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ABSTRACT

The extracellular matrix (ECM) is a complex and
dynamic meshwork of cross-linked proteins that
supports cell polarization and functions and tis-
sue organization and homeostasis. Over the past
few decades, mass-spectrometry-based proteomics
has emerged as the method of choice to char-
acterize the composition of the ECM of normal
and diseased tissues. Here, we present a new re-
lease of MatrisomeDB, a searchable collection of
curated proteomic data from 17 studies on the
ECM of 15 different normal tissue types, six can-
cer types (different grades of breast cancers, col-
orectal cancer, melanoma, and insulinoma) and other
diseases including vascular defects and lung and
liver fibroses. MatrisomeDB (http://www.pepchem.
org/matrisomedb) was built by retrieving raw mass
spectrometry data files and reprocessing them us-
ing the same search parameters and criteria to al-
low for a more direct comparison between the dif-
ferent studies. The present release of MatrisomeDB
includes 847 human and 791 mouse ECM proteo-
forms and over 350 000 human and 600 000 mouse
ECM-derived peptide-to-spectrum matches. For each
query, a hierarchically-clustered tissue distribution
map, a peptide coverage map, and a list of post-
translational modifications identified, are generated.
MatrisomeDB is the most complete collection of ECM
proteomic data to date and allows the building of a
comprehensive ECM atlas.

INTRODUCTION

The extracellular matrix (ECM), a complex and dynamic
meshwork of cross-linked proteins, is a fundamental com-
ponent of multicellular organisms (1). The ECM provides
architectural, mechanical, and biochemical signals, inter-
preted by cell-surface receptors and controlling cellular pro-

cesses fundamental to development and homeostasis such
as adhesion, migration, survival and differentiation (2,3).
Alterations in the composition and organization of the
ECM cause or accompany the development of diseases such
as fibrosis, cardio-vascular and musculoskeletal diseases,
and cancers (4–6).

Because of its complexity and insolubility, the ECM has
been difficult to analyze biochemically and, until recently,
we did not have a detailed understanding of its composi-
tion and changes therein. We and others have contributed to
pioneer the development of proteomic and computational
approaches to characterize the ECM composition––or
matrisome––of normal and diseased tissues (7–13). Using
an in-silico screen, we previously defined the matrisome as
the ensemble of genes encoding core ECM proteins (in-
cluding glycoproteins, collagens, and proteoglycans) and
ECM-associated proteins (including ECM-affiliated pro-
teins, ECM regulators, and secreted factors known or sus-
pected to bind core ECM proteins) (7,10). The in-silico def-
inition of the matrisome has offered a powerful way to an-
notate ECM genes and proteins in large datasets, includ-
ing proteomic datasets. Indeed, over the past few years,
mass spectrometry has emerged as the method of choice to
characterize experimentally the ECM composition of tis-
sues (14–16) and has been shown to offer novel transla-
tional avenues from biomarker to novel therapeutic target
discovery (17–20). We and others have shown that any given
tissue comprises well over 150 ECM and ECM-associated
proteins and that there are characteristic differences in the
ECM composition of different tissues (14,15). In 2016, we
released a first version of MatrisomeDB (14), a database in-
tegrating experimental data on the proteomic characteriza-
tion of the ECM of eight normal tissues and three tumor
types from five studies (7,21–24). Since our original pub-
lications, the scientific community has adopted and built
upon our methods and tools and the number of publications
reporting matrisome analyses has significantly increased.
This prompted us to develop an updated version of Matri-
someDB presented here, that features added functionalities
and integrates data from 17 published studies.
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DATABASE INFRASTRUCTURE

Data sets included

We curated the recent ECM proteomics literature (15) and
identified 17 studies reporting the characterization of the
ECM protein composition of normal and diseased tissues
for which the underlying mass spectrometry data were pub-
licly available (7,9,21–35) (Table 1 and Supplementary Ta-
ble S1). Altogether, these studies include datasets on the
ECM of 15 tissue types including normal murine or hu-
man tissues, six cancer types (different grades or stages of
primary breast, colorectal and lung cancers, melanomas,
or insulinomas, and metastases), other diseases, including
vascular defects such as carotid plaques and varicose veins,
and lung and liver fibroses (Table 1 and Supplementary Ta-
ble S1, columns G-I). We have also integrated data on the
ECM made by cells in culture (29,34), which is of increased
interest to the bioengineering community for the purposes
of designing more relevant in-vitro cell culture systems and
of tissue regeneration (36,37). The deposition of proteomic
data to public repositories, such as MassIVE, PRIDE (38)
or any members of the ProteomeXchange consortium (39),
is now strongly encouraged if not required. We were thus
able to retrieve and curate over 2000 raw files deposited
to public repositories or personally shared with us (Sup-
plementary Table S1, columns A–C). Of note, all 17 stud-
ies were selected because they specifically focused on the
analysis of the ECM compartment of the tissues studied
and thus, all include a step aimed at enriching ECM pro-
teins through decellularization (15). However, these studies
vary in their experimental design, some having been per-
formed using label-free and other label-based quantitative
proteomics (reviewed in 15), some having been performed
with various levels of protein and peptide fractionations,
and all having been acquired on different instruments. De-
spite this heterogeneity, the compilation of the data in Ma-
trisomeDB represents, to date, the largest aggregation of
ECM proteomic datasets and, we believe, will be valuable
to the scientific community.

Mass spectrometry data search and processing

All raw data files were converted and searched using uni-
form parameters and against the same and most recent
reference proteome database (UniProt 04/17/2019) (40).
The reference databases used contain 95 943 human pro-
teoforms and 62 407 mouse proteoforms. 572 common
contaminating proteins were also appended to the refer-
ence database. The raw data were searched by the Pro-
luCID search engine (41) using an open-database search
strategy (42). Specifically, here, we allowed for each study
a set of corresponding fixed post-translational modifica-
tions (PTMs), e.g. carbamidomethylation, TMT labeling,
iTRAQ labeling, and performed an open database search
(42) that includes acetylation, methylation, deamidation. In
addition, we included a set of PTMs of structural and func-
tional importance in ECM proteins (43,44), including ser-
ine, threonine and tyrosine phosphorylation (45,46), pro-
line hydroxylation (47,48), and citrullination (49,50) (Fig-
ure 2B). High-mass-tolerant open database search with +/-
500 Da precursor tolerance allowed us to not only iden-

tify the abovementioned PTMs but also unknown or un-
suspected PTMs which are reported as mass shift such as
(+28.99). The search results were then filtered with 1% pro-
tein false discovery rate (FDR) using DTASelect (51). Im-
portantly, by using the same reference databases, uniform
search parameters, and FDR-filter level, search results can
now be compared among different studies, tissues, and dis-
ease states. The search results were further annotated with
corresponding original data source and repository location
(Supplementary Table S1, columns A-E), tissue classifica-
tion, disease state, and sample type (Supplementary Table
S1, columns F-I), matrisome classification (7,10), and con-
fidence score (see below). Last, the data were deposited into
a MySQL database and can be searched directly from our
web interface. Of note, our pipeline allows us to update the
protein reference databases as new versions are released as
well as include new datasets as they become available (see
Future directions).

DATABASE FEATURES AND FUNCTIONALITIES

MatrisomeDB query

To better assist the community with the use of the database,
we have developed an intuitive interface available at http:
//www.pepchem.org/matrisomedb, which allows users to
search, visualize and analyze the data. Search can be per-
formed by inputting a gene name or a string of gene names
separated by commas directly in the search box (see online
Tutorial). Users can also select from different option boxes,
specific matrisome categories, a specific organism, and/or
one or several tissues, and retrieve all matrisome proteins
meeting the selected search parameters. Search results are
displayed in a table with the following columns: (i) gene
symbol, the clickable link takes users to the GeneCards page
(52) of that entry; (ii) UniProt identifier, the clickable link
takes users to the UniProt page (40) of that entry; (iii) pro-
tein description, the clickable link displays peptide coverage
maps (see below); (iv) a description of the samples and tis-
sues in which the entry was detected as well as a reference
to the primary research publications reporting the identifi-
cation. The result table can be exported as .csv file (Figure
1, orange arrow). To facilitate the interrogation of Matri-
someDB, we provide a step-by-step tutorial accessible from
the home page of MatrisomeDB. This tutorial will guide
users to exploit MatrisomeDB to advance their research.

Hierarchically-clustered protein distribution heatmap

Query of MatrisomeDB generates a clustered heatmap of
the tissue distribution of all the proteins retrieved from each
database query (Figure 1) based on a confidence score cal-
culated as described below. The proteins and tissues are
clustered using unbiased hierarchical clustering based on
the Euclidean distance. Each tissue annotation is color-
coded based on the organ system it is a part of (Supplemen-
tary Table S1, columns G and H). The colors of the heatmap
are based on a confidence score of all peptide-to-spectrum
matches (PSMs), defined as:

con f idence score =
n∑

i = 1

PSMi xcorr

http://www.pepchem.org/matrisomedb
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Table 1. List of datasets included in MatrisomeDB (adapted from (15))

Tissue type Dataset identifier Reference

Human triple-negative breast cancer samples and matched adjacent mammary gland
samples; Human normal omental samples from patients with non-metastatic ovarian
cancer and high-grade-serous-ovarian-cancer-derived omental metastasis samples

PXD005554 Naba et al. (9)

Human normal colon and normal liver; primary colorectal tumors and liver metastases MSV000078555 Naba et al. (22)
Human kidney glomeruli PXD000456 Lennon et al. (23)
Human eye: retinal blood vessel, inner limiting membrane, and lens capsule basement
membranes

PXD001025 Uechi et al. (24)

Human normal liver and fibrotic and cirrhotic livers from hepatitis C (HCV) patients Personal
communication

Baiocchini et
al. (25)

Human normal and varicose saphenous veins PXD002555 Barallobre-
Barreiro et
al. (26)

Human symptomatic and asymptomatic atherosclerotic plaque samples PXD005130 Langley et al. (29)
Human patent and craniosynostotic cranial sutures PXD003215 Lyon et al. (30)
Human prostate and ECM produced by normal and tumor-associated prostate
fibroblasts

PXD006562;
PXD006563

Ojalill et al. (34)

Primary lung adenocarcinoma and lymph node metastases from KrasG12D; p53−/−
mice

PXD003517 Gocheva et al. (27)

Murine liver fibrosis induced by carbon tetrachloride (CCl4) or diethoxycarbonyl
dihydrocollidine (DCC)

Personal
communication

Klaas et al. (28)

Murine liver fibrosis induced by carbon tetrachloride (CCl4); livery injury induced by
ethanol or LPS

PXD006521 Massey et al. (31)

Murine normal mammary gland, lung, and lymph node tissues; primary mammary
tumors (4T1 cells) and derived lung and lymph node metastases

PXD006579 Mayorca-Guiliani
et al. (32)

Murine pancreatic islets and insulinomas from RIP1-Tag2 mice MSV000080124 Naba et al. (33)
Murine normal lung and bleomycin-induced lung fibrosis PXD001765 Schiller et al. (35)
Xenografts: Poorly (A375 cells) and highly (MA2 cells) metastatic human melanomas
grown in mice

MSV000078494 Naba et al. (7)

Xenografts: Poorly (MDA-MB-231 cells) and highly (MDA-MB-231 LM2 cells)
metastatic human mammary tumors grown in mice

MSV000078535 Naba et al. (21)

Colorcode = log
n∑

i=1

PSMi xcorr = log (con f idence score)

From this clustered heatmap, users can visualize the dis-
tribution of a given protein or group of proteins across tis-
sues and across studies (see examples Figure 1). Clicking on
the heatmap will take users to a detailed view of the heatmap
from where they can download the values used to build the
heatmap as a .csv file. On this detailed view page, users can
also access a second heatmap built using the total ion cur-
rent (TIC), calculated as the sum of raw MS1 signal intensi-
ties of all identified peptides corresponding to a given pro-
tein. In order to build the TIC-based heatmap, natural log-
arithms of TIC were summed and clustered by tissue and
protein name. Note that whereas the confidence score can
be used to compare proteins detected across different stud-
ies, we do not recommend the use of the TIC values to do so,
since they are dependent on the instrument on which data
were acquired and the quality of the samples, and this varies
from study to study.

Peptide coverage map

A peptide coverage map can be viewed by clicking on the
‘protein description’ returned by the search engine. It is pro-
vided for each identified protein isoforms and shows the se-
quence and percent coverage for each sample (Figure 2A)
as well as across all tissues (Figure 2B). The colors of the
highlighted part of the sequence corresponds to the total
number of identified PSMs, which can be used in the fu-

ture to design selected reaction monitoring (SRM) experi-
ments (53–55). The map also highlights the following post-
translational modifications detected experimentally: lysine
and proline hydroxylations; phosphorylation of serine, thre-
onine and citrullination (Figure 2), which play significant
roles in the proper folding and function of ECM proteins
(see Introduction).

RESULTS

MatrisomeDB includes 847 human and 791 mouse matri-
some proteoforms and 368 877 human and 638 221 mouse
matrisome-protein-derived peptide-to-spectrum matches,
detected across 15 different normal murine or human tis-
sues, six cancer types including different grades or stages
of primary breast, colorectal and lung cancers, melanomas,
and insulinomas and metastases, normal and diseased vas-
cular tissues such as carotid plaques and varicose veins, and
human and murine samples of lung and liver fibroses.

Experimental coverage of the in-silico predicted matrisome

Using characteristic features of ECM proteins, we previ-
ously predicted computationally the matrisome, e.g. the en-
semble of 1000+ genes encoding core structural ECM pro-
teins and ECM-associated proteins (7,10). In the initial ver-
sion of MatrisomeDB, we reported the experimental iden-
tification of ∼73% of the core matrisome components (in-
cluding 100% of the collagens) and 45% of the matrisome-
associated components (14). Analysis of the data aggre-
gated in the new release of MatrisomeDB revealed a sig-
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Figure 1. Examples of database query result showing hierarchically-clustered protein distribution heatmaps. (A) Confidence-score-based heatmap gener-
ated upon querying ‘COL4’ and selecting ‘HUMAN’ in the Species option box. Results show the tissue distribution of the 6 collagen-IV protein chains
encoded by the COL4A1, COL4A2, COL4A3, COL4A4, COL4A5 and COL4A6 genes. The color code indicates the confidence score from high (dark
blue) to low (light yellow). Clicking on the heatmap itself or on the link located above the heatmap (red arrow) will open a detailed heatmap and a link to
download the data in .csv format. The ‘Export result as CSV’ button (orange arrow) allows users to download the complete results. (B) Total-Ion-Current-
based heatmap generated upon querying ‘COL4’ and selecting ‘HUMAN’ in the Species option box, and accessible from the detailed heatmap page. The
color code indicates the confidence score from high (dark blue) to low (light yellow).
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Figure 2. Peptide coverage map. (A) Peptide coverage map of Nidogen 1 in the glomerular basement membrane dataset. The color code indicates the
peptide-spectrum match frequency from high (dark blue) to low (light blue). (B) Peptide coverage map of Nidogen 1 across all the datasets (11 tissues and
31 sample types) in which Nidogen 1 was detected. The color code indicates the peptide-spectrum match frequency from high (dark blue) to low (light
blue).

nificantly higher percentage coverage of the in-silico pre-
dicted matrisome. Namely, 86% of the core matrisome com-
ponents and 58% of the matrisome-associated components
have now been detected experimentally by ECM-focused
proteomics strategies (Figure 3A). This increase benefited
all matrisome categories, since the data included in the
database permitted the identification of 161 of the 195 pre-
dicted ECM glycoproteins, all 44 collagens, 30 of the 35

predicted proteoglycans, 101 of the 171 predicted ECM-
affiliated proteins, 173 or the 238 predicted ECM regulators,
and 160 of the 344 predicted secreted factors (Figure 3A).
This increase can be attributed in part to the larger num-
ber of tissues included in the database, since, certain ECM
components are known to present a tissue-specific expres-
sion pattern. It can also be attributed to the fact that pro-
tein samples of different solubility were included in this new
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A Experimental coverage of the in-silico-predicted matrisome

0

10

20

30

40

50

60

70

80

90

100

161

44

30

101

173

160

(+16%)
(+29%)

(+11%)

(+10%)

(+23%)

%
 c

ov
er

ag
e 

of
 t

he
 in

-s
ili

co
 m

at
ri

so
m

e
# 

of
 p

ro
te

in
s 

is
 in

di
ca

te
d 

in
 b

ar
s

B Heatmap of all 30 proteoglycans detected based on confidence score 

0 2 4 6 8 10

Figure 3. Building an ECM Atlas. (A) Experimental coverage of the in-silico predicted matrisome. Bar chart represents, for each matrisome category (x
axis), the percentage of the in-silico predicted genes encoding proteins detected in the proteomic studies included in MatrisomeDB (y axis). The actual
number of proteins detected is indicated inside the bars. The percentages indicated above the bar chart indicate the increase in coverage with the updated
database. (B) Hierarchically-clustered tissue distribution heatmap of all 30 proteoglycans detected and reported in MatrisomeDB. The color code indicates
the confidence score from high (dark blue) to low (light yellow).

release of the database (Supplementary Table S1), which
could explain the 23% increase in the detection of secreted
factors which are more soluble in nature and smaller in size,
so generate fewer peptides.

Building an ECM atlas

The interrogation of MatrisomeDB by selecting an entire
matrisome category, for example the proteoglycans, results
in the generation of a hierarchically-clustered tissue distri-
bution heatmap of all 30 proteoglycans detected and thus

can constitute the Proteoglycan atlas (Figure 3B). Similarly,
the ECM atlas of any of the tissues or any of the organisms
included in this database can be generated.

FUTURE DIRECTIONS

Future data extension

When we designed MatrisomeDB, we specifically made
it expandable to easily allow the inclusion of new
datasets. The entire processing pipeline, including reference
databases and all required software, are encapsulated in a
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Docker container. This ensures that, in the future, as we add
new datasets, we can process them with the same pipeline
and get comparable results. This also ensures maximum
data reproducibility. With each future upgrade of Matri-
someDB, we will construct new Docker containers and re-
process all the data to ensure data integrity. Researchers in-
terested in submitting their datasets for consideration for in-
clusion in an upcoming release of MatrisomeDB can do so
via the ‘Submit your data’ tab at the top of MatrisomeDB’s
home page.

Extension to include studies from other model organisms

Over the past couple of years, we and others have de-
fined the matrisome of model organisms broadly used to
study ECM-related mechanisms and diseases, namely the
zebrafish (56), C. elegans (57), Drosophila (58) and planari-
ans (59). Mass-spectrometry-based proteomics is also start-
ing to emerge as a powerful method to study the ECM
of these organisms and we can foresee including in Matri-
someDB such datasets in the future.

Extracting quantitative data from label-free and label-based
proteomics studies

Label-free proteomics has traditionally used total intensity
and spectral counts to quantify the relative abundance of
proteins. In the future, we propose to include in the database
the summed precursor-ion chromatographic peak area of
all peptides contributing to a given protein. However, this
poses the question of data normalization since the datasets
were generated on different instruments, which will need to
be resolved before implementation. Label-based quantita-
tive proteomics is also now being employed to study in more
details the abundance of ECM proteins tissues (reviewed in
12). Although, we included here two datasets generated us-
ing TMT- or iTRAQ-based proteomics (27,33), we did not
fully exploit the sample-specific quantitative information of
the multiplexed data beyond deriving a confidence score for
the PSMs of these two studies. In the future, we will aim to
deconvolute multiplexed label-based ECM proteomic stud-
ies. One way we will be able to do so is to exploit both MS1
and MS2 data and split the MS1 precursor ion abundance
(combined from samples mixed) in proportion to the MS2
reporter ion abundance (individual for each sample).

Citing MatrisomeDB

For a general citation of MatrisomeDB, researchers should
cite this article. In addition, the following citation format
is suggested when referring to specific data obtained from
MatrisomeDB: http://www.pepchem.org/matrisomedb.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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