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Séverine Vermeire2,3, Bram Verstockt2,3 and Tim Vanuytsel2,3*

1 Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke
Universiteit Leuven, Leuven, Belgium, 2 Department of Chronic Diseases and Metabolism, Translational Research Center for
Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium, 3 Department of Gastroenterology and
Hepatology, University Hospitals Leuven, Leuven, Belgium, 4 Department of General Internal Medicine, Allergy and Clinical
Immunology, University Hospitals Leuven, Leuven, Belgium

Eosinophils are leukocytes which reside in the gastrointestinal tract under homeostatic
conditions, except for the esophagus which is normally devoid of eosinophils. Research
on eosinophils has primarily focused on anti-helminth responses and type 2 immune
disorders. In contrast, the search for a role of eosinophils in chronic intestinal inflammation
and fibrosis has been limited. With a shift in research focus from adaptive to innate
immunity and the fact that the eosinophilic granules are filled with inflammatory mediators,
eosinophils are becoming a point of interest in inflammatory bowel diseases. In the current
review we summarize eosinophil characteristics and recruitment as well as the current
knowledge on presence, inflammatory and pro-fibrotic functions of eosinophils in
inflammatory bowel disease and other chronic inflammatory conditions, and we identify
research gaps which should be covered in the future.
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1 INTRODUCTION

Inflammatory bowel diseases (IBD), further subdivided into Crohn’s disease (CD) and ulcerative
colitis (UC), are idiopathic, heterogeneous disorders characterized by a relapsing and remitting
disease course (1). Both disorders are believed to result from an inappropriate immune response
towards the intestinal microbiota in genetically predisposed patients (1). Although certain genetic
risk factors, e.g. polymorphisms in nucleotide-binding oligomerization domain-containing 2 (NOD-2)
and autophagy related protein like 1 (ATGL1) have been identified, the exact pathogenesis remains
elusive (1, 2).
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An excessive immune reaction occurs in response to a loss of
the epithelial barrier integrity and damage to tissues, thereby
further leading to inflammation (3, 4). This repetitive
inflammatory response in IBD patients is considered to
contribute to the development of excessive extracellular matrix
(ECM) deposition resulting in intestinal fibrosis, especially in
CD, due to its transmural character. Stricture formation through
fibrosis resulting in complications like intestinal obstruction is
the most common indication for surgery in CD patients (5).

Intestinal fibrosis manifests itself only in previously or
actively inflamed regions of the gastrointestinal (GI) tract,
indicating that inflammation is a sine qua non condition to
develop fibrosis (6, 7). Hence, research primarily focused on the
inflammatory process, but not on the resulting fibrosis.
Repetitive inflammatory injury to the intestine can result in the
release of growth factors, thereby stimulating fibroblast
proliferation and the differentiation from fibroblasts to
myofibroblasts which will ultimately result in excessive
deposition of ECM (8). However, the characterization of the
key immune cells and their mediators involved in gut
fibrogenesis awaits further investigation.

Most studies on the pathogenesis of inflammatory disorders
have focused on excessive adaptive immune responses, although
recently the focus has shifted to innate immunity (9). In this
context, the search for a potential role for involvement of
eosinophils in inflammation and fibrosis recently became
relevant again (10, 11). Already several decades ago, eosinophils
were identified as important contributing cells to the immune cell
infiltration in IBD, e.g. with the inclusion of eosinophil infiltration
in the lamina propria in the Geboes histological score for UC (12,
13). Furthermore, eosinophilia-associated basal plasmacytosis is
considered a hallmark in early diagnosis of IBD and strongly
correlated with histological diagnosis (14). Additionally,
important eosinophil infiltration in the lamina propria of
colonic biopsies in UC patients was previously demonstrated to
be the most significant predictor of poor response to medical
therapy (15). Moreover, the extensive presence of pre-formed
mediators in the eosinophilic granules, known to be involved in
inflammation or fibrosis, makes these innate immune cells
particularly interesting in the context of fibrostenosis in IBD
and in the search of novel treatment targets (9). Although
several reports already suggested the eosinophilic granulocytes
to be associated with increased levels of inflammation and fibrosis
development, a causal role or mechanism has not yet emerged.

In the current review we summarize eosinophil characteristics
and recruitment as well as the current knowledge on presence,
inflammatory and pro-fibrotic function of eosinophils in IBD
and other chronic inflammatory conditions, and we identify
research gaps which should be covered in the future.
2 GASTROINTESTINAL EOSINOPHILS

2.1 General Characteristics
Eosinophils are leukocytes that reside in the lamina propria of the
gastrointestinal (GI) tract (16, 17). They are normal resident
immune cells in the entire GI tract, with exception of the
Frontiers in Immunology | www.frontiersin.org 2
esophagus, where eosinophils are only present under
inflammatory conditions such as gastro-esophageal reflux
disease and eosinophilic esophagitis (18). Under the influence of
interleukin (IL)-3, IL-5 and granulocyte-macrophage colony
stimulating factor (GM-CSF), accompanied with a decrease in
transcription factor FOG-1 and increased presence of the
transcription factors GATA-1, ID2 and XBP1, eosinophils
differentiate from pluripotent hematopoietic stem cells in the
bone marrow to mature eosinophils (Figure 1A) (19–22). In
response to IL-5, eosinophils are released into the peripheral
circulation (Figure 1B), after which they can migrate to the GI
tract after binding of chemoattractant molecules, in particular C-C
motif ligand 11 (CCL11, eotaxin-1), CCL24 (eotaxin-2), CCL26
(eotaxin-3), CCL5 [Regulated upon activation, normal T cell
expressed and secreted (RANTES)], CCL7 [Monocyte
chemoattractant protein-3 (MCP-3)] and CCL13 (MCP-4), to
their C-C chemokine receptors (CCR) (CCR1, CCR3 and CCR4)
(Figure 1C) (23). The activation of these receptors triggers both
eosinophil recruitment and activation, and thereby induces the
production of several cytokines [IL-4, IL-5, IL-13, interferon-
gamma (IFN-g) etc.] and chemokines (CCL3, CCL5, CCL11
etc.) (20). Upon stimulation with cytokines, e.g. IL-4, IL-5 and
IL-13, eosinophils will become activated (Figure 1D) (24).
Eosinophil activation causes degranulation, possibly resulting in
damage to the tissue by the release of, amongst others, toxic
oxygen radicals, eosinophil cationic protein (ECP) and
transforming growth factor b (TGF-b) (11, 25). Eosinophil
degranulation therefore contributes to the inflammatory process,
in synergy with other inflammatory cells. Among those, the most
important ones are Th2 lymphocytes which express the CCR3
membrane receptor and cluster with eosinophils during
inflammation (26). It was long believed that eosinophils worked
purely as effector cells of the Th2 immune reaction. More recently
however, it was discovered eosinophils have their own
functionality while still being strongly intertwined with the Th2
lymphocytes (27). In this context, Th2 lymphocytes produce IL-4,
IL-5, IL-13 and eotaxins and thereby contribute to the activation
and recruitment of eosinophils (28). Eosinophils, on the other
hand, produce IL-4 and IL-5, thereby stimulating differentiation of
naïve Th0 to Th2 lymphocytes and stimulating Th2 lymphocytes
as well (28).

2.2 Eosinophil Recruitment
Eosinophil recruitment to the GI tract occurs during active
inflammation in IBD. In this process, chemoattractant
molecules bind to their receptors present on the eosinophil
membrane. Besides playing a pivotal role in eosinophil
recruitment, the chemoattractant molecules partly serve as
eosinophil activators as well (11). Below, we will provide an
overview of the known eosinophil chemotaxis pathways.

2.2.1 Eotaxin-1, -2 and -3 – CCR3 Axis
Eotaxin is a potent eosinophil chemoattractant, secreted by
eosinophils, macrophages, epithelial cells, mast cells, basophils,
Th2 lymphocytes and fibroblasts (29). Eotaxin-1 is believed to be
a pivotal chemotactic factor and is constitutively expressed in the
October 2021 | Volume 12 | Article 754413
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small intestine and colon (30–34). Besides its binding capacity to
CCR3, eotaxin-1 can furthermore bind to the receptors CCR2,
CCR5 and with high affinity to CXCR3, with the latter possibly
acting as a decoy receptor by sequestering eotaxin-1 (35, 36).
Eotaxin-1 was first established in a guinea-pig model of allergic
airway inflammation (37–39). Eotaxin-2 and -3 were later
discovered to carry similar functionality concerning eosinophil
recruitment (40, 41).

Colonic eotaxin-1,-2 and -3 and CCR3 mRNA expression
levels in IBD patients are significantly increased compared to
healthy controls (42). Furthermore, serum and tissue eotaxin-1
protein levels correlated with IBD disease severity and eosinophil
infiltration (16, 17). The crucial role of eotaxin-1 was confirmed
in eotaxin deficient mice, which showed impaired eosinophil
recruitment to the colon (42, 43).

Studies in eotaxin-1 deficient mice, however, revealed the
chemoattractant not to be essential for the development of
airway eosinophilia (44). Moreover, eotaxin-1 knockout mice
had only partial eosinophil depletion indicating other
chemokines might overcome this deficiency and eotaxin-1
alone is not sufficient to support eosinophil recruitment (45). It
is therefore believed that eotaxin-1 mediated eosinophil
recruitment is maintained by Th2 lymphocytes by generating
Frontiers in Immunology | www.frontiersin.org 3
IL-4 and IL-5, thereby serving as eosinophil growth and
stimulating factors (46).

2.2.2 RANTES, MCP-3 and MCP-4 Mediated
Chemotaxis
Besides binding eotaxin-1, 2 and 3, the chemoattractant receptor
CCR3 similarly binds RANTES, MCP-3 and MCP-4, resulting in
eosinophil chemotaxis (47–49).

Apart from being an eosinophilic chemoattractant, RANTES
is a chemotactic for T lymphocytes and basophils as well. The
chemokine plays an active role in leukocyte recruitment to
inflammatory sites and, together with IL-2 and IFN-gamma,
released by T-lymphocytes, it is also responsible for proliferation
and activation of natural killer (NK) cells (47). Other than
binding to the CCR3 receptor, RANTES also has a binding
affinity to CCR1 and CCR4 (48). Protein and mRNA levels of
RANTES were demonstrated to be elevated in both UC and CD
patients (49).

MCP-3 does not only attract eosinophils, but also functions as
a monocyte and neutrophil chemoattractant and regulates
macrophage functioning. Apart from binding to CCR3, MCP-3
can also bind to CCR1 (48). Increased MCP-3 expression has
been associated with inflammatory diseases, such as allergic
FIGURE 1 | Pluripotent hematopoeitic stem cells differentiate from the bone marrow to eosinophil progenitors in response to GM-CSF, IL-3, IL-5, a decrease in
transcription factor FOG-1 and increased presence of the transcription factors GATA-1, ID2 and XBP1 (A). Under the influence of IL-5 the eosinophil progenitor will
be released in the peripheral circulation and further develop into mature eosinophils in the blood (B). By the binding of the chemoattractants (eotaxin-1, eotaxin-2,
eotaxin-3, MCP-3, MCP-4 and RANTES) to the chemoattractant receptors (CCR1, CCR3 and CCR4) a chemoattractant gradient is created and the mature
eosinophils are recruited to the GI tract (C). The binding of the cytokines IL-4, IL-5 and IL-33, primarily produced by the Th2 cells and ILC2s, to their respective
receptor (IL-4R or CD124, IL-5R or CD125 and ST2) causes eosinophil activation and subsequent degranulation releasing TGF-ß, ECP, EPX, EDN and MBP. These
factors possibly influence fibroblast activation and differentiation from fibroblasts to myofibroblasts (D). This figure was created via biorender.com.
October 2021 | Volume 12 | Article 754413
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inflammation (50). In vivo, MCP-3 antibody mediated
neutralization in mouse lung derived endothelial cells resulted
in significantly decreased eosinophil accumulation, indicating
that MCP-3 is an important and potent chemotactic factor (51).

MCP-4 is a chemoattractant for several cells such as eosinophils,
basophils, monocytes, macrophages, immature dendritic cells and
T-lymphocytes (48). This chemokine is considered to play a pivotal
role in many chronic inflammatory diseases, including allergic
airway inflammation and rheumatoid arthritis, by recruiting
several cell types to the inflamed tissue followed by activation (52).

Because of the variety of chemoattractants, all with their unique
and common features, it is likely that eosinophil chemotaxis is not
induced by binding of a single chemoattractant to its receptor, but
rather a complex interplay ofmultiple of the factors described (48).
3 ROLEOF EOSINOPHILS IN INFLAMMATION

3.1 Eosinophil Activation
Upon stimulation, activated eosinophils will degranulate and
subsequently release their preformed granular content in the
environment. Several eosinophil activating mechanisms have
been described such as tissue damage, bacterial and viral
infections, the binding of cytokines (IL-4, IL-5, IL-13, IL-33, etc.)
and the binding of certain chemokines (eotaxin, RANTES, etc.) (53,
54). In humans, this eosinophil activation is characterized by an
upregulated expression of the surface markers CD44, CD11c,
CD11b and CD18. CD31 and CD162, however, are highly
expressed on inactive eosinophils, but become moderately
expressed upon activation. While CD25 and CD69 are not
present on quiescent eosinophils, they are, respectively, lowly and
highly expressed on activated eosinophils. Lastly, the surface
marker CD62L is moderately expressed on eosinophils and
becomes lowly expressed upon activation (Figure 2) (11, 55). As
eosinophil activation is strongly dependent on the cytokine milieu,
Frontiers in Immunology | www.frontiersin.org 4
these markers can help enlighten the not fully understood role of
eosinophils in intestinal inflammation (56).

3.1.1 IL-4
IL-4 is a cytokine that is mainly produced by basophils, mast cells,
T-lymphocytes, type 2 innate lymphoid cells (ILC2s), eosinophils
and neutrophils (57). This cytokine drives differentiation from naïve
Th0 to Th2 lymphocytes, which in turn will produce IL-4, thereby
creating a positive feedback loop, thereby further enhancing the
differentiation of Th2 lymphocytes (58). This pro-inflammatory
cytokine is also known to stimulate eosinophil transmigration
across the endothelium and the differentiation of Th2
lymphocytes, resulting in cytokine release (59, 60). By increasing
eotaxin expression, IL-4 also promotes eosinophil accumulation and
eosinophil chemotaxis (61). IL-4 has been linked to several
inflammatory disorders, such as asthma and allergic
inflammation. The role of IL-4 has already been investigated in
the pathogenesis of IBD, where it is suggested to play a pivotal role
in inflammation and immune response activation, mainly in UC
patients in whom increased expression has been shown (62).
Indeed, IL-4 deficiency can prevent the development of colitis in
IL-10 knock out mice, which spontaneously develop colitis (63).
Additionally, the dextran sodium sulphate (DSS) induced colitis and
T cell transfer model also suggest that IL-4 can promote colitis (64–
66). Recently, an IL-4/IL-13 dual antagonist was developed and
evaluated in a murine model of oxazolone-induced colitis, where it
showed to ameliorate overall disease activity (67, 68). IL-4 and IL-13
can also be targeted trough a shared receptor, comprising the IL-
4Ra and IL-13a1 chains (69). In this model, blocking IL-4 and IL-
13 ameliorated disease severity (70–72). Mice lacking IL-4Ra did
not develop disease in this model, further indicating a potential role
for IL-4 in the development of colitis and inflammation (73). In
contrast, IL-4 mRNA expression levels in CD patients’ intestinal
tissue were reduced, corresponding to lower numbers of IL-4
producing cells in mucosal biopsies (74).
FIGURE 2 | Upon contact with several cytokines (IL-4, IL-5, IL-13, IL-33, etc.), chemokines (eotaxin-1,2 and -3, RANTES etc.) and via tissue damage and bacterial
and viral infections, eosinophils will become activated. This activation is marked by an increased surface expression of CD18, CD44, CD11b and CD11c (moderate
to high expression). CD25 and CD69 are not present on inactive eosinophils, but are on active eosinophils (low and high expression respectively). CD162 and CD31
on the other hand are highly expressed on inactive eosinophils but only moderately on active eosinophils and CD62L is moderately expressed on inactive eosinophils
but becomes lowly expressed once the eosinophil is activated. This figure was created via biorender.com.
October 2021 | Volume 12 | Article 754413
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3.1.2 IL-5
IL-5 is a chemotactic agent which promotes the differentiation of
eosinophils in the bone marrow and can activate eosinophils. In
addition, eosinophils produce and secrete IL-5 upon
degranulation, thereby promoting their own differentiation and
activation, and contributing to their own expansion (75). IL-5 is
mainly produced by Th2 lymphocytes and ILC2s, and in lower
quantities by NKT cells, mast cells and eosinophils (76–80).
ILC2s contribute to the activation of eosinophils by producing
IL-4, IL-5, also shown to synergize with eotaxins, and IL-13 (81–
83). Specific inhibition of IL-5, by mepolizumab or reslizumab,
or specifically blocking the IL-5 receptor, by benralizumab, has
been shown to attenuate the type 2 immune response and overall
disease severity of eosinophilic asthma patients indicating an
important role of IL-5 in eosinophil related disorders (84).

During active inflammation, eosinophils increase IL-4, IL-5 and
IL-13 expression, indicating a shift to theTh2 response. Elevated IL-5
levels were found in rectal perfusion fluid from UC patients (85).
MicewithDSS inducedcolitis receiving anti-IL-5 treatment exhibited
lower eosinophil expression, more severe weight loss and higher
hemoccult scores indicating that IL-5, and eosinophils, may possibly
play aprotective role in colitis development aswell (86).A case report
describing a beneficial role of benralizumab in an UC patient shows
additional evidence for an advantageous effect of blocking the IL-5
receptor in UC patients (87).

3.1.3 IL-13
The cytokine IL-13 is produced by Th2 lymphocytes, CD4 cells,
NKT cells, mast cells, basophils and eosinophils (88). It has been
linked to airway hyperresponsiveness and fibrosis development
before, as a mediator of allergic inflammation, and therefore
linked to diseases such as asthma (88).

IL-13 and IL-4 share some functionality due toa shared receptor,
formed by IL-4Ra and IL-13Ra1. Activation of this shared receptor
results in STAT6 signaling and stimulation of the type 2 immunity
(89). IL-13 canalsobind to IL-13Ra2,which acts as adecoy receptor
and therefore inhibits IL-13 signaling (90, 91). IL-13 binds IL-
13Ra2 with an affinity about 400-fold higher than IL-4Ra/IL-
13Ra1, thereby inhibiting STAT6 signaling and dampening the
subsequent type 2 immunity response (92).Other studies, however,
do suggest a signaling functionality for IL-13Ra2. Strober et al.
described IL-13Ra2 signaling to result in TGF-b1 production
thereby possibly providing a contribution to fibrosis in a model of
bleomycin induced pulmonary fibrosis and oxazolone colitis. Later,
this functionality was proven in a trinitrobenzene sulfonic acid
(TNBS) colitis model as well (93).

IL-13Ra2 knockout mice were protected from the induction of
colitis in a DSS induced colitis model. This was confirmed by IL-
13Ra2 antibodymediated neutralization in 8-12-week-old BALB/c
mice which showed significant amelioration in colon health, based
on colon pathology score and colon length, compared to wild type
(wt)mice afterDSS induced colitis (92).However, a previous report
demonstrated that IL-13Ra2 knock out mice were not protected
from colitis development, but recovered and restored the mucosal
layer faster (91). Elevated IL13Ra2 mRNA expression levels in
mucosal biopsies frombothUCasCDpatients during activedisease
have been reported and have been suggested as a potential
Frontiers in Immunology | www.frontiersin.org 5
biomarker for anti-TNF non-responsiveness (94–96). Although
IL-13 has been implicated in the inflammatory response in UC
patients, results from clinical trials are disappointing: tralokinumab
and anrukinzumab, a human and humanized monoclonal anti-
IL13 antibody respectively, did not show any therapeutic benefit
(62). Therefore, it is still unclear which role IL-13 plays in the
development of IBD, but it seems likely that it could serve as a
potential therapeutic target in IBD (70, 97).

3.1.4 IL-33
IL-33 is a pro-inflammatory cytokine secreted by several intestinal
cells such as ILC2s,Th2 lymphocytes, epithelial cells, etc. that binds to
suppression of tumorigenicity 2 (ST2), present on the eosinophilic
membrane, and thereby activating the ST2/IL-33 signaling pathway
(98). Upon epithelial damage IL-33 will be released and can directly
expand ILC2s, Th2 cells and eosinophils. Via the production of IL-5
and IL-13 and the production of IL-4 and IL-5, the ILC2 and Th2
cells, respectively, can furthermore contribute to the expansion of the
eosinophil population (99).

Several studies already proposed a potential involvement for IL-33
in the development of colitis: activated eosinophils, together with
increased colonic IL-33 mRNA expression levels which correlated
with increasedcolonic eotaxin-1expressionhavebeendemonstrated in
UC patients (100). In both intestinal biopsies from IBD patients as in
the colon of SAMP/YitFc mice, which spontaneously develop colitis
resembling human CD, ST2/IL-33 signaling caused an eosinophilic
infiltration and activation coinciding with a Th2 mediated immune
response resulting in the release of IL-4, IL-5 and IL-13 (101–103).
Antibody mediated blocking of ST2 in these SAMP/YitFc mice
diminished the production of Th2 cytokines, and decreased
eosinophil recruitment to the ileum (102). In addition, ST2 knockout
inC57BL/6mice alleviateddisease symptoms.Thiswas confirmed in a
C57BL/6mousemodelwith antibody-mediatedblockingof ST2 (104).

3.2 Eosinophil Degranulation
Upon eosinophil activation and subsequent eosinophil
degranulation, toxic substances can be released into the
environment. Release of the eosinophil specific proteins eosinophil
cationic protein (ECP), eosinophil peroxidase (EPO), eosinophil
derived neurotoxin (EDN) and eosinophil major basic protein
(MBP) were described to cause tissue damage via its cytotoxic
activity, resulting in the destruction of the epithelial layer and
thereby contributing to, amongst others, airway damage and
possible lung dysfunction (105). Furthermore, the protein TGF-b1,
released from the eosinophil granules, has been described to
contribute to inflammation and fibrosis as well (106).

MBP is located in the core of the eosinophilic granule while ECP,
EPO and EDNare stored in the surroundingmatrix (107). Eosinophil
degranulation occurs via four different mechanisms; classical
exocytosis, compound exocytosis, piecemeal degranulation and
cytolysis (107). It is also known that asthmatic patients’ eosinophils
tend to produce more reactive oxygen species compared to healthy
controls. Nitric oxide levels, believed to be a marker for the level of
eosinophilic inflammation in the lower airways, are elevated in
bronchial asthmaticpatients andareused indiagnosis of asthma (107).

The contribution of these proteins in the development of
intestinal inflammation are discussed below.
October 2021 | Volume 12 | Article 754413
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3.2.1 Transforming Growth Factor b1 (TGF-b1)
TGF-b is a cytokine produced by fibroblasts, epithelial cells and
immune cells (108). Three different human isoforms exist: TGF-
b1, which is the most abundant form in the GI tract, TGF-b2 and
TGF-b3 (109).

The role of TGF-b1, present in the eosinophilic granules, in
acute intestinal inflammation is still elusive with contradictory
results in the literature (110). While some studies reported
increased TGF-b1 levels during active inflammation, others
reported decreased levels or no significant differences at all
(111, 112). In addition, TGF-b1 deficient mice spontaneously
developed colitis (113, 114). Although TGF-b has been linked to
inflammation before, its more important role is attributed to
chronic inflammation and subsequent fibrosis which is discussed
in detail in the next section (115).

3.2.2 Eosinophil Cationic Protein (ECP)
Upon eosinophil degranulation, the eosinophil specific ECP, also
known as ribonuclease 3, is released. The protein with a
molecular weight ranging from 18 to 22 kDa is encoded by the
Ribonuclease A family member 3 gene (116). ECP can damage
cell membranes by the formation of pores into transmembrane
channels through which toxic molecules can enter the cell (117,
118). Eosinophils house large amounts of ECP that are released
upon degranulation and therefore no de novo synthesis is
required at the time of degranulation (118).

Patients with active CD or UC had elevated serum ECP levels
compared to healthy individuals or IBD patients in remission
(119). This study furthermore revealed faecal ECP (fECP) to be
elevated in both CD and UC patients. The diagnostic accuracy
for differentiating IBD patients with active from inactive disease
however was lower for fECP compared to fecal calprotectin
(fCal). High fECP levels nevertheless did correlate with a
necessity for treatment alteration or surgical intervention
indicating fECP could be used as a diagnostic tool for
remission of the IBD patients (120). Furthermore, increased
ECP and MBP deposition was demonstrated in the small
bowel of eosinophilic gastroenteritis patients and correlated
with disease severity (118). Even though reports have shown
increased ECP levels during active inflammation in IBD and
related conditions, a causal relationship and conclusive evidence
for ECP as a mediator in inflammation is lacking.

3.2.3 Eosinophil Peroxidase (EPO)
The toxic cationic EPO forms hypohalous, hypobromous and
hypochlourous acid by using hydrogen peroxide, halide ions and
bromide via the formation of these acids, EPO can cause cellular
damage (121, 122).

Colonic mucosal biopsies from CD patients and colonic
perfusion fluids from UC patients express elevated EPO levels
during active disease (123–125). Further evidence suggests EPO
to be significantly upregulated in tissue of IBD patients at
diagnosis, but decreased again during the disease course (126).
EPO causes damage to structures via nitrate oxidation, and
thereby producing toxic reactive oxygen species (127, 128).
These reactive oxygen species have previously been linked to
renal inflammation and fibrosis (129). A murine DSS colitis
Frontiers in Immunology | www.frontiersin.org 6
model furthermore revealed EPO release into the lumen of the
colon and EPO deficient mice showed amelioration in colitis
after induction of experimental colitis via DSS, suggesting a
potential role of EPO in chronic intestinal inflammation (130).

3.2.4 Eosinophil Derived Neurotoxin (EDN)
Unlike the name would suggest, EDN is not neurotoxic for
humans. The protein received its name because intracerebral
EDN injection showed neuropathological responses in a murine
model (122).

Amcoff et al. reported increased fecal EDN protein levels in UC
patients not only during but also three months prior to relapse.
Therefore, faecal EDNhas beenproposed as a biomarker orpredictor
of relapse (131). This prognostic role for EDN in eosinophilmediated
intestinal inflammation has also been suggested in pediatric patients
(132). EDN might therefore possibly serve as a diagnostic tool or
biomarker for gastrointestinal inflammation. Whether the protein
additionally contributes directly to inflammation or fibrosis
development is still up for debate.

3.2.5 Eosinophil Major Basic Protein (MBP)
MBP, often called proteoglycan2 (PRG2) is encoded by the PRG2
gene and has two homologues, MBP1 and MBP2. While MBP1
can be detected in eosinophils, basophils and mast cells, MBP2 is
only present in eosinophils (133). Due to its cationic nature,
MBP can disturb permeability and cell membrane functioning as
well (117).

It is believed MBP directly increases the epithelial layer
permeability via its toxicity (134). In vitro co-culture of
eosinophils and epithelial cells decreased the integrity of the
epithelial barrier, which has been attributed to MBP (135). MBP
knock out mice do not develop colitis upon oxazolone exposure,
indicating a potential role forMBP in intestinal inflammation (135).

In summary (compiled in Table 1), eosinophils have been
implicated in the inflammatory process in IBD patients (11).
Studies have demonstrated an increased number of activated
eosinophils in both active and inactive UC compared to healthy
controls (25). As the presence of activated eosinophils was more
pronounced in quiescent UC compared to active UC, eosinophils
have also been suggested to be involved in tissue repair and
remodeling mechanisms (25). Moreover, an increased number of
degranulated eosinophils and eosinophil granule protein levels
has been demonstrated in tissue samples from IBD patients
(136). Peripheral blood eosinophilia was furthermore associated
with worse clinical outcomes and more severe disease in UC
patients (137, 138). In vivo, IL-4 production by eosinophils has
been shown to promote colitis in both the chemically induced
dextran sodium sulphate (DSS), as well as in the T cell transfer
model (139). Even though several reports suggest a role for
eosinophils in inflammation, conclusive evidence is lacking and
therefore requires further investigation.
4 ROLE OF EOSINOPHILS IN FIBROSIS

Because eosinophil infiltration was already shown in other
fibrotic diseases, such as endomyocardial fibrosis, idiopathic
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retroperitoneal fibrosis and pulmonary fibrosis, targeting
eosinophils may prove to be beneficial in a number of other
fibrotic implications (89, 140). Little is known, however, about
the eosinophilic involvement in the development of intestinal
fibrosis in IBD. Therefore, the exact mechanism or functioning
of the eosinophils in these fibrotic diseases requires further
investigation. The involvement of the previously described
eosinophil activators and proteins from eosinophil granules in
fibrosis will be described below.
4.1 IL-4
IL-4, a potent inducer of TGF-b1, stimulates fibroblast expression
and release of inflammatory cytokines, thereby stimulating
inflammation and lung remodeling and repair in chronic asthma
Frontiers in Immunology | www.frontiersin.org 7
patients (141). Increased IL-4 expression has been linked to
pulmonary fibrosis. In this study, IL-4 deficient mice developed
significantly less pulmonary fibrosis than wt mice. On the other
hand, the same study showed that IL-4 did not directly stimulate
collagen type I expression and alpha smoothmuscle actin (a-SMA)
proliferation (142). While IL-4 has been associated with idiopathic
pulmonary fibrosis (IPF), hepaticfibrosis and cardiac fibrosis (143–
146), little is known about the role of IL-4 in the development of
intestinal fibrosis.
4.2 IL-5
This cytokine has also been investigated in a variety of chronic
fibrotic diseases, such as hepatic fibrosis (89). By using IL-5
knock out C57BL/6 mice, Reiman et al. were able to show a
TABLE 1 | Role of eosinophil activating mediators and compounds from eosinophil specific granules in intestinal inflammation.

Pre-clinical evidence Clinical evidence

IL-4 ◊ IL-4 blocking in IL-10 deficient mice: protected from colitis development
(63)
◊ No IL-4Ra: no disease development (73)

◊ UC patients: ↑ IL-4 expression levels in inflamed mucosa (62)
◊ CD patients: ↓ IL-4 levels in intestinal tissue due to lower numbers of IL-4
producing cells in mucosal biopsies (74)

◊ IL-4/IL-13 dual antagonist in oxazolone colitis model (67, 68)
- Reduced overall disease activity

◊ IL-4/IL-13 blocking trough a shared receptor (69, 71)
- Reduced overall disease severity

IL-13 ◊ CD and UC patients: ↑ IL-13Ra2 in mucosal biopsies (94, 95)
◊ Potential biomarker for anti-TNF non-responsiveness (96)
◊ Clinical trial with Tralokinumab and Anrukinzumab: no therapeutic effects (62)

◊ IL-13Ra2 KO model
IL-13Ra2 antibody mediated depletion
DSS model: mice protected ssssss from colitis introduction (92)

◊ IL-13Ra2 KO model: not protected from colitis development but
recovered faster (91)

IL-5 ◊ Mepolizumab & Reslizumab
Benralizumab
Attenuates type 2 response + used and shown effective in eosnophl
eosinophilic asthma patients

◊ UC patients’ rectal perfusion fluids (84):
- ↑ IL-5 levels

IL-33 ◊ SAMP/YitFc colitis model and antibody mediated ST2 blocking (102):
- ↓ Th2 cytokine production and ↓ eosinophil recruitment into the ileum

◊ C57BL/6 ST2 KO mice (104) and ST2 antibody mediated depletion in
C57BL/6 mice alleviated disease symptoms

◊ UC patients: ↑ colonic IL-33 mRNA levels and activated eosinophils (100)
◊ IBD patients’ intestinal biopsies (101–103):
- ST2/IL-33 signaling
- Eosinophil infiltration which coincided with Th2 mediated immune response
- IL-4, IL-5 and IL-13 release

TGF-b1 ◊ TGF-b1 deficient mice: spontaneously develop colitis (113, 114) ◊ Active inflammation in IBD patients:
↑ TGF-b1 protein levels
↓ (111, 112)
=

EDN ◊ UC patients: ↑ f(EDN) protein levels during and 3 months prior to relapse:
possible prognostic role (131)
◊ Suggested as a prognostic marker in paediatric patients (132)

ECP ◊ Active CD and UC: ↑ serum ECP compared to HC (118)
◊ Eosinophil gastroenteritis: ECP and MBP deposition in small bowel (119)

MBP ◊ MBP KO mice: no colitis development upon oxazolone exposure (135)
◊ In vitro co-culture of eosinophils and epithelial cells decreased functioning
of the epithelial barrier
- attributed to MBP (135)

◊ MBP directly increases epithelial layer permeability via its toxicity (134)

EPX ◊ DSS colitis model: ↑ EPX release in colonic lumen (130)
◊ EPX-/- mice: colitis amelioration (130)

◊ CD patients’ colonic mucosal biopsies and UC patients’ colonic perfusion
fluids
- ↑ EPX levels during active disease (123–125)

◊ IBD patients: EPX ↑ at diagnosis but decreased again during disease
course (126)

{

{

}
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significant reduction in the development of hepatic fibrosis,
determined via histopathological analysis, suggesting IL-5 is a
potent player in this condition (89). The study demonstrated that
IL-5 stimulated the Th2 lymphocyte response and indirectly
upregulated IL-13, shown to be a key mediator in the
development of fibrosis, indicating IL-5 could have both a
direct and an indirect effect on eosinophil mediated liver
fibrosis (89). The importance of this Th2 response was later
demonstrated in experimental models of pulmonary, renal and
intestinal fibrosis (147–149). Moreover, anti-IL-5 mediated
treatment depleted the intestinal eosinophils, and suppressed
the development of radiation induced intestinal fibrosis (RIF) in
mice, demonstrating the importance of eosinophils and IL-5 in
the development of RIF (150). Research on IL-5 involvement in
the development of intestinal fibrosis however is still limited,
highlighting the need for additional research to shed light on the
exact pathogenesis.

4.3 IL-13
IL-13 has also been implicated in several fibrotic diseases such as
pulmonary, renal, hepatic and intestinal fibrosis and was
identified as a possible inducer of airway remodeling in asthma
patients (151–154). IL-13, together with IL-4, is responsible for
eosinophil activation and additionally can activate and
proliferate fibroblasts (155). This cytokine was shown to
promote lung fibrosis, and IPF patients exhibited increased IL-
4 and IL-13 receptors on lung fibroblasts (155). IL-13 has also
been implicated in intestinal fibrosis. Fibrosis in chronic TNBS
treated mice seemed driven by IL-13 via TGF-b1 production,
and IL-13 blocking resulted in the prevention of intestinal
fibrosis (156, 157). Increased IL-4Ra, IL-13Ra1 and IL-13Ra2
levels were found in ileal strictures in CD patients, indicating IL-
13 might be involved (62). Even though IL-13 has been
implicated in wound repair, tissue remodeling and fibrosis
formation, it is not completely understood how it contributes
to the development of strictures in CD patients (92). Even if anti-
IL13 treatment was not successful to suppress inflammation in
UC patients (cf. 2.1.3), its effect on inflammation and especially
fibrosis in CD has not been investigated (62).

4.4 IL-33
The co-culture of fibroblasts with eosinophils, activated via IL-
33, led to the production and release of components that were
associated with chronic intestinal fibrosis, including TGF-b (25).
Activating eosinophils via IL-33 and subsequently co-culturing
the activated eosinophils with intestinal fibroblasts resulted in
the increase of IL-13Ra2, the pro-inflammatory cytokines TNF-
a, IL-1b and IL-6 and the chemokines CCL24 and CCL26 (158).
The release of these latter two eosinophil chemoattractant
molecules possibly results in additional eosinophil recruitment.
Co-cultured fibroblasts were isolated and subsequently cultured
with IL-13, leading to the production offibronectin, collagen 1a2
and periostin, which are pro-fibrotic elements. The role of
eosinophils in inflammation and fibrosis might therefore be a
two-step mechanism (158). Interestingly, IL-33 is also increased
in the ileal specimens of paediatric CD patients compared to
healthy controls (158).
Frontiers in Immunology | www.frontiersin.org 8
4.5 TGF-b
TGF-b has been shown to stimulate fibrosis in several organs (1,
159–161). This pro-fibrotic cytokine can affect structural airway
cells such as fibroblasts, smooth muscle cells and epithelial cells,
and has been implicated in fibrotic diseases such as airway
remodeling in asthmatic patients (154). It stimulates fibroblast
to myofibroblast activation, and thereby fibrosis (154). In vitro
culturing of mucosal fibroblasts derived from UC patients during
active disease showed increased production of both TGF-b1 as
TGF-b3, while mucosal fibroblasts derived from CD patients
during active disease showed increased production of TGF-b1,
but less TGF-b3 (162). Increased TGF-b1 levels are similarly
observed in mucosal biopsies from CD patients (163). TGF-b,
however, is produced by a subset of cells, such as epithelial cells,
fibroblasts and immune cells, therefore not specifically indicating
a role for eosinophils (108). Future research in which eosinophils
and their secreted products, such as TGF-b, are blocked could
further help to unravel the specific role of eosinophil derived
TGF-b in fibrosis development.

4.6 ECP
This protein has recently been proposed as a possible mediator in
tissue remodeling in allergic asthma patients and in patients with
eosinophilic esophagitis (164). In the lungs, tissue remodeling
occurs via collagen and proteoglycan release from the interstitial
fibroblasts. Eosinophils, and ECP in particular, further mediate
this process by the production and release of TGF-b (164, 165).
Additionally, ECP also causes collagen gel contraction and
accumulation of intracellular proteoglycan. ECP might
therefore have an indirect effect on fibroblast activation (164).
However, conclusive evidence is lacking and additional research
is necessary. Moreover, a role for ECP in the development of
intestinal fibrosis has not yet been described.

4.7 EPO
EPO knockout mice showed decreased renal fibrosis
development (129). These EPO knockout mice also show
decreased a-SMA expression and collagen I deposition,
indicating a possible involvement in fibrosis development
(129). Eosinophils, the source of EPO, also accumulated in the
renal interstitium of mice with unilateral ureteral obstruction.
Pulmonary epithelial cell exposure to both EPO and MBP
resulted in increased mRNA levels of TGF-a, TGF-b1,
epidermal growth factor receptor, platelet derived growth factor
and tenascin (166). These factors are all associated with fibroblast
activation, indicating EPO might be involved in fibrosis
development. Again, conclusive evidence is lacking.
5 OTHER FACTORS SHAPING
EOSINOPHIL FUNCTION

Neutrophil extracellular traps (NETs), a complex mesh of
extracellular fibers primarily consisting of neutrophil DNA have
been implicated in inflammatory andfibroticdisorders.Thereby, an
excess NET production was suggested to be involved in several
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pulmonary disorders (167). In that context, NETs have been
implicated in the activation of lung fibroblasts and differentiation
towards myofibroblasts, correlating to an increased collagen and
connective tissue growth factor (CTGF) production (168). Similar
towhathasbeenproposed inneutrophils, thepotential involvement
of eosinophil extracellular traps (EET), already indicated to be
involved in tissue damage in the airways of patients suffering from
asthma, should be further explored in the context of fibrosis
development (169).

Additionally, several studies have indicated a link between the
microbiome and intestinal eosinophils. Previously, a significantly
higher abundance of eosinophils was shown in germ-free mice
compared to pathogen-free mice, suggesting that the microbiome
dampens eosinophil proliferation (170). Furthermore, when germ-
free mice were exposed to a complex microbiome, a significant
decrease in eosinophil numbers was shown (170).Moreover, recent
data has shown that high eosinophil presence, resulting from
helminth infections, can lead to tissue fibrosis (171). The
microbiome therefore clearly has a direct effect on eosinophil
numbers and possibly eosinophil functioning.

Lastly, as eosinophils are generally present in the GI tract
under homeostatic conditions, they are believed to have a
beneficial role in the maintenance of tissue homeostasis. This
beneficial role is believed to occur via the preserving of IgA
producing plasma B cells, thereby promoting Peyer’s patch
development and regulating intestinal microbiota composition.
Furthermore, eosinophils are considered to enhance intestinal
mucus secretion, thereby supporting the epithelial barrier
integrity. Lastly, eosinophils have been described to secrete the
IL-1 receptor antagonist IL-1Ra thereby inhibiting IL-1b
production resulting in decreased Th17 differentiation. As
Th17 cells are the main producers of the profibrotic cytokine
IL-17A, eosinophils can fulfill an anti-fibrotic role as well (172).
6 TREATMENT OPTIONS: TARGETING
EOSINOPHILS IN IBD

At diagnosis, patients with IBD are often treated with corticosteroids
in a tapering schedule to quickly improve symptoms (Table 2) (189,
190). Corticosteroids prevent eosinophil accumulation, reduce
eosinophil chemotaxis and can block other eosinophil factors,
including in vitro eosinophil adherence (173, 174). Corticosteroids
also have a known anti-fibrotic function by reducing collagen
synthesis, which is also related to their negative effect on wound
healing (175). This anti-fibrotic effect has been demonstrated in
several diseases such as idiopathic pulmonary fibrosis, systemic
sclerosis and retroperitoneal fibrosis (176–180). However, long-
term corticosteroid exposure is not recommended due to systemic
side effects (189).

The IBD therapeutic landscape has changed entirely with the
availability of several biological agents and small molecules in the
past two decades (Table 2). However, the direct effect of these
biologicals on eosinophil presence, activation and degranulation
is still largely unknown. Mucosal addressin cell adhesion
Frontiers in Immunology | www.frontiersin.org 9
molecule 1 (MadCAM-1), expressed on the vascular
endothelium in the intestinal tract, will bind a4b7-integrin,
present on the eosinophil surface. This a4b7-integrin/
MadCAM-1 binding causes eosinophilic recruitment to the GI
tract (191). It would therefore be expected that anti-a4b7-
integrin treatment would affect intestinal eosinophil
recruitment. However, only inconclusive evidence is available
in literature: while Bochner and colleagues reported no effect on
eosinophil circulation after vedolizumab treatment (181),
natalizumab, a humanized anti-a4b1 and a4b7-integrin
antibody approved for treatment of systemic sclerosis, caused
an increase in circulating eosinophils and a decreased
accumulation of eosinophils at the site of inflammation (181).
Non-responders to vedolizumab treatment had higher baseline
colonic mucosal mean eosinophil counts. Whether this increased
baseline eosinophil count could be used as a predictor for non-
response to the humanized antibody vedolizumab should be
further investigated (192). While no effects of infliximab
treatment on eosinophil presence and activation status have
been described, infliximab has been suggested to be effective in
the early stages of fibrosis development. Patients treated with
infliximab, a chimeric antibody targeting TNF-a, exhibited a
decrease in serum levels of basic fibroblast growth factor (bFGF)
and vascular endothelial growth factor (VEGF) (182). These
factors are known to be involved in the development of intestinal
fibrosis; bFGF promotes fibroblast proliferation and VEGF
stimulates fibroblast activation and ECM synthesis (193, 194).
In vitro exposure of myofibroblasts, isolated from CD patients’
active lesions, to infliximab moreover reduced collagen
production (183). In the CREOLE study, 97 CD patients with
small bowel strictures were treated with the human anti-TNF-a
therapy adalimumab. Two thirds (63.9%) of CD patients
responded successfully (defined as adalimumab continuation
without prohibited treatment, endoscopic dilatation or bowel
resection) to adalimumab with a sustained response of 45.7%
after 3.8 years, indicating that anti-TNF therapy might have a
beneficial effect on intestinal strictures (184).

Tofacitinib, the first JAK-inhibitor approved for moderate-to-
severe UC, has shown to be an effective therapeutic in several
eosinophil related disorders such as hypereosinophilic syndrome,
drug-induced hypersensitivity syndrome and eosinophilic
esophagitis (Table 2) (185–187). In a pulmonary eosinophilic
vasculitis model, the eosinophil abundance in BAL fluid was
reduced in 8-week-old C57BL/6 mice treated with tofacitinib.
Moreover, decreased TGF-b concentrations were measured in the
BAL fluid and lessmyofibroblasts were deposited in the pulmonary
arteries, indicating tofacitinib might not only affect eosinophil
infiltration, but could also serve as an anti-fibrotic treatment
(188). Nevertheless, tofacitinib failed phase II drug development
in patients with luminal CD, and thus no further investigation is
scheduled (195). In contrast, the JAK-1 inhibitorfilgotinib did show
promising efficacy in CD, including a significant decrease in VEGF
(196, 197).

Because the eosinophilic role in inflammation and fibrosis is still
so little understood, treatments specifically targeting eosinophils are
not currently used in IBD patients. Treatments targeting eosinophils
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in murine models of colitis, however, have shown to decrease
inflammation and tissue architecture remodeling (158). Targeting
CCR3 or eotaxin seems a potential therapeutic option because of its
role in the accumulation of eosinophils, and indeed reduced
inflammation in the Samp1/SkuS1c mouse model (198, 199).
Targeting eotaxin-1 via an anti-eotaxin-1 monoclonal antibody
(mAb) in a chemically induced model of colitis also reduced the
overall disease severity, and has proven its efficacy in a RAG1
deficient mouse model of allergic inflammation (200–202).
Bertilimumab, a human anti-eotaxin-1 mAb was initially
developed for the treatment of allergic disorders (203, 204). The
same mAb demonstrated a clear beneficial effect in a DSS colitis,
suggesting that it should be considered for development in the
treatment of IBD (205).

Benralizumab, a humanized anti-IL-5R mAb causing eosinophil
depletion, already proved its efficacy in asthma patients (206). A
similar mAb was designed and showed to significantly ameliorate
radiation-induced intestinalfibrosis inmice, and could therefore be a
potential therapeutic target in a specific subset of IBD patients (150).

Targeting the ST2/IL-33 pathway might alleviate disease
symptoms for IBD patients. Several IL-33 blocking antibodies
are currently under evaluation for asthma and for chronic
obstructive pulmonary disease (COPD). Interfering with ST2,
however, should be handled with caution because ST2 is involved
in the activation of other cell types such as ILC2s, T lymphocytes,
mast cells, basophils and several other immune cells and could
thereby indirectly affect other pathways (98).

Lastly, as previously mentioned, a study revealed severe
eosinophil infiltration in the lamina propria of colonic biopsies
to be the most significant predictor of poor response to medical
therapy in UC patient, highlighting once more the importance of
eosinophil monitoring in IBD patients (15).
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7 CONCLUSION

Eosinophils and their granular components have been suggested as
pivotalplayers in several inflammatoryandfibroticdiseases including
IBD. Although various important mediators of eosinophil
recruitment and activation are upregulated in IBD patients, an
exact pathogenesis or mechanism through which eosinophils
would fulfill their function is still not clear. The specific
contribution of eosinophil derived proteins, i.e. ECP, EPO, EDN
and MBP, is even less understood. However, pro-fibrotic TGF-b
released from eosinophils could potentially contribute to intestinal
fibrosis in IBD. Published studies mainly provide descriptive data,
rather thandemonstrating a clear causative role. Further researchwill
therefore be needed in order to determine the role of eosinophil
activation and degranulation in inflammation and fibrosis,
specifically in the intestine, and to possibly identify novel anti-
inflammatory and anti-fibrotic treatments in IBD.
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TABLE 2 | Conventional treatment options for IBD patients.

Treatment Influence on eosinophil presence Influence on fibrostenosis development

Corticosteroids Prevent eosinophil accumulation and reduce eosinophil
chemotaxis and can block other eosinophil factors (173,
174).

Demonstrated in idiopathic pulmonary fibrosis, systemic sclerosis and
retroperitoneal fibrosis: affects wound healing and reduces collagen synthesis
(175–180).

Anti-a4b7 integrin
(Vedolizumab)

Possible ↓ in influx of eosinophils, but inconclusive evidence
(181)
◊ Vedolizumab: no effect on eosinophil circulation
◊ Natalizumab:

↑ in circulating eosinophils

↓ eosinophil accumulation at site of inflammation

No effects described in literature.

Anti-TNF
(infliximab and
adalimumab)

No effect described in literature. Infliximab: suggested to be effective in the early stages of fibrosis development
- ↓ in bFGF and VEGF levels in serum (182).
- In vitro exposure of myofibroblasts, isolated from CD patients, to infliximab:

↓ collagen production (183).
Adalimumab: CREOLE study
- CD patients with small bowel strictures: beneficial effect (184)

Anti-IL-12/IL-23
(Ustekinumab)

No effect described in literature. No effect described in literature.

JAK inhibitor
(Tofacitinib)

Effective in several eosinophil related disorders (185–187)
- ↓ in eosinophil numbers
- ↓ in disease symptoms

BAL (Bronchoalveolar lavage) fluid in mice treated with Tofacitinib (188):
- eosinophil presence reduced (188).
- ↓ in [TGF-b]
- ↓ myofibroblasts deposited in pulmonary arteries
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GLOSSARY
a-SMA alpha smooth muscle actin
ATGL1 Autophagy related protein like 1
BAL Bronchoalveolar lavage
bFGF basic fibroblast growth factor
CCL C-C motif ligand
CCR C-C chemokine receptor
CD Crohn’s disease
CD Cluster of differentiation
CTGF Connective tissue growth factor
CXCR C-X-C chemokine receptor
DSS Dextran sodium sulphate
ECM Extracellular matrix
ECP Eosinophil cationic protein
EDN Eosinophil derived neurotoxin
EET Eosinophil extracellular traps
EPO Eosinophil peroxidase
fECP faecal eosinophil peroxidase
fCal faecal calprotectin
GI Gastrointestinal
GM-CSF Granulocyte-macrophage colony-stimulating factor
IBD Inflammatory bowel disease
IFN Interferon

(Continued)
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IL Interleukin
ILC Innate lymphoid cell
IPF Idiopathic pulmonary fibrosis
IRGM Immunity related GTPase M
JAK Janus kinase
mAb Monoclonal antibody
MadCam Mucosal addressin cell adhesion molecule
MBP Eosinophil major basic protein
MCP Monocyte chemoattractant protein
mRNA messenger ribonucleic acid
NETs Neutrophil extracellular traps
NK Natural killer
NKT Natural killer T
NOD-2 Nucleotide-binding oligomerization domain-containing protein 2
PRG2 Proteoglycan 2
RANTES Regulated upon activation, normal T cell expressed and secreted
RIF Radiation induced fibrosis
ST2 Suppression of tumorigenicity 2
STAT Signal transducer and activator of transcription
TGF Transforming growth factor
TNBS Trinitrobenzene sulfonic acid
TNF Tumor necrosis factor
Th T helper
UC Ulcerative colitis
VEGF Vascular endothelial growth factor
wt wild type
October 2021 | Volume 12 | Article 754413

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain?
	1 Introduction
	2 Gastrointestinal Eosinophils
	2.1 General Characteristics
	2.2 Eosinophil Recruitment
	2.2.1 Eotaxin-1, -2 and -3 – CCR3 Axis
	2.2.2 RANTES, MCP-3 and MCP-4 Mediated Chemotaxis


	3 Role of Eosinophils in Inflammation
	3.1 Eosinophil Activation
	3.1.1 IL-4
	3.1.2 IL-5
	3.1.3 IL-13
	3.1.4 IL-33

	3.2 Eosinophil Degranulation
	3.2.1 Transforming Growth Factor β1 (TGF-β1)
	3.2.2 Eosinophil Cationic Protein (ECP)
	3.2.3 Eosinophil Peroxidase (EPO)
	3.2.4 Eosinophil Derived Neurotoxin (EDN)
	3.2.5 Eosinophil Major Basic Protein (MBP)


	4 Role of Eosinophils in Fibrosis
	4.1 IL-4
	4.2 IL-5
	4.3 IL-13
	4.4 IL-33
	4.5 TGF-β
	4.6 ECP
	4.7 EPO

	5 Other Factors Shaping Eosinophil Function
	6 Treatment Options: Targeting Eosinophils in IBD
	7 Conclusion
	Author Contributions
	Funding
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




