switzer-

land) with a readability of 1 μg and a repeatability of 0.8 μg was used for the sample weighting.

Measurements were repeated in this fashion at least nine times. Results reported in [34] were

based on three repetitions with a fresh batch of thermolysin and after optimizing ITC parame-

ters. In contrast, our present analysis was based on all available data for each system except for

a small subset with a large baseline shift in the middle of an injection.

Lyophilized thermolysin (EC number 3.4.24.2) from Bacillus thermoproteolyticus was pur-

chased from Calbiochem (EMD Biosciences). The inhibitors (Fig 1) P-((((benzyloxy)carbonyl)

amino)methyl)-N-((S)-4-methyl-1-oxo-1-(propylamino)pentan-2-yl)phosphonamidicacid

(ligand 1), P-((((benzyloxy)carbonyl)amino)methyl)-N-((S)-1-(isobutylamino)-4-methyl-

1-oxopentan-2-yl)phosphonamidicacid (ligand 2), and P-((((benzyloxy)carbonyl)amino)

methyl)-N-((S)-4-methyl-1-(((S)-2-methylbutyl)amino)-1-oxopentan-2-yl)phosphonamidica-

cid (ligand 3), were generously provided by Nader Nasief and David G. Hangauer (University

of Buffalo, Buffalo, New York, USA), who synthesized and purified them as previously

described [35]. In the paper [35], they claimed that the compounds were at least 95% pure.

(Crystal structures of ligands 1 (PDB ID 4MXJ), 2 (PDB ID 4MTW), and 3 (PDB ID 4MZN)

in complex with thermolysin have been previously reported [34]). All measurements were per-

formed with a buffer composed of 20 mM HEPES (pH 7.5), 200 mM NaSCN, and 2 mM

CaCl2 � 6H2O. HEPES was purchased from Carl Roth (Catalog No. 9105.3, Batch no.

192184596), NaSCN was purchased from Fluka Analytical (Catalog No. 71938-1KG, Lot no.

Bayesian ITC
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BCBC9384V), and CaCl2 � 6H2O was purchased from Carl Roth (Catalog No. T886.2, Lot no.

433205269). Prior to measurement, the buffer was filtered through a 0.22 μm filter and

degassed under reduced pressure.

ITC measurements with thermolysin were performed on an MicroCal ITC200 calorimeter

from GE Healthcare (Piscataway, New Jersey). After an initial delay 170 or 180 sec, the initial

injection (0.3 to 0.5 μL) was followed by 19 to 26 main injections (1.2 to 1.5 μL). The duration

of the injection (in sec) was twice the value of the volume (in μL). All measurements were per-

formed at a temperature of the measurement cell of 298.15 K, a stirring speed of 1000 rpm,

titrand (thermolysin) concentration of 30 μM, and a titrant (ligands 1-3) concentration of

400 μM. For details on each protocol, see S1 Table.

As with the Mg(II):EDTA data, the baseline was corrected and injection heats integrated

using NITPIC [33]. Representative differential power and integrated heat curves for Mg(II):

EDTA binding and thermolysin:ligand binding are shown in S1 Fig. Some data were excluded

due to large baseline shifts that could not be readily corrected.

CBS:CAII dataset from the ABRF-MIRG’02 study

Finally, we considered a protein:ligand ITC dataset from a previously published study which

demonstrated large interlaboratory variation far in excess of reported error estimates [23]. As

data were unavailable from the authors, injection heat data were digitized from Fig 4 in [23],

the ABRF-MIRG’02 paper, which includes 14 ITC datasets measured fully independently on

identical source material (aliquots of CAII and dry powder stocks of CBS) by independent lab-

oratories. Dataset 2 was generated by an instrument called the CSC 4200 ITC (see Table 2 in

[23]) for which we could not find the user’s manual to obtain information such as the cell vol-

ume. Therefore, we excluded this dataset. We also excluded dataset 4 because we were not able

to reliably digitize the large number of injections. For other datasets, the experimental design

parameters were taken from Table 2 in [23], while the reported thermodynamic parameters

and standard errors were taken from Table 3 in [23]. In the ABRF-MIRG’02 study [23], most

experiments obtained standard errors were using a nonlinear least squares fit. The exceptions

were datasets 10 and 14, in which the standard deviation was obtained by repeating the same

experiment 3 and 5 times, respectively. In these datasets, it was not clearly specified whether

the entire experiment or just the titration was repeated in each replicate.

Digitization leads to some error. As a quantitative estimate of this error, consider the exper-

iment from Group 1 in Fig 4 in [23], the ABRF-MIRG’02 paper. When zoomed in, the center

of the axes and the markers can be identified to within a single pixel. The markers are 8 pixels

high, and the plot is 182 pixels high. This translates to a maximum error of 1 pixel (marker

center) on an axis conversion of 11 kcal/mol / 182 ± 2 pixels 0.060 ± 0.001 kcal/mol. Hence,

the error (0.06 kcal/mol/injection) is rather small, even if done by eye.

Fig 1. Chemical structures of thermolysin ligands used in this study.

https://doi.org/10.1371/journal.pone.0203224.g001
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Frequentist confidence intervals

Origin software was used to perform nonlinear least squares fit of the heat data to obtain the

binding constant Ka, enthalpy ΔH, and the stoichiometry number n, and their corresponding

standard errors. Each parameter was assumed to be normally distributed and the standard

error was used as a standard deviation. The lower and upper bounds of the α% confidence

interval were the 1 − α/2 and 1 + α/2 percentile, respectively, of the normal distribution with a

mean as the point estimate and standard deviation as the reported uncertainty.

Sampling from the Bayesian posterior

Our Bayesian model is constructed to infer the unknown true parameters,

θ � ðDG;DH;DH0; ½L�s; ½R�0; sÞ; ð3Þ

In addition to the parameters described above in “Simulated ITC data”, this model includes σ,

the standard error of heat measurement per injection. σ is a nuisance parameter in that it is

not the objective of a measurement but is necessary to calculate the likelihood. The assumption

of a constant σ is most reasonable if all injections include the same number of power

measurements.

Likelihood. The data D � fq1; q2; . . . ; qNg consists of the observed heats per injection

determined by integrating the differential power over the injection time. The corresponding

data likelihood function was based on the assumption that, because the observed injection heat

qn is the sum of many power measurements, the measurement error added to the true
(unknown) heat q�n will be normally distributed due to the central limit theorem,

qn � N ðq�nðθÞ; s
2Þ: ð4Þ

The total data likelihood for D � fq1; q2; . . . ; qNg is therefore given by

pðDjθÞ ¼
1

ð2pÞ
N=2

sN
exp �

1

2s2

XN

n¼1

ðqn � q�nðθÞÞ
2

" #

: ð5Þ

The model heats q�nðθÞ are a function of the parameters θ. See S1 Appendix for details of the

binding model relating θ to the true heats q�n.

Priors. The prior p(θ) was a product of priors for each parameter, p(θ) = ∏j p(θj). Uniform

priors were chosen for ΔG, ΔH, and ΔH0:

DG � Uniformð� 40 kcal=mol;40 kcal=molÞ; ð6Þ

DH � Uniformð� 100 kcal=mol;100 kcal=molÞ; ð7Þ

DH0 � Uniformðqmin � Dq; qmax þ DqÞ; ð8Þ

where qmin = min{q1, q2,. . ., qN}, qmax = max{q1, q2,. . ., qN} and Δq = qmax − qmin, usually

reported in units of cal.

We used three different sets of priors for the true concentrations of titrant in the syringe,

[L]s, and receptor in the cell, [R]0 (Table 1): General, Flat [R]0, and Comparison. All of the con-

centration models make use of the fact that concentrations must be positive. In the General

model, both concentrations are assigned lognormal priors with the mean and standard devia-

tion given by their stated experimental values and corresponding experimental uncertainties
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due to preparation steps,

ln ½X�
0
� LN ð½X�

0
; ðd½X�

0
Þ

2
Þ: ð9Þ

The lognormal prior prevents negative values and the lognormal distribution is the maximum

entropy distribution when the mean and variance of the logarithm of the parameter is speci-

fied. In the absence of specific quantification of the titrant concentration uncertainty, we

assumed a value of δ[X]0 equal to 10% of the provided [X]0. This specified uncertainty is in

line with quantification of typical laboratory titrant concentration errors observed by Myszka

et. al. [23]. In cases where the practitioner uses an orthogonal method to quantify titrant

concentration or carefully tracks the uncertainty during preparation steps, as described in

Boyce et. al. [25], this more precise concentration uncertainty could be used instead. Alterna-

tively, δ[X]0 could be treated as a free nuisance parameter. Although the parameter may not be

precisely determined from a single ITC experiment, it could potentially be elucidated by sam-

pling from a Bayesian posterior based on multiple measurements with the same titrand solu-

tions, analogous to a global fitting procedure possible with nonlinear least squares [36].

In the Flat [R]0 model, a uniform prior was used for [R]0 such that,

½R�
0
� Uniform

½R�stated
0

10
; 10½R�stated

0

 !

: ð10Þ

This model is useful in cases where the receptor concentration is not clearly known, such as

when the sample is impure or partially degraded. Due to potential degradation of protein used

in some ITC measurements, we used this model in our analysis of data for thermolysin.

Finally, in the Comparison model, we used a uniform prior for [R]0 and a sharply peaked prior

for [L]s such that d½L�s ¼ 0:001½L�stateds .

The Comparison model mimics the treatment of concentrations in standard nonlinear least

squares fitting. In the standard procedure, [L]s is assumed to be precisely the stated value while

[R]0 can take any positive value that minimizes the total residual sum of squares. There is no

penalty for changing [R]0 from its stated value. This is consistent with flat prior for [R]0 a

sharp prior for [L]s. On the other hand, the General model allows for but penalizes deviations

from the stated values. In the absence of further information, we believe that the General

model is the most justified of the three models because concentrations are likely to be close to

their stated values. Our main reason for performing calculations with the Comparison model

was to isolate the effects of concentration models from other aspects of the Bayesian analysis.

Finally, since even its order of magnitude may be unknown, an uninformative Jeffreys prior

[37] was assigned to the noise parameter σ,

pðsÞ / ðs=s0Þ
� 1
: ð11Þ

Table 1. Summary of concentration priors used in this manuscript.

Name [R]0 [L]s Purpose

General Lognormal,

d½R�
0
¼ 0:1½R�stated

0

Lognormal,

d½L�s ¼ 0:1½L�stateds

Most future analyses

Flat [R]0 Uniform Lognormal,

d½L�s ¼ 0:1½L�stateds

When the true [R]0 is unknown

Comparison Uniform Lognormal,

d½L�s ¼ 0:001½L�stateds

Comparison with standard analyses

https://doi.org/10.1371/journal.pone.0203224.t001
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where σ0� 1 cal is a reference quantity that simply renders the ratio σ/σ0 dimensionless. This

model assumes that the injection heat measurement uncertainty σ is constant for all injections.

This may be a good approximation when the same number of power measurements are inte-

grated for each injection (i.e., when injections are of identical duration), but when experiments

contain injections of different durations, the noise variance σ2 should be proportional to the

number of power measurements summed to give the injection heat (with all other things

being held constant). More complex noise variance models (such as those considered in [38])

could also be considered. The noise model could also be improved using calibration experi-

ments based on the same protocol (such as blank titrations), or even other data collected on

the instrument for other systems; in these cases, likelihoods from independent experiments are

simply multiplied.

While we used uninformative priors (except for our concentrations) in this study, alterna-

tive priors for other parameters can be used. If some knowledge of thermodynamic parameters

or concentrations is available from another type of experiment, e.g., spectrophotometric mea-

surements, then these can be incorporated into their respective priors. In such cases, the prior

could be normally-distributed with the sample mean and standard deviation as parameters.

Another way to parameterize the prior for concentrations is by careful propagation of error

during the sample preparation process (from estimates of known pipetting error magnitudes,

known analytical balance accuracies, and reported compound purities). Alternatively, the pos-

terior from a previous (e.g., pilot) ITC experiment can be used as the prior to integrate the

information from a second ITC experiment with different experimental parameters.

Sampling from the posterior. In principle, Bayesian statistical inference could be per-

formed based on a direct analysis of the posterior distribution (Eq 1) to obtain properties such

as the mean, median, mode, credible intervals, and marginal distributions. However, most

Bayesian posterior distributions are complex and multidimensional. They are not amenable to

exact mathematical solutions. An alternative approach is to generate random samples from a

distribution and analyze these samples to obtain the desired properties. Ideally, it would be fea-

sible to use acceptance-rejection or another method that generates independent and identically

distributed variates. Unfortunately, the complexity of Bayesian posteriors typically precludes

these types of algorithms. In the last few decades, computing advances have made it possible to

sample from Bayesian posterior distributions using Markov chain Monte Carlo (MCMC) [39]

methods. In MCMC simulation, samples from a distribution are not entirely independent.

Rather, a new sample is generated based on a perturbing the previous sample. After a suffi-

ciently number of MCMC iterations, samples are no longer correlated with each other and can

be regarded as independent. With a sufficient number of independent samples from the poste-

rior, summary statistics of interest can be calculated.

In our MCMC simulations, initial values were chosen as follows:

• for [L]s and [R]0, the stated (intended) concentration was used

• for ΔH, ΔG, and ΔH0, initial values of zero (in their appropriate energy units) were used

• for σ, the standard deviation of the last four injection heats was used as an initial guess

Parameters were updated by sequential Gibbs sampling. In sequential Gibbs sampling, one

parameter is updated at a time using the Metropolis-Hastings algorithm [40, 41]:

1. For each single parameter, a proposal is drawn from a normal distribution centered at the

current value, and a scale of unity for ΔH, ΔG, and ΔH0, or the initial guess value for σ, [L]s,

and [R]0;
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2. The trial move is accepted or rejected according to the Metropolis criterion. If it is accepted,

the next value in the Markov chain is the trial move. If it is rejected, the next value in the

Markov chain is the original value.

MCMC was performed using a python library that we wrote, bayesian-itc (https://github.

com/choderalab/bayesian-itc). bayesian-itc uses the Metropolis-Hastings implementation in

the PyMC [42] library to perform MCMC sampling. For each experiment, sampled parameters

were stored after every 2000 MCMC trial moves for a total of 5000 samples. These calculations

take about 11 hours on a single modern CPU. Each sample from the Bayesian posterior is a set

of six values, as described in Eq 3. For each parameter, the α% BCI is estimated based on the

shortest interval that contains α% of the MCMC samples.

The precise version of the library used in this manuscript was committed to github on May

2, 2018. It is freely available at https://github.com/nguyentrunghai/bayesian-itc/tree/

d8cbf43240862e85d72d7d0c327ae2c6f750e600. The directory entitled analysis_of_
Mg2EDTA_ABRF-MIRG02_Thermolysin contains all the data needed to reproduce the

figures in this manuscript.

The Kullback-Leibler divergence quantifies differences between

thermodynamic parameter distributions obtained from Bayesian and

nonlinear least-squares approaches

To compare posterior marginal distributions, we computed the Kullback-Leibler divergence

(KL-divergence), between the posterior marginal densities in the two most important thermo-

dynamic quantities of interest, (ΔG, ΔH),

DKL pðDG;DHjD1ÞjjpðDG;DHjD2Þ½ �¼

Z

dDG
Z

dDH pðDG;DHjD1Þ ln
pðDG;DHjD1Þ

qðDG;DHjD2Þ
: ð12Þ

pðDG;DHjD1Þ and pðDG;DHjD2Þ are the posterior marginal densities specified by two differ-

ent experiments with associated datasets D1 and D2. This metric, commonly used as a measure

of deviation between two probability densities, can be interpreted as the amount of informa-

tion lost when pðDG;DHjD2Þ is used to approximate pðDG;DHjD1Þ. The marginal posterior

density for each experiment was estimated by using a Gaussian kernel density estimate (KDE)

based on MCMC samples for ΔG and ΔH (ignoring other parameters). We used the Kernel-
Density package implemented in scikit-learn [43] to estimate the density p(ΔG, ΔH). The

bandwidth for Gaussian kernel was set to 0.03 kcal/mol. Although the Kullback-Leibler diver-

gence can be analytically computed for Gaussian densities, we also used the same KDE method

to estimate probability densities p(ΔG, ΔH) for nonlinear regression. Samples for ΔG and ΔH
were drawn from Gaussian distributions with the mean and standard deviation based on non-

linear regression point estimates and errors, respectively.

Results and discussion

Markov chain Monte Carlo sampling leads to precise estimates of Bayesian

credible intervals

Our MCMC sampling protocol appears to yield precise estimates of 95% BCIs (Fig 2 and

S2–S5 Figs). In all of the selected systems, the estimated 95% BCIs do not substantially change

after considering about 2000 samples. The standard deviation of estimated upper and lower

bounds over the five independent simulations in each system was less than 5% of the length of

the average interval. Therefore, we are confident that the number of MCMC samples and
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mixing of the MCMC chain is sufficient to yield consistent estimates of the BCIs and other sta-

tistics of interest.

Bayesian analysis yields unimodal distributions of linearly correlated

parameters

Bayesian analysis permits multimodal posteriors and nonlinear parameter correlations to be

investigated. Qualitative trends in the posterior density may be visualized by generating

Fig 2. Convergence of 95% Bayesian credible intervals (BCIs) with MCMC sampling. 5000 MCMC samples were generated

from the Bayesian posterior (General model) for several variables based on one ITC experiment measuring Mg(II):EDTA binding.

For five independent repetitions of the MC simulations, the black lines are running estimates, as the number of samples is

increased, of the upper and lower limits of 95% BCIs. The red line and error bars are the average and standard deviation across the

five independent simulations. Similar plots for ligands 1-3 binding to thermolysin and CBS:CAII are available as S2–S5 Figs.

https://doi.org/10.1371/journal.pone.0203224.g002
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histograms of MCMC samples drawn from the posterior. For our systems, representative 1D

marginal distributions of key parameters (Fig 3) are unimodal. Although some skew is evident

in ΔH, the Gaussian distribution could be considered a reasonable approximation for most of

these parameters. Our observation is consistent with previous analyses of nonlinear regression

which showed that a Gaussian assumption is appropriate when the magnitude of statistical

error is less than 10% of a parameter [28, 29].

Representative 2D marginal distributions (Fig 4) show that some pairs of parameters are

nearly independent and others are highly correlated, with varying degrees of correlation in

between. Of particular interest is the fact that while the free energy ΔG and enthalpy ΔH are

mostly uncorrelated (top left of Fig 4), there is high correlation between the enthalpic (ΔH)

and entropic (TΔS) contributions to binding (top right of Fig 4) and between ΔH and the

receptor concentration [R]0 (bottom right of Fig 4). These correlations are not considered in

the standard nonlinear regression analysis.

Given that the correlations appear to be linear, they can be succinctly summarized via the

correlation coefficient. The estimated correlation matrix shown in Table 2 indicates that the

titrant [L]s and titrand concentrations [R]0 are highly correlated with each other and with the

enthalpy ΔH but only weakly with ΔG. This result is consistent with Tellinghuisen [44], who

evaluated the sensitivity of the binding constant and enthalpy to changes in concentration.

Estimates of concentrations and ΔH are correlated because the effect of changing one of the

parameters can be largely counteracted by changing another. When samples from a Bayesian

Fig 3. Representative 1D marginal distributions of thermodynamic parameters from Bayesian ITC analysis. 1D marginal

probability densities for thermodynamic parameters of interest were estimated based on 5000 MCMC samples generated from the

Bayesian posterior (General model) for one ITC experiment measuring Mg(II):EDTA binding. Horizontal bars show 95% Bayesian

credible intervals. The triangle in density plot of [R]o indicates the stated value.

https://doi.org/10.1371/journal.pone.0203224.g003
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posterior for MG(II):EDTA binding were used to parameterize a simple linear model for [L]s

and ΔH as a function of [R]0, different parameter values led to essentially the same integrated

heat curve (Fig 5). An important implication of this enthalpy-concentration compensation is

that given a measured integrated heat curve, the precise values of the three parameters are

underdetermined; by itself, ITC cannot simultaneously determine the titrant or titrand con-

centration and the enthalpy of binding.

Due to the observed correlations, apparent enthalpy-entropy compensation [45] is a possi-

ble consequence of simple concentration error. If multiple measurements of the same

Fig 4. Representative 2D marginal distributions of pairs of thermodynamic properties from Bayesian ITC analysis. 2D joint

marginal probability densities were estimated based on 5000 MCMC samples generated from the Bayesian posterior (General model) for

one ITC experiment measuring Mg(II):EDTA binding. TΔS was derived from the sampled parameters ΔG and ΔH to aid our discussion

of enthalpy-entropy compensation.

https://doi.org/10.1371/journal.pone.0203224.g004

Table 2. Correlation matrix estimated from the Bayesian posterior (General model) for an Mg(II):EDTA binding dataset. Numbers in parentheses denote the uncer-

tainty in the last digit.

ΔG ΔH ΔH0 [L]s [R]0 ln σ
ΔG 1 0.50(1) 0.280(8) 0.541(9) 0.553(9) 0.00(2)

ΔH 0.50(1) 1 -0.07(1) 0.9893(2) 0.9884(2) 0.01(1)

ΔH0 0.280(8) -0.07(1) 1 0.00(1) 0.01(1) 0.016(9)

[L]s 0.551(9) 0.9893(2) 0.00(1) 1 0.99887(3) 0.01(1)

[R]0 0.553(9) 0.9884(2) 0.01(1) 0.99887(3) 1 0.01(1)

ln σ 0.00(2) 0.01(1) 0.016(9) 0.01(1) 0.01(1) 1

https://doi.org/10.1371/journal.pone.0203224.t002

Bayesian ITC

PLOS ONE | https://doi.org/10.1371/journal.pone.0203224 September 13, 2018 13 / 26

https://doi.org/10.1371/journal.pone.0203224.g004
https://doi.org/10.1371/journal.pone.0203224.t002
https://doi.org/10.1371/journal.pone.0203224


receptor-ligand pair were performed with different disturbances to the receptor concentration

(e.g. small dilutions), ΔH would be perturbed more significantly than ΔG, leading to an appar-

ent trend between ΔG and TΔS.

Median enthalpy estimates are sensitive to the titrand concentration model

Even though nonlinear least squares fitting and Bayesian analysis are based on the same bind-

ing model, other variations in the analysis procedure may lead to different estimates of ΔG and

ΔH. We compare different analysis methods by considering how the median (which is less sen-

sitive to outliers than the mean) of each quantity within a dataset. For all datasets, the median

estimate of ΔG is largely consistent across the different analysis methods. In contrast, with the

thermolysin datasets, ΔH estimates are consistent between all models except for the General

model, which differ by as much as 1.5 kcal/mol (Table 3).

The consistency between all models except for the General model indicates that the major

reason for discrepancy is the prior on the receptor concentration. In all but the General model,

the titrand concentration freely changes (subject to the constraint [R]0 > 0) from stated

Fig 5. Integrated heat for different values of titrand concentration [R]0 for Mg(II):EDTA binding. Corresponding

values of [L]s and ΔH were based on a simple linear regression of [L]s and of ΔH versus [R]0. The other parameters (ΔG,

ΔH0) took the last value from the MCMC time series (General model). The legend shows the titrand concentration

[R]0, in mM, corresponding to each line.

https://doi.org/10.1371/journal.pone.0203224.g005

Table 3. Median estimates of ΔH (kcal/mol). For nonlinear least squares, the value is the median of the different point estimates across different measurements. For

Bayesian analysis, it is the median of the median sample from each Bayesian posterior. The numbers in parentheses are standard deviations estimated by bootstrapping:

resampling the datasets (for nonlinear least squares) or the MCMC samples (for Bayesian analysis) with replacement using 1000 replicates.

Dataset Nonlinear least squares Comparison Flat [R]0 General

Mg(II):EDTA -2.25 (0.06) -2.24 (0.05) -2.19 (0.04)

ligand 1:thermolysin -5.84 (0.27) -5.89 (0.22) -5.92 (0.21) -4.41 (0.31)

ligand 2:thermolysin -5.08 (0.07) -4.92 (0.06) -4.96 (0.07) -4.23 (0.09)

ligand 3:thermolysin -5.28 (0.08) -5.10 (0.09) -5.14 (0.1) -4.46 (0.29)

CBS:CAII -10.36 (0.6) -10.22 (0.53) -10.05 (0.76)

https://doi.org/10.1371/journal.pone.0203224.t003
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concentration without penalty. In the General model, the prior penalizes deviations from the

stated value of [R]0. Estimates of the concentration affect ΔH but not ΔG because concentra-

tions are highly correlated with ΔH but not with ΔG.

It is also evident that the titrand concentration is the determining factor for the shift in

median ΔH because the titrant concentration is lognormal in all the Bayesian priors. Modify-

ing the standard deviation in the lognormal distribution affects credible intervals but does not

change the median. By elimination, the factor that leads to the shift in the median is usage of a

lognormal instead of uniform prior for the titrand concentration.

One result that is insensitive to the choice of concentration model is the one-to-one stoichi-

ometry of these binding processes. Even when the prior on [R]0 is completely flat, concentra-

tions sampled from the posterior are fairly close to the stated concentration. Sampled [R]0 that

are a factor of two (or more) greater than the stated concentrations could indicate multiple

ligands binding to each receptor molecule. Since sampled concentrations are similar to stated

concentrations, the selected one-to-one binding model is suitable for these systems.

Bayesian confidence intervals are more consistent with each other than

those from the standard analysis

In addition to the median enthalpy, the width and and consistency of intervals is also depen-

dent on the concentration model (See Table 4, Fig 6, and S8–S19 Figs). For ΔH and [R]0 in par-

ticular, NlRCIs and BCIs based on the Comparison model are narrower and correspondingly

less consistent with one another than BCIs based on other concentration models. BCIs based

on the General model are substantially broader and those based on the flat [R]0 model are

broader still. However, all the BCIs and NlRCIs for ΔG are of comparable magnitude.

In contrast with the dependence of the shift in the median enthalpy on the titrand concen-

tration model, the change in interval size is primarily driven by the titrant concentration

model. The Comparison and Flat [R]0 model have the same uniform prior for the titrand con-

centration. However, the size of the ΔH and [R]0 intervals for the Flat [R]0 model is much

larger because the standard deviation in the lognormal model for [L]s is larger. (Data are in fig-

ures noted in Table 4).

On a note related to the width and consistency between confidence intervals, nearly every

pair of 95% BCIs for ΔG and ΔH from the General and Flat [R]0 model have at least some over-

lap with one another. (The 95% BCIs for [R]0 do not overlap when the stated concentrations

differ, as in the Mg(II):EDTA and CBS:CAII datasets.) As with other statistics, BCIs based on

the Comparison model are very similar to NlRCIs (S7, S10, S13, S16 and S18 Figs).

One complication with assessing confidence interval estimates is that we do not know the

“true” value. Because we do not know the “true” value, we used the median value from

repeated experiments as an approximation. The mean value is also a suitable choice, but the

median is less sensitive to outliers.

Table 4. Figure numbers for confidence interval plots in this manuscript.

System General Flat [R]0 Comparison

Mg(II):EDTA Fig 6 S5 Fig

ligand 1:thermolysin S8 Fig S9 Fig S10 Fig

ligand 2:thermolysin S11 Fig S12 Fig S13 Fig

ligand 3:thermolysin S14 Fig S15 Fig S16 Fig

CBS:CAII S17 Fig S18 Fig

https://doi.org/10.1371/journal.pone.0203224.t004
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Most of the 95% BCIs for ΔG, ΔH, and [R]0 from the General and Flat [R]0 models contain

the median. One exception is for the CBS:CAII dataset, in which BCIs for ΔG capture the

median less consistently. In contrast, while most 95% NlRCIs for ΔG contain the median

(except in the CBS:CAII dataset), the 95% NlRCIs for ΔH and [R]0 generally do not. BCIs from

the Comparison model behave similarly to NlRCIs (S5, S8, S11, S14 and S16 Figs). The size of

these intervals appear to be significantly underestimated in all of our systems.

Fig 6. Uncertainty estimates from Bayesian and nonlinear least squares analyses of Mg(II):EDTA ITC replicates. 95% credible

intervals estimated from the Bayesian posterior based on the General model (left) and confidence intervals from nonlinear least

squares (right) for parameters specifying magnesium binding to EDTA. The vertical green lines are the median of the median MCMC

samples. There are two median estimates for R because the experiments were done at two different concentrations. Red bars denote

the standard deviations of the lower and upper bounds, estimated by bootstrapping, and are a total of two standard deviations wide.

https://doi.org/10.1371/journal.pone.0203224.g006
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A better way to visualize the performance of confidence intervals is to compare the fraction

of intervals that contain the true value with the stated confidence level. If stated levels are accu-

rate, they should reflect the probability that the interval contains the true value. In this type of

plot, therefore, data points should lie along the diagonal, the solid line of Figs 7 and 8, and

S19–S22 Figs Points below the diagonal indicate that stated confidence intervals are too small.

Conversely, points above the diagonal indicate that they are too large.

Fig 7. Uncertainty validation for Bayesian analysis of simulated data. The predicted versus observed rate (%) in which BCIs

contain the true value (red circles), the mean (blue leftward triangles) or the median (green rightward triangles) for binding

parameters are shown. Error bars are standard deviations based on bootstrapping.

https://doi.org/10.1371/journal.pone.0203224.g007

Fig 8. Uncertainty validation for Bayesian and nonlinear least squares analyses of Mg(II):EDTA data. For the Mg2:EDTA

binding experiments, the predicted versus observed rate (%) in which intervals contain the median value for binding parameters is

shown. Intervals were BCIs based on the General model (blue leftward triangles), Comparison model (green rightward triangles), or

nonlinear least squares confidence intervals (red circles). Error bars are standard deviations based on bootstrapping.

https://doi.org/10.1371/journal.pone.0203224.g008
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Simulated data are useful for performing this type of assessment in a context where true

parameter values and all sources of error are known. We generated 50 simulated heat curves

(S6 Fig) and estimated BCIs for each. As an assessment of the BCIs, we then plotted the frac-

tion of BCIs that contain the true value against their stated levels. For the simulated data, the

observed fraction of BCIs containing the true value (red dots) is very close to the stated levels

(Fig 7), indicating that the Bayesian approach produces accurate confidence intervals.

The simulated data are also valuable for assessing our choice of medians as approximations

to true parameter values. For the simulated data, the mean and median give almost the same

estimate for the true value, but the median is slightly closer (Table 5). The blue and green dots

in Fig 7 correspond to the observed fraction of BCIs containing the mean and the median,

respectively. Except for the fraction containing the mean ΔG at low confidence (blue dots on

left panel of Fig 7), they are very close to the observed fraction of BCIs containing the true

value. Because the performance of the median and mean is similar and the median is more

robust with respect to outliers, the median is a reasonable approximation to the true value.

Based on uncertainty validation, BCIs based on the General model perform nearly ideally

for Mg(II):EDTA and less reliably for the other experimental datasets. In the cases of Mg(II):

EDTA and ligand 2:thermolysin binding, the observed fraction of BCIs (General model) for

ΔG and ΔH that contain the median is very close to the ideal line (Fig 8 and S20 Fig). For the

other datasets, BCIs based on the General model are less consistent with observed rates. In the

cases of ligand 1:thermolysin and ligand 3:thermolysin, the median-containing frequency of

ΔG BCIs is also very close the ideal line whereas that ΔH BCIs deviates from ideality, especially

for larger confidence intervals (S19 and S21 Figs). In the CBS:CAII dataset, however, BCIs for

ΔH are more consistent with observed rates than for ΔG.

Intervals from other models had variable performance. NlRCIs of ΔG have similar perfor-

mance to BCIs but the observed rate at which NlRCIs for ΔH contain the median is signifi-

cantly less than ideal. This deviation from ideality is consistent with the poorly overlapping

95% confidence intervals for ΔH. BCIs from the Comparison model behave similarly to

NlRCIs. In contrast with intervals from other models, BCIs based on the flat [R]0 model gener-

ally overestimate the width of intervals for the thermolysin model. The overestimation of inter-

vals suggests that the uniform prior employed in this analysis is too uninformative.

Overall, our Bayesian method (with the General model) led to reasonable BCIs for multiple

measurements performed by a single individual within a single laboratory. The performance

of BCIs in accounting for laboratory-to-laboratory variability in the CBS:CAII datasets digi-

tized from the ABRF-MIRG’02 paper [23] was weaker. In this dataset, there must be one or

more significant sources of error that the present approach fails to account for.

The strong correlation between concentrations and ΔH explains the dramatic improvement

of the credible intervals of ΔH (e.g. Fig 8) when the uncertainty in [L]s is included in the Bayes-

ian analysis. In the same vein, the weak correlation between concentrations and ΔG explains

why NlRCIs for ΔG are reasonable (Fig 8) even if the titrant concentration was treated as

exactly known in the fit. Trends in the accuracy of confidence intervals are consistent with pre-

vious analyses based on error propagation [24, 25, 44, 45], which showed that titrant

Table 5. Comparison of Bayesian estimates of mean and median with the true values for simulated data. The num-

bers in parentheses denote uncertainty in the last digit, which are standard deviations estimated by bootstrapping by

resampling the MCMC samples and the datasets with replacement 1000 times.

Parameter True value mean median

ΔG (kcal/mol) -10 -10.04(2) -10.03(1)

ΔH (kcal/mol) -5 -5.04(5) -5.03(5)

https://doi.org/10.1371/journal.pone.0203224.t005
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concentration errors propagate to small relative errors in ΔG but large relative errors in ΔH. If

the error in titrant concentration is correctly propagated, it may be possible to make NlRCIs

more accurate [25], but testing this is beyond the scope of the present work. In subsequent

analysis, we will only consider the General model.

Binding parameter distributions are more consistent with Bayesian

analysis than nonlinear regression

In most datasets, the estimated Kullback-Leibler divergence between pairs of Bayesian posteri-

ors is smaller than those estimated for nonlinear regression (Fig 9 and S23–S26 Figs). For the

thermolysin datasets where the flat [R]0 model was tested, the Kullback-Leibler divergence for

the flat [R]0 model was even smaller than for the general model. Therefore, marginals of the

Bayesian posteriors are more consistent with one another than the Gaussian distributions

from nonlinear regression. This finding agrees with above analyses that the Bayesian posterior

captures the variance among experiments better than nonlinear least squares. The one excep-

tion is with the CBS:CAII dataset, in which the Kullback-Leibler divergence matrix based on

the Bayesian method is comparable to the one from nonlinear regression (S26 Fig).

Fig 9. The natural logarithm of Kullback-Leibler divergence between Bayesian approach (General model) and nonlinear

least-squares. The natural logarithm of the KL-divergence between posterior marginal distributions (top) and between Gaussian

distributions of nonlinear least squares errors (bottom) is shown. Each column and row corresponds to one of the 14 datasets of

Mg(II):EDTA binding. The diagonal elements should be ln0 = −1 but were set to 1 for visualization.

https://doi.org/10.1371/journal.pone.0203224.g009
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Conclusion

In this study we have applied Bayesian statistics to analyze ITC data for the first time. We were

able to account for various sources of error including, most importantly, uncertainties in the

titrand and titrant concentrations. Due to the inclusion of concentration uncertainties, BCIs

more accurately capture the variance between independent experiments than NlRCIs. In some

datasets, the concentration error model led to differences in binding enthalpy estimates. Cor-

relation between different parameters computed from the Bayesian posterior helps rationalize

the effects of concentration uncertainty on the accuracy of ΔG and ΔH. Our analysis methods

are freely accessible and extensible to more complex binding models, including the consider-

ation of complex stoichiometry and cooperativity.

Supporting information

S1 Appendix. Description of simple two-component (1:1) association binding model.

(PDF)

S1 Table. Experimental parameters of thermolysin ITC measurements.

(PDF)

S1 Fig. Representative differential power and integrated heat. From top to bottom: Mg(II):

EDTA, ligand 1:thermolysin, ligand 2:thermolysin and ligand 3:thermolysin.

(PDF)

S2 Fig. Convergence of 95% credible intervals for ligand 1:thermolysin. 5000 MCMC sam-

ples were generated from the Bayesian posterior (General model) for several variables based

on one ITC dataset. For five independent repetitions of the MC simulations, the black lines are

running estimates, as the number of samples is increased, of the upper and lower limits of 95%

BCIs. The red line and error bars are the average and standard deviation across the five inde-

pendent simulations.

(PDF)

S3 Fig. Convergence of 95% credible intervals for ligand 2:thermolysin. 5000 MCMC sam-

ples were generated from the Bayesian posterior (General model) for several variables based

on one ITC dataset. For five independent repetitions of the MC simulations, the black lines are

running estimates, as the number of samples is increased, of the upper and lower limits of 95%

BCIs. The red line and error bars are the average and standard deviation across the five inde-

pendent simulations.

(PDF)

S4 Fig. Convergence of 95% credible intervals for ligand 3:thermolysin. 5000 MCMC sam-

ples were generated from the Bayesian posterior (General model) for several variables based

on one ITC dataset. For five independent repetitions of the MC simulations, the black lines are

running estimates, as the number of samples is increased, of the upper and lower limits of 95%

BCIs. The red line and error bars are the average and standard deviation across the five inde-

pendent simulations.

(PDF)

S5 Fig. Convergence of 95% credible intervals for CBS:CAII. 5000 MCMC samples

were generated from the Bayesian posterior (General model) for several variables based on

one ITC dataset for binding of CBS to CAII digitized from the ABRF MIRG’02 paper [23].

For five independent repetitions of the MC simulations, the black lines are running estimates,

as the number of samples is increased, of the upper and lower limits of 95% BCIs. The red
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line and error bars are the average and standard deviation across the five independent simula-

tions.

(PDF)

S6 Fig. Fifty simulated heat curves. Parameters for the curves are in the Experimental section

of the main text.

(PDF)

S7 Fig. Uncertainty estimates from Bayesian (Comparison model) and nonlinear least

squares analyses of Mg(II):EDTA ITC replicates. 95% credible intervals estimated from

Bayesian analysis (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying magnesium binding to EDTA. The vertical green lines are the median.

There are two median estimates for R because the experiments were done at two different con-

centrations. Red bars denote the standard deviations of the lower and upper bounds, estimated

by bootstrapping, and are a total of two standard deviations wide.

(PDF)

S8 Fig. Uncertainty estimates from Bayesian (General model) and nonlinear least squares

analyses of ligand 1:thermolysin ITC replicates. 95% credible intervals estimated from the

Bayesian posterior (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying ligand 1 binding to thermolysin. The vertical green lines are the median.

Red bars denote the standard deviations of the lower and upper bounds, estimated by boot-

strapping, and are a total of two standard deviations wide.

(PDF)

S9 Fig. Uncertainty estimates from Bayesian (Flat [R]0 model) and nonlinear least squares

analyses of ligand 1:thermolysin ITC replicates. 95% credible intervals estimated from the

Bayesian posterior (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying ligand 1 binding to thermolysin. The vertical green lines are the median.

Red bars denote the standard deviations of the lower and upper bounds, estimated by boot-

strapping, and are a total of two standard deviations wide.

(PDF)

S10 Fig. Uncertainty estimates from Bayesian (Comparison model) and nonlinear least

squares analyses of ligand 1:thermolysin ITC replicates. 95% credible intervals estimated

from the Bayesian posterior (left) and confidence intervals from nonlinear least squares (right)

for parameters specifying ligand 1 binding to thermolysin. The vertical green lines are the

median. Red bars denote the standard deviations of the lower and upper bounds, estimated by

bootstrapping, and are a total of two standard deviations wide.

(PDF)

S11 Fig. Uncertainty estimates from Bayesian (General model) and nonlinear least squares

analyses of ligand 2:thermolysin ITC replicates. 95% credible intervals estimated from the

Bayesian posterior (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying ligand 2 binding to thermolysin. The vertical green lines are the median.

Red bars denote the standard deviations of the lower and upper bounds, estimated by boot-

strapping, and are a total of two standard deviations wide.

(PDF)

S12 Fig. Uncertainty estimates from Bayesian (Flat [R]0)and nonlinear least squares analy-

ses of ligand 2:thermolysin ITC replicates. 95% credible intervals estimated from the Bayes-

ian posterior (left) and confidence intervals from nonlinear least squares (right) for
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parameters specifying ligand 2 binding to thermolysin. The vertical green lines are the median.

Red bars denote the standard deviations of the lower and upper bounds, estimated by boot-

strapping, and are a total of two standard deviations wide.

(PDF)

S13 Fig. Uncertainty estimates from Bayesian (Comparison model) and nonlinear least

squares analyses of ligand 2:thermolysin ITC replicates. 95% credible intervals estimated

from the Bayesian posterior (left) and confidence intervals from nonlinear least squares (right)

for parameters specifying ligand 2 binding to thermolysin. The vertical green lines are the

median. Red bars denote the standard deviations of the lower and upper bounds, estimated by

bootstrapping, and are a total of two standard deviations wide.

(PDF)

S14 Fig. Uncertainty estimates from Bayesian (General model) and nonlinear least squares

analyses of ligand 3:thermolysin ITC replicates. 95% credible intervals estimated from the

Bayesian posterior (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying ligand 3 binding to thermolysin. The vertical green lines are the median.

Red bars denote the standard deviations of the lower and upper bounds, estimated by boot-

strapping, and are a total of two standard deviations wide.

(PDF)

S15 Fig. Uncertainty estimates from Bayesian (Flat [R]0 model) and nonlinear least squares

analyses of ligand 3:thermolysin ITC replicates. 95% credible intervals estimated from the

Bayesian posterior (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying ligand 3 binding to thermolysin. The vertical green lines are the median.

Red bars denote the standard deviations of the lower and upper bounds, estimated by boot-

strapping, and are a total of two standard deviations wide.

(PDF)

S16 Fig. Uncertainty estimates from Bayesian (Comparison model) and nonlinear least

squares analyses of ligand 3:thermolysin ITC replicates. 95% credible intervals estimated

from the Bayesian posterior (left) and confidence intervals from nonlinear least squares (right)

for parameters specifying ligand 3 binding to thermolysin. The vertical green lines are the

median. Red bars denote the standard deviations of the lower and upper bounds, estimated by

bootstrapping, and are a total of two standard deviations wide.

(PDF)

S17 Fig. Uncertainty estimates from Bayesian (General model) and nonlinear least squares

analyses of CBS:CAII ITC replicates. 95% credible intervals estimated from the Bayesian

posterior (left) and confidence intervals from nonlinear least squares (right) for parameters

specifying CBS binding to CAII. The vertical green lines are the median. Note that each experi-

ment was done at different concentration. Red bars denote the standard deviations of the

lower and upper bounds, estimated by bootstrapping, and are a total of two standard devia-

tions wide.

(PDF)

S18 Fig. Uncertainty estimates from Bayesian (Comparison model) and nonlinear least

squares analyses of CBS:CAII ITC replicates. 95% credible intervals estimated from the

Bayesian analysis (left) and confidence intervals from nonlinear least squares (right) for

parameters specifying CBS binding to CAII. The vertical green lines are the median. Note that

each experiment was done at different concentration. Red bars denote the standard deviations
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of the lower and upper bounds, estimated by bootstrapping, and are a total of two standard

deviations wide.

(PDF)

S19 Fig. Uncertainty validation for Bayesian and nonlinear least squares analyses of ligand

1:thermolysin data. For the ligand 1:thermolysin experiments, the predicted versus observed

rate (%) in which intervals contain the median value for binding parameters is shown. Inter-

vals were BCIs based on the General (blue leftward triangles), Flat [R]0 (black squares), and

Comparison (green rightward triangles) models or nonlinear least squares confidence intervals

(red circles). Error bars are standard deviations based on bootstrapping.

(PDF)

S20 Fig. Uncertainty validation for Bayesian and nonlinear least squares analyses of ligand

2:thermolysin data. For the ligand 2:thermolysin experiments, the predicted versus observed

rate (%) in which intervals contain the median value for binding parameters is shown. Inter-

vals were BCIs based on the General (blue leftward triangles), Flat [R]0 (black squares), and

Comparison (green rightward triangles) models or nonlinear least squares confidence intervals

(red circles). Error bars are standard deviations based on bootstrapping.

(PDF)

S21 Fig. Uncertainty validation for Bayesian and nonlinear least squares analyses of ligand

3:thermolysin data. For the ligand 3:thermolysin experiments, the predicted versus observed

rate (%) in which intervals contain the median value for binding parameters is shown. Inter-

vals were BCIs based on the General (blue leftward triangles), Flat [R]0 (black squares), and

Comparison (green rightward triangles) models or nonlinear least squares confidence intervals

(red circles). Error bars are standard deviations based on bootstrapping.

(PDF)

S22 Fig. Uncertainty validation for Bayesian and nonlinear least squares analyses of CBS:

CAII data. For the CBS:CAII experiments, the predicted versus observed rate (%) in which

intervals contain the median value for binding parameters is shown. Intervals were BCIs based

on the General (blue leftward triangles), Flat [R]0 (black squares), and Comparison (green

rightward triangles) models or nonlinear least squares confidence intervals (red circles). Error

bars are standard deviations based on bootstrapping.

(PDF)

S23 Fig. Logarithm of Kullback-Leibler divergence between posterior marginal distribu-

tions based on the General model (top) and flat [R]0 model (middle), and between Gauss-

ian distributions of nonlinear least squares errors (bottom). Each column and row

corresponds to one of the 10 datasets of ligand 1:thermolysin binding. The diagonal elements

should be ln0 = −1 but were set to 1 for visualization.

(PDF)

S24 Fig. Logarithm of Kullback-Leibler divergence between posterior marginal distribu-

tions based on the General model (top) and flat [R]0 model (middle), and between Gauss-

ian distributions of nonlinear least squares errors (bottom). Each column and row

corresponds to one of the 11 datasets of ligand 2:thermolysin binding. The diagonal elements

should be ln0 = −1 but were set to 1 for visualization.

(PDF)

S25 Fig. Logarithm of Kullback-Leibler divergence between posterior marginal distribu-

tions based on the General model (top) and flat [R]0 model (middle), and between
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Gaussian distributions of nonlinear least squares errors (bottom). Each column and row

corresponds to one of the 11 datasets of ligand 3:thermolysin binding. The diagonal elements

should be ln0 = −1 but were set to 1 for visualization.

(PDF)

S26 Fig. Logarithm of Kullback-Leibler divergence between posterior marginal distribu-

tions based on the General model (top) and flat [R]0 model (middle), and between Gauss-

ian distributions of nonlinear least squares errors (bottom). Each column and row

corresponds to one of the 10 datasets of CBS:CAII binding. The diagonal elements should be

ln0 = −1 but were set to 1 for visualization.

(PDF)
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Software: Trung Hai Nguyen, Ariën S. Rustenburg, John D. Clark, John D. Chodera.

Supervision: Vijay S. Pande, John D. Chodera, David D. L. Minh.

Visualization: Trung Hai Nguyen, Hexi Zhang.

Writing – original draft: Trung Hai Nguyen, Stefan G. Krimmer.
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