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Abstract: PriB is a primosomal protein required for the replication fork restart in bacteria. Although
PriB shares structural similarity with SSB, they bind ssDNA differently. SSB consists of an N-terminal
ssDNA-binding/oligomerization domain (SSBn) and a flexible C-terminal protein–protein interaction
domain (SSBc). Apparently, the largest difference in structure between PriB and SSB is the lack of
SSBc in PriB. In this study, we produced the chimeric PriB-SSBc protein in which Klebsiella pneumoniae
PriB (KpPriB) was fused with SSBc of K. pneumoniae SSB (KpSSB) to characterize the possible SSBc
effects on PriB function. The crystal structure of KpSSB was solved at a resolution of 2.3 Å (PDB
entry 7F2N) and revealed a novel 114-GGRQ-117 motif in SSBc that pre-occupies and interacts with
the ssDNA-binding sites (Asn14, Lys74, and Gln77) in SSBn. As compared with the ssDNA-binding
properties of KpPriB, KpSSB, and PriB-SSBc, we observed that SSBc could significantly enhance the
ssDNA-binding affinity of PriB, change the binding behavior, and further stimulate the PriA activity
(an initiator protein in the pre-primosomal step of DNA replication), but not the oligomerization
state, of PriB. Based on these experimental results, we discuss reasons why the properties of PriB can
be retrofitted when fusing with SSBc.

Keywords: PriB; SSB; PriA; replication fork; PriB-SSBc; DnaT; primosome; OB fold; DNA mimic;
GGRQ motif

1. Introduction

Single-stranded DNA (ssDNA)-binding proteins (SSBs) play crucial roles in DNA
replication, repair, recombination, and replication fork restart in both prokaryotes [1]
and eukaryotes [2–4]. SSB binds to ssDNA with high affinity, regardless of sequence, and
prevents premature annealing, chemical attacks, and unwanted nuclease digestion [5]. SSBs
typically recognize ssDNA [6–9] via a highly conserved oligonucleotide/oligosaccharide-
binding (OB) fold formed from a five-stranded β-barrel capped by an α-helix [10,11].
The functions of SSB have been studied extensively in Escherichia coli (EcSSB) [12,13]. EcSSB
consists of an N-terminal ssDNA-binding/oligomerization domain (SSBn) and a flexible
C-terminal protein–protein interaction domain (SSBc). SSBc can be further subdivided
into two sub-domains, namely, the intrinsically disordered linker (IDL) and the highly
conserved acidic tail DDDIPF (SSB-Ct) at the C-terminus. SSB-Ct in SSB can interact with
the OB fold and regulate the ssDNA-binding activity of SSB itself [14,15]. Until very
recently, IDL, but not just only SSB-Ct, had been found to be involved in binding to at least
20 different partner proteins to regulate the DNA metabolism [1,16,17].

SSB can significantly stimulate the activity of PriA [18], a DEXH-type helicase utilized
to reload DnaB back onto the chromosome during replication restart [19–21]. DNA fork-
bound SSB can load PriA onto the duplex DNA arms of forks [22], and enhance the
ability of PriA to discriminate between fork substrates [23]. The ability of PriA-directed
replication restart primosome to maintain genetic integrity after encountering DNA damage
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is essential for bacterial survival [24]. The primosome travels along the lagging strand
template, unwinds the duplex DNA, and primes the Okazaki fragments that are required
for replication fork progression [25,26]. In addition to PriA, other essential proteins through
a series of ordered protein–protein interactions at a repaired DNA replication fork site
for a primosome assembly in E. coli are PriB, PriC, DnaT, DnaC, DnaB, and DnaG [27].
In a PriA-PriB-DnaT-dependent reaction, PriB is the second protein to participate in the
protein–DNA complex [28]. In addition to binding PriB [29–31], DnaT is also capable of
binding to ssDNA [32–34] and PriC [35]. Upon forming the PriA–PriB–DNA complex [36],
PriB can induce a conformational alteration in PriA, significantly stimulate the activity of
PriA [37], and facilitate the association of DnaT with PriA [38]. PriB can also specifically
interact with SSB and ssDNA coated by SSB [39]. Sequence comparisons and operon
organization analyses have shown that PriB evolves from SSB [40]. Despite these essential
functions, PriB is not absolutely required for bacterial DNA replication [41] and is not
present in many bacteria [21,42]. How and why PriB in some bacteria is necessary to evolve
from SSB to become a new ssDNA-binding protein during evolution for replication fork
restart is still unclear.

PriB presents as a homodimer with two OB folds [43–45]. PriB shares structural simi-
larity with its ancestor, SSB; nevertheless, they bind ssDNA differently [46,47]. The crystal
structures (Figure 1) reveal that ssDNA wraps around SSB in a binding topology resem-
bling seams on a baseball [9], while ssDNA adopts an Ω-shaped conformation to bind to
the one monomer of the PriB dimer [47]. Electrophoretic mobility shift analysis (EMSA)
also reveal different ssDNA-binding patterns/behaviors between SSB and PriB [48]. SSB
forms multiple distinct complexes with ssDNA of different lengths [49–53], whereas PriB
binding to ssDNA of different lengths only forms a single complex [48]. In addition, the
ssDNA-binding affinity of PriB is significantly lower (>2–3 orders of magnitude) than that
of SSB proteins [48]. The most apparent difference between PriB and SSB is the SSBc; thus,
it is worth investigating the effect of SSBc on ssDNA-binding behavior and affinity, the
stimulation activity on PriA, and the oligomerization state of PriB.
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Figure 1. Structural comparison of EcSSB and EcPriB. (A) Crystal structure of EcSSB complxed with
ssDNA. (B) Crystal structure of EcPriB complexed with ssDNA. (C) The superimposed structures.
The crystal structures reveal that ssDNA wraps around SSB in a binding topology resembling seams
on a baseball, while ssDNA adopts an Ω-shaped conformation to bind to the one monomer of the
PriB dimer. ssDNAs bound by EcSSB and EcPriB are colored in black and yellow respectively.

Chimeragenesis is a powerful technique that creates a protein with improved or new
properties to investigate the role of the protein domain(s) by combining different segments
originating from different genes [54]. In this study, we produced the chimeric PriB-SSBc
protein in which Klebsiella pneumoniae PriB (KpPriB) [48] was covalently fused with the
SSBc domain of K. pneumoniae SSB (KpSSB) [49] to characterize the possible SSBc effects on
PriB function. The crystal structure of KpSSB was solved (PDB entry 7F2N) and revealed
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a novel GGRQ motif in SSBc that pre-occupies and interacts with the ssDNA-binding
sites, namely, Asn14, Lys74, and Gln77, in SSBn. Based on these results from biochemical
analysis of PriB-SSBc, we found that SSBc could significantly enhance the ssDNA-binding
affinity, change the binding behavior, and further stimulate the PriA activity, but not the
oligomerization state, of PriB.

2. Results
2.1. Sequence Analysis between KpPriB and KpSSB

PriB shares structural similarity with the ssDNA-binding domain of SSB [43–45].
Given the structural resemblance, one may conclude that PriB binds ssDNA in a manner
similar to SSB. However, the complex structure reveals that PriB binds ssDNA differ-
ently [47]. Despite the similar architecture, the amino acid sequences of PriB and SSB from
K. pneumoniae share only 11% identity and 29% similarity (Figure 2A). In the EcSSB-ssDNA
complex [9], four essential aromatic residues, Trp40, Trp54, Phe60, and Trp88, participate
in ssDNA binding via stacking interactions. These residues (marked by asterisks) are
conserved in KpSSB but not in KpPriB (Figure 2A). Unlike SSB, PriB does not possess IDL
and SSB-Ct. The PXXP motifs in the IDL of EcSSB are known to mediate the protein–protein
interactions [17,55]. In EcSSB, the PXXP motifs occur at residues 139 (PQQP), 156 (PQQS),
and 161 (PAAP). The corresponding motifs in KpSSB (boxed in black) are PQQP, PQQQ,
and PAAP, respectively (Figure 2A). The crystal structure of KpSSB (Figure 2B) solved
in this study revealed a novel GGRQ motif (boxed in red), which might be involved in
regulating the ssDNA binding (see below).
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Figure 2. Structural comparison of KpSSB and KpPriB. (A) Sequence alignment of KpPriB and KpSSB. Identical residues
between KpPriB and KpSSB are shaded in yellow. The corresponding PXXP motifs in KpSSB are boxed in black. The GGRQ
motif is boxed in red. The secondary structural elements of KpPriB and KpSSB are shown with the sequences. The amino
acids 120–174 (in gray) in the structure of KpSSB were not observed. (B) Crystal structure of KpSSB (PDB entry 7F2N). Four
monomers of KpSSB were found per asymmetric unit. The KpSSB monomer has an OB-fold domain similar to EcSSB, and
the core of the OB-fold domain possesses a β-barrel capped with an α-helix. The amino acids 120–174 in the structure of
KpSSB were not observed. (C) Crystal structure of KpPriB (PDB entry 4APV). (D) The superimposed structures of KpPriB
and the KpSSB dimer. The KpSSBn and KpPriB are similar, in which the only significant difference is in the lengths of the
β4 and β5 sheets.
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2.2. Protein Chimeragenesis

KpPriB (Figure 2C) and KpSSB (Figure 2D) are OB-fold proteins with different ssDNA
binding behaviors [48,49]. However, sequence comparisons and operon organization analyses
indicate that PriB evolved from SSB via gene duplication with subsequent rapid sequence
diversification [40]. The significant difference between PriB and SSB is the protein length; that
is, PriB does not have SSBc consisting of IDL and SSB-Ct. IDL [56] and SSB-Ct [18,57–59] in
SSB are required to stimulate the activity of PriA. Interestingly, PriB does not possess SSBc
but can still stimulate the activity of PriA [37]. Thus, we attempted to obtain and characterize
the chimeric protein PriB-SSBc in which KpPriB were fused with KpSSBc at the C termini
of KpPriB. PriB-SSBc possessing both characteristics of PriB and SSBc was then used to
analyze whether the SSBc can change the properties of PriB, such as the oligomeric state, the
ssDNA-binding behavior, and the stimulating effect on PriA, in situ.

We constructed the plasmid to express the chimeric protein PriB-SSBc following several
steps (Figure 3A). To obtain an additional cutting site (SacI) for fusing PriB and SSBc fragments,
the pET21b-PriB [48] and pET21b-KpSSB (with the stop codon to avoid having a His tag
fused with the gene product) [60] plasmids were mutated to create a desired SacI restriction
site (aa 98–99 for pET21b-PriB/SacI and aa 111–112 for pET21b-SacI/KpSSB, respectively).
The pET21b-PriB/SacI plasmid was cut with NdeI and SacI restriction enzymes, and the
fragment KpPriB(1–98) was purified. Meanwhile, the pET21b-SacI/KpSSB plasmid was also
treated with NdeI and SacI restriction enzymes, and the resultant DNA fragment pET21b-
KpSSB (112–174) was purified and then ligated with the insert KpPriB(1–98) DNA fragment.
The resultant plasmid pET21b-KpPriB-KpSSBc will express KpPriB1–98 fused KpSSB112–174
(Figure 3B), designated as PriB-SSBc in this study. Given that PriB-SSBc inherited a DNA-
binding domain from KpPriB, this chimeric protein might be thought to bind ssDNA in a
manner similar to that of KpPriB, not KpSSB. To confirm this, we analyzed whether the ssDNA-
binding property of PriB-SSBc resembles that of SSB (Figure 3C) or PriB (Figure 3D). Note that
PriB-SSBc has 161 amino acid residues and does not have any artificial residues (Figure 3E).
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Figure 3. The chimeric PriB-SSBc protein. (A) Construction of the plasmid for expression of the chimeric PriB-SSBc protein.
The resultant plasmid pET21b-KpPriB-KpSSBc will express KpPriB1–98 fused KpSSB112–174, designated as PriB-SSBc.
Note that PriB-SSBc has 161 amino acid residues and does not have any artificial residues. (B) A proposed structure of
PriB-SSBc. The structure was directly constructed by superimposing the KpPriB dimeric form (aa 1–98; PDB entry 4APV)
with the crystal structure of KpSSB (aa 112–119; PDB entry 7F2N). The unobserved region (aa 120–174) in KpSSBc was
shown as dashed lines. The ssDNA-binding property of PriB-SSBc may resemble that of (C) EcSSB or (D) EcPriB. (E) The
putative amino acid sequence of PriB-SSBc.
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2.3. Purification of KpPriB, KpSSB, and PriB-SSBc

KpPriB, KpSSB, and PriB-SSBc were hetero-overexpressed in E. coli. These gene
products did not have a His tag to avoid any artificial effects for further analysis. KpSSB was
purified by the precipitation of ammonia sulfate, Q, and Heparin column chromatographies
(Figure 4A). Unlike KpSSB, recombinant KpPriB and PriB-SSBc could be purified from
the soluble supernatant only in a single chromatographic step using the SP column by the
AKTA-FPLC system (Figure 4A).
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Figure 4. Oligomeric state of PriB-SSBc. (A) Protein purity. Coomassie Blue-stained SDS-PAGE (15%) of the purified KpPriB
(lane 1), KpSSB (lane 2), PriB-SSBc (lane 3), and molecular mass standards are shown. (B) Gel-filtration chromatographic
analysis of the purified PriB-SSBc. The corresponding single peak shows the eluting PriB-SSBc. (C) Native molecular mass
of PriB-SSBc. The native molecular mass of PriB-SSBc was estimated to be 34209 Da, approximately twice as large as that
of a PriB-SSBc monomer. (D) Structural analysis of the dimer–dimer interface of KpSSB. Many hydrogen bonds and salt
bridges were formed at the dimer–dimer interface of KpSSB. These residues from the subunit A, B, C, and D are labeled in
red, blue, orange, and green, respectively. The distance (Å) of the residues is also shown. (E) The superposition of two PriB
dimers as the architecture of the KpSSB tetramer. The corresponding residues of KpPriB are not conserved and too far away
to interact with each other. Some of them are near to one another but exhibit charge repulsion.

2.4. Oligomeric State of PriB-SSBc in Solution

PriB and SSB form dimers and tetramers, respectively [45]. Whether or not PriB-SSBc
can form dimers, tetramers, or a mixture of dimers and tetramers remains to be elucidated.
The analysis of purified PriB-SSBc (4 mg/mL) by gel filtration chromatography showed a
single peak with an elution volume of 90.5 mL (Figure 4B). Assuming that PriB-SSBc has a
shape and partial specific volume similar to the standard proteins, the native molecular
mass of PriB-SSBc was estimated to be 34209 Da, calculated from a standard linear regres-
sion equation, Kav = −0.3682 (logMw) + 2.2835 (Figure 4C). The native molecular mass for
PriB-SSBc is approximately twice as large as that of a PriB-SSBc monomer (approximately
17.8 kDa). Accordingly, we concluded that PriB-SSBc in solution is a stable dimer like
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KpPriB [48], but not a tetramer like KpSSB [49]. The order of the native molecular size was
as follows: KpSSB > PriB-SSBc > KpPriB.

2.5. Crystal Structure of KpSSB

The crystallization of PriB-SSBc was attempted, but we could not obtain any crystal to
solve the crystal structure after the initial screening. The structure of KpPriB was available
(PDB entry 4APV); thus, we attempted to obtain the crystal structure of KpSSB and combined
their structural features to visualize PriB-SSBc. We crystallized KpSSB through hanging drop
vapor diffusion and determined its structure at a resolution of 2.35 Å (Table 1). The crystal
of KpSSB belonged to space group C121 with cell dimensions of a = 108.39, b = 57.01,
and c = 93.80 Å. Four monomers of KpSSB per asymmetric unit were present (Figure 2B).
Accordingly, KpSSB forms a tetramer in solution [49].

Table 1. Data collection and refinement statistics.

Data Collection

Crystal KpSSB
Wavelength (Å) 1
Resolution (Å) 27.7–2.35
Space group C121

Cell dimension
a, b, c (Å)

β (◦)

108.39, 57.01, 93.80
103.72

Redundancy 3.4 (2.9)
Completeness (%) 97.7 (89.9)

<I/σI> 17.2 (3.0)
CC1/2 0.984 (0.915)

Refinement
No. reflections 22807

Rwork/Rfree 0.211/0.258
No. atoms

Protein 429
Water 120

r.m.s deviations
Bond lengths (Å) 0.010
Bond angles (◦) 1.31

Ramachandran plot
Favored (%) 98.53
Allowed (%) 1.47
Outliers (%) 0
PDB entry 7F2N

Values in parentheses are for the highest resolution shell. CC1/2 is the percentage of correlation between intensities of random half-data sets.

The secondary structural element of KpSSB is similar to that of KpPriB (Figure 2A),
but significant differences in the lengths of β4- and β5-sheets were found (Figure 2C,D).
The KpSSB monomer has an OB-fold domain similar to EcSSB, and the core of the OB-
fold domain possesses a β-barrel capped with an α-helix. Unlike Streptomyces coelicolor
SsbB [61], Staphylococcus aureus SsbA (SaSsbA) [60] and SaSsbB [58,62], KpSSB contained
additional β6 strand. β6 strands function by clamping two neighboring subunits together
in a tetrameric SSB [61]. Thus, KpSSB may exhibit different protein–DNA and protein–
protein interaction specificities from these Gram-positive bacterial SSBs. The amino acids
120–174 in the structure of KpSSB were not observed, suggesting that the C-terminal region
in KpSSB was dynamic, similar to that in EcSSB [63]. As compared to the crystal structure of
the full-length EcSSB (PDB entry 1SRU) [63], six additional residues (amino acids 114–119;
GGRQGG) were determined in KpSSB.

The structures of KpSSB (Figure 4D) and KpPriB (Figure 4E) were used to explain why
PriB-SSBc could not form a tetramer. Many hydrogen bonds and salt bridges were formed
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at the dimer–dimer interface of KpSSB (Table 2). The superposition of two PriB dimers as
the architecture of the KpSSB tetramer revealed that the corresponding residues of KpPriB
are not conserved and too far away to interact with each other. Some of them are near to
one another but exhibit charge repulsion (e.g., R4–R75). Thus, KpPriB and PriB-SSBc could
not form a tetramer as with KpSSB.

Table 2. The formation of hydrogen bonds and salt bridges at the dimer–dimer interface of KpSSB
and the corresponding residues in KpPriB.

KpSSB Distance [Å] Corr. Residues in KpPriB

L113(B)–Q77(C) 2.86 I100/A71
G5(B)–Q111(D) 2.92 None/E98
K8(B)–E81(D) 3.83 R4/R75
E81(B)–K8(D) 3.51 R75/R4

G114(A)–Q77(D) 2.92 D101/A71
R4(A)–Q111(C) 3.10 None/E98
R4(A)–M112(C) 3.73 None/L99
G5(A)–Q111(C) 2.82 None/E98
Q111(A)–G5(C) 2.52 E98/None
K8(A)–E81(C) 3.03 R4/ R75
E81(A)–K8(C) 3.62 R75/R4

The formation of hydrogen bonds and salt bridges at the dimer–dimer interface of KpSSB was analyzed by using
PISA (Protein Interfaces, Surfaces and Assemblies), which is an automatic analytical tool for macromolecular
assemblies in the crystalline state.

2.6. Binding of PriB-SSBc to ssDNA

SSB-Ct in SSB can interact with the OB fold and regulate the ssDNA-binding activ-
ity [14,15]. Expectedly, it might also mean that the SSBc (including IDL and SSB-Ct) in
PriB-SSBc is capable of interacting with the ssDNA-binding sites within the OB fold and
inhibit the ssDNA binding of PriB-SSBc itself. Thus, we attempted to test whether or not
PriB-SSBc has ssDNA-binding activity. If so, we are also interested in whether PriB-SSBc
has a lower binding ability than that of PriB; that is, the presence of SSBc in PriB-SSBc
may physically or hinderingly inhibit the binding process. We studied the binding of
PriB-SSBc to ssDNA of different lengths with different protein concentrations using the
electrophoretic mobility shift analysis (EMSA). EMSA is a well-established approach in
studies of molecular biology, allowing the detection of the distinct protein–DNA com-
plex(es) [64]. The expected result of EMSA is that when the length of the nucleotides is
sufficient for the binding of two or more protein molecules, the electrophoretic mobility of
the higher SSB oligomer complex will be lower than that of the smaller protein oligomer
complex. When we incubated PriB-SSBc with a 15-mer deoxythymidine oligonucleotide
(dT15), no band shift was observed, indicating that PriB-SSBc could not form a stable
complex with this homopolymer (Figure 5A). We further tried to use longer ssDNA ho-
mopolymers for the binding of PriB-SSBc. In contrast to dT15, longer dT homopolymers,
dT20–50 (Figure 5B–F), produced a very significant band shift (C, complex). These findings
confirm the ssDNA-binding activity of PriB-SSBc, which is strong enough to form a stable
protein–DNA complex in solution. Furthermore, two different complexes for dT55 and
dT60 were formed by PriB-SSBc (Figure 5G,H). At lower protein concentrations, PriB-SSBc
formed a single complex (C1) with dT55, similar to that observed with dT50 (Figure 5F).
However, when the PriB-SSBc concentration was increased, another slower-migrating
complex (C2) was observed (Figure 5G). The appearance of the second complex resulted
from the increased PriB-SSBc concentration, suggesting that two PriB-SSBc molecules may
be contained per oligonucleotide (Figure 5I). Although dT55 is only 5 nt longer than dT50,
the presence of an extra 5 nt in dT55 compared with that of dT50 provides enough interac-
tion space for the binding of two PriB-SSBc dimers. Therefore, one PriB-SSBc occupies 25
(50/2 = 25) to 27.5 (55/2 = 27.5) nt of the ssDNA. These results from EMSA suggest that
the length of an ssDNA required for PriB-SSBc binding is 26 ± 2 nt.
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Figure 5. EMSA of PriB-SSBc. Protein (0, 19, 37, 77, 155, 310, 630, 1250, 2500, and 5000 nM) was incubated at 25 ◦C for
30 min with 1.7 nM of (A) dT15, (B) dT20, (C) dT25, (D) dT30, (E) dT40, (F) dT50, (G) dT55, or (H) dT60 in a total volume of
10 µL in 20 mM Tris–HCl (pH 8.0) and 100 mM NaCl. (I) Summary of the complex number of PriB-SSBc. Complex number
of PriB-SSBc as a function of the length of the ssDNA determined using EMSA.

2.7. Binding of KpPriB to ssDNA

In order to compare KpPriB to PriB-SSBc, its binding to ssDNA of different lengths
was studied. An EMSA of the binding of KpPriB to dT15–dT60 with different protein
concentrations was performed. KpPriB could not form a stable complex with dT15 (Figure 6A).
Unlike PriB-SSBc, KpPriB could not form a stable complex with dT20 (Figure 6B). As some
smears were observed, it appears that KpPriB can interact with dT20. In contrast to dT20,
the longer dT homopolymers (dT25–dT60) can bind to KpPriB and form a single complex
(Figure 6C–I). Unlike the case of PriB-SSBc, no other obvious complex was detected for the
binding of KpPriB to dT55 and dT60. These interactions appear to be highly cooperative
as only one complex of KpPriB molecules bound per ssDNA was visible. Accordingly, we
concluded that KpPriB bound ssDNA differently to that of PriB-SSBc.
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Figure 6. EMSA of KpPriB. Protein (0–50 µM) was incubated at 25 ◦C for 30 min with 1.7 nM of (A) dT15, (B) dT20, (C) dT25,
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NaCl. (I) Summary of the complex number of KpPriB. Complex number of KpPriB as a function of the length of the ssDNA
determined using EMSA.

2.8. Binding of KpSSB to ssDNA

The binding of KpSSB to ssDNA of different lengths (dT15–60) was also analyzed
(Figure 7). KpSSB could not form a stable complex with dT15 or dT20 (Figure 7A,B). Except
for binding to dT20 (Figure 5B), binding patterns of KpSSB to other dT homopolymers were
similar to those of PriB-SSBc (Figure 7C–I). Similar to PriB-SSBc (Figure 5G), two different
complexes with dT55 were observed for higher concentrations of KpSSB (Figure 7G), sug-
gesting the binding of two KpSSB tetramers on a single ssDNA. As one KpSSB occupies 25
(50/2 = 25) to 27.5 (55/2 = 27.5) nt of the ssDNA, the length of an ssDNA required for KpSSB
binding is 26 ± 2 nt. Interestingly, KpSSB has more OB-fold domains than PriB-SSBc and
is thought to have more ssDNA-contacting sites; however, KpSSB did not bind the shorter
ssDNA with dT20 effectively, but PriB-SSBc did. KpPriB also did not bind to dT20. The reason
that additional SSBc linked with KpPriB can enhance the ssDNA-binding activity (Table 3) and
change the binding behavior from KpPriB to KpSSB remains unclear. A co-crystal structure of
PriB-SSBc is needed to compare their ssDNA-binding modes.
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Table 3. ssDNA binding properties of KpSSB, KpPriB, and PriB-SSBc as analyzed by EMSA.

DNA Protein [Protein]50 (µM) Complex Number

dT15 PriB-SSBc ND 0
KpPriB ND 0
KpSSB ND 0

dT20 PriB-SSBc 2.12 ± 0.18 1
KpPriB ND 0
KpSSB ND 0

dT25 PriB-SSBc 1.15 ± 0.12 1
KpPriB 14.1 ± 1.0 1
KpSSB 0.58 ± 0.05 1

dT30 PriB-SSBc 0.94 ± 0.08 1
KpPriB 9.2 ± 0.8 1
KpSSB 0.55 ± 0.04 1

dT40 PriB-SSBc 0.84 ± 0.06 1
KpPriB 9.1 ± 0.8 1
KpSSB 0.23 ± 0.01 1

dT50 PriB-SSBc 0.29 ± 0.02 1
KpPriB 5.6 ± 0.3 1
KpSSB 0.17 ± 0.02 1

dT55 PriB-SSBc 0.33 ± 0.03 2
KpPriB 4.9 ± 0.5 1
KpSSB 0.13 ± 0.01 2

dT60 PriB-SSBc 0.23 ± 0.02 2
KpPriB 4.8 ± 0.5 1
KpSSB 0.05 ± 0.01 2

[Protein]50 was calculated from the titration curves of EMSA by determining the concentration of the protein (µM) needed to achieve the
midpoint value for input ssDNA binding. For some oligonucleotides, input ssDNA binding was the sum of the intensities from the two
separate ssDNA-protein complexes. Errors are standard deviations determined by three independent titration experiments.



Int. J. Mol. Sci. 2021, 22, 10854 11 of 23

2.9. Binding Constants of the SSB–ssDNA Complexes Determined from EMSA

To compare the ssDNA-binding abilities of PriB-SSBc, KpPriB, and KpSSB, the mid-
point values for input ssDNA binding, calculated from the titration curves of EMSA and
referred to as [Protein]50 (monomer), were quantified and are summarized in Table 3.
Although these proteins possess similar ssDNA-binding domains, their ssDNA-binding
activities and complex-forming patterns are different (Table 3). [PriB-SSBc]50 values ranged
from 0.23 to 2.12 µM; [KpPriB]50 values ranged from 4.8 to 14.1 µM; and [KpSSB]50 values
ranged from 0.05 to 0.58 µM. The ssDNA-binding ability is as follows: KpSSB > PriB-SSBc
> KpPriB. Results from the above analyses indicated that SSBc fused with PriB significantly
changed the ssDNA-binding properties, including the increase in the binding ability and
the formation of distinct complexes.

2.10. PriB-SSBc Could Significantly Stimulate the ATPase Activity of KpPriA

PriB [37] and SSB [18], but not KpSSBc [59], can significantly stimulate the activity
of PriA. To investigate whether or not PriB-SSBc can stimulate the activity of KpPriA
as KpSSB does [56,59], the ATPase activity of KpPriA was assayed in the presence of
PriB-SSBc (Figure 8A). KpPriB was also used for comparison (Figure 8A). KpPriA could
hydrolyze ATP alone, and this ATPase activity was dramatically stimulated when KpSSB,
KpPriB, and PriB-SSBc were individually present (Figure 8A). The ATPase activity of
KpPriA stimulated by KpSSB, KpPriB, and PriB-SSBc was enhanced by 4-, 15-, and 22-fold,
respectively. The stimulating effect on the activity of KpPriA was as follows: PriB-SSBc >
KpPriB > KpSSB. The enhancing ability for PriB-SSBc was significantly greater than that of
KpPriB and KpSSB (Figure 8B). Thus, KpPriB acting with SSBc (PriB-SSBc) had a synergistic
effect on PriA stimulation.
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Figure 8. ATPase activity of KpPriA. (A) KpPriA ATPase assay was performed with 0.4 mM [γ−32P] ATP and 0.025 µM
KpPriA in reaction buffer containing 40 mM Tris (pH 8.0), 10 mM NaCl, 2 mM DTT, 2.5 mM MgCl2, and 0.1 µM PS4/PS3-
dT30 DNA substrate. To study the effect, KpSSB (10 µM), KpPriB (10 µM), or PriB-SSBc (10 µM) was added into the assay
solution. Aliquots (5 µL) were taken and spotted onto a polyethyleneimine cellulose thin-layer chromatography plate,
which was subsequently developed in 0.5 M formic acid and 0.25 M LiCl for 30 m. Reaction products were visualized by
autoradiography and quantified with a phosphorimager. (B) The stimulating effect on KpPriA. The ATPase activity of
KpPriA stimulated by KpSSB, KpPriB, and PriB-SSBc was enhanced by 4-, 15-, and 22-fold, respectively.

2.11. The 114-GGRQ-117 Motif as a Regulatory Switch for ssDNA Binding

IDL in SSB can bind to the OB fold in the absence of ssDNA [65]. When SSBn
binds to ssDNA, IDL is no longer bound by SSBn [65]. Thus, we checked whether any
residues originally defined for ssDNA binding also interacted with IDL as seen in our
KpSSB structure. As compared with the crystal structures of the EcSSB- (Figure 9A) and
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Pseudomonas aeruginosa SSB (PaSSB)–ssDNA complex (Figure 9B), we found that a GGRQ
motif occurs at residues 114, which might be a regulatory switch for SSBn or ssDNA
binding. In the structure of KpSSB, the GGRQ motif interacted with Asn14, Lys74, and
Gln77 via several hydrogen bonds (Table 4). These GGRQ motif-interacting residues
(Asn14, Lys74, and Gln77) in KpSSB, perfectly conserved in EcSSB and PaSSB [49], are
ssDNA-binding residues in EcSSB- and PaSSB–ssDNA complexes [7,9]. In the structure of
the PaSSB–ssDNA complex, the GGRQ motif is not observed probably due to disorder [7].
Superimposing analysis indicated that if binding of the EcSSB–ssDNA complex occurs, the
GGRQ peptide in KpSSB will break free from several hydrogen bonds (Table 4) and shift
away by a distance of 12.2 Å and angles of 130◦ to form a complex with ssDNA (Figure 9C).
The binding of ssDNA might be a driving force to promote the conformational change in
the GGRQ motif (Figure 9C). Our structural evidence supports the role of the GGRQ motif
as a regulatory switch via the conformational change of binding ssDNA to SSB. Given that
the position of the GGRQ motif is located at the ssDNA binding path of SSB, whether or
not this motif is also involved in altering the SSB35/SSB65 distribution and causes different
SSB binding modes should be further elucidated.
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Figure 9. The 114-GGRQ-117 motif as a regulatory switch for ssDNA binding. (A) The superimposed structures of KpSSB
and the EcSSB-ssDNA complex. KpSSB and EcSSB are colored in green and gray, respectively. ssDNA is colored in yellow.
(B) The superimposed structures of KpSSB and the PaSSB-ssDNA complex. PaSSB is colored in pale cyan. Six additional
residues, 114-GGRQGG-119, were observed in the structure of KpSSB. This region was not visible in the structures of
the EcSSB- and PaSSB–ssDNA complexes. The 114-GGRQ-117 motif labeled in red interacted with Asn14, Lys74, and
Gln77 in KpSSBn via several hydrogen bonds. The GGRQ motif-interacting residues Asn14, Lys74, and Gln77 in KpSSB
are ssDNA-binding residues in EcSSB- and PaSSB–ssDNA complexes. (C) A cartoon model. The GGRQ motif might be
a regulatory switch for SSBn or ssDNA binding. In the structure of apo-KpSSB, the GGRQ motif interacted with Asn14,
Lys74, and Gln77 via several hydrogen bonds. Superimposing analysis indicated that if binding of the EcSSB–ssDNA
complex occurs, the GGRQ peptide in KpSSB will break free from these hydrogen bonds and shift away by a distance of
12.2 Å and angles of 130◦ to form a complex with ssDNA. The binding of ssDNA might be a driving force to promote
the conformational change in the GGRQ motif. Thus, binding of SSB to ssDNA makes SSBc more easily accessible to
other proteins.
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Table 4. The formation of hydrogen bonds at the GGRQ motif in KpSSB.

Hydrogen Bond Dist. [Å]

G114(B)–Q77(B) 3.9
G115(B)–Q77(B) 3.3
R116(B)–K74(B) 3.6
Q117(B)–N14(B) 3.4
G114(A)–Q77(D) 2.9
G114(C)–Q77(C) 3.3

The 114–GGRQ–117 motif-interacting residues N14, K74, and Q77 in KpSSBn are conserved in EcSSB (N14, K74,
and Q77) and PaSSB (N13, K73, and Q76).

2.12. Analysis of the Ssb and PriB Genes

We analyzed the priB (KPN_04595) (Figure 10A) and ssb (KPN_04446) (Figure 10B)
gene maps from K. pneumonia using a database search through the National Center for
Biotechnology Information. The priB gene is flanked by the rpsF and rpsR genes, coding for
the ribosomal proteins S6 and S18, respectively. Interestingly, this priB gene organization
in K. pneumonia (Figure 10C), as well as in the Gram-negative bacterium E. coli (but not
P. aeruginosa), resembles ssb (ssbA; the main ssb) gene organization in the Gram-positive
bacteria S. aureus (Figure 10C) and B. subtilis. The ssb gene coding for Deinococcus radiodurans
SSB, a homodimeric SSB in which each monomer contains two OB folds [66], is also
embedded within a ribosomal protein operon (data not shown). Given that these genes
(rpsF, ssbA, and rpsR) in Gram-positive B. subtilis belong to one operon and are controlled
by the SOS response [67], the priB gene might be also controlled by the SOS response in the
Gram-negative bacteria. This result from the gene map analysis may explain why it is not
necessary to synchronically express PriB with PriA and DnaT even at elevated pressure
when E. coli growth occurs [68]. Given that many prokaryotic genomes do not contain a
recognizable homolog of priB and dnaT (e.g., P. aeruginosa) [21], further operon and gene
regulation analyses for PriB and DnaT expression, not limited to replication restart, should
also be investigated in combination with biochemical and structural investigations.

Unlike ssbA (S. aureus) and priB (K. pneumonia and E. coli) embedded within a riboso-
mal protein operon, E. coli and K. pneumonia ssb genes are located adjacent to the uvrA gene
(Figure 10C). For physiological needs, these genes coding for SSB proteins would, there-
fore, be gradually different in structure and function under different regulation signaling
pathways during evolution.
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Figure 10. Gene map of K. pneumonia chromosomal region with priB and ssb. (A) The gene coding for KpPriB maps from
the 5023519 to 5023890 nt of the K. pneumonia genome. This priB gene is flanked by the rpsF and rpsR genes, coding for the
ribosomal proteins S6 and S18, respectively. (B) The gene coding for KpSSB maps from the 4864523 to 4865047 nt of the
K. pneumonia genome. This ssb gene is located adjacent to the uvrA and KPN_04447 genes, coding for the excinuclease ABC
subunit UvrA and lytic transglycosylase F (also identified as the periplasmic binding protein MltF), respectively. (C) Gene
arrangements around the priB and ssb genes in different bacterial genomes. The priB gene organization in K. pneumonia, as
well as in the Gram-negative bacterium E. coli (but not P. aeruginosa), resembles ssb (ssbA; the main ssb) gene organization in
the Gram-positive bacteria S. aureus and B. subtilis. Gene maps of the DnaB helicase, DnaD loader, and SsbB (the second ssb)
are also shown. The number is the gene product length (aa). HP, hypothetical protein; L9, the 50S ribosomal protein L9;
PchA, isochorismate synthase; AsnRS, asparaginyl-tRNA synthetase.

3. Discussion

It is believed that all cells present now evolved from a common ancestor, implying
that the basic principles learned from experiments performed with one type of cell should
be generally applicable to other cells. Accordingly, mechanisms of many fundamental
cellular activities, such as DNA replication, transcription, and translation, in different types
of cells should be similar. Due to stressful environmental conditions, however, organisms
will evolve new enzymes or auxiliaries for better survival and to increase their adaptability
during evolution. For example, the three eukaryotic nuclear RNA polymerases carry out
transcription to copy a segment of DNA into RNA, and they all seem to have evolved from
a single enzyme present in the common ancestor with archaea [69]. However, the evolution
of SSB may be not the case for the polymerase. Although SSBs from eubacteria [12] to higher
eukaryotes (e.g., RPA) [3] share basic mechanistic functioning, such as ssDNA binding and
protection from damage during DNA replication, they are different in terms of structure
and many other functions [56,59,63,70–72]. In addition, many bacteria have more than one
paralogous SSB, such as SsbA [59], SsbB [58,62], and SsbC [57], in S. aureus. In E. coli, PriB
is also identified as a kind of SSB [45,47]. Thus, the presence of these diverse SSBs may
indicate that SSB must co-evolve with the partner proteins to develop a unique function in
each species according to survival needs and obtain a competitive edge. For example, the
amino acid residues of IDL in different SSBs are not conserved [56]. Further research is still
needed to clarify why it is necessary to evolve these different SSBs in particular species
and whether and how their physiological functions are different from the main SSB.

Although PriB is essential in the pre-primosomal step of DNA replication [73], PriB
is only found in β- and some γ-proteobacteria [40]. In these bacteria, the priB gene is
embedded within a ribosomal protein operon [74]. Many ribosomal proteins which possess
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OB-fold domains are RNA-binding proteins [75,76]. As prokaryotic operons typically
encode functionally linked proteins [77,78], PriB might also function as an RNA-binding
protein and may be involved in RNA metabolism together with the ribosomal proteins
S6 and S18 (Figure 10). Indeed, unlike SSB, which prefers to bind to ssDNA [5], PriB
binds to ssDNA and RNA with comparable affinity [45]. Thus, the possibility that PriB
plays a role in physiology functioning to bind RNA (e.g., RNA chaperone [79–82]) still
cannot be ruled out at this time. However, this speculation must be further genetically and
structurally elucidated.

The priB-coded site (Figure 10) in the operon is replaced by the main ssb gene in
ε-proteobacteria and many other bacteria [40]. The respective main ssb genes in the
Gram-positive and -negative bacteria are located far apart and embedded within different
operons. It appears reasonable that the duplication of the ssb gene was accompanied by
a genome rearrangement, which resulted in one of the paralogs retaining the original
position, whereas the other one was relocated [40]. Interestingly, the original SSB function
remained with the relocated paralog, whereas the one within the ribosomal protein operon
acquired a new function, such as PriB, a component for the PriA-directed primosome
assembly. For PriB-lacking bacteria (e.g., the Gram-positive S. aureus and B. subtilis), some
auxiliary proteins, such as DnaD [82,83], would, therefore, evolve for the need of the PriA-
directed primosome assembly (Figure 10C). Interestingly, the Gram-negative P. aeruginosa
does not contain any recognizable homolog of priB, dnaT, priC, and dnaC in its genome [56].
For the restart system, only PriA and SSB are found in P. aeruginosa. Whether the PriA-
directed primosome in P. aeruginosa exists and how it recalls the DnaB helicase back onto
the chromosome is yet to be elucidated.

Unexpectedly, the ssDNA-binding affinity of PriB-SSBc is significantly higher than that
of KpPriB (Table 3). SSBc cannot bind to ssDNA but is capable of enhancing the KpPriB’s
binding affinity to ssDNA when covalent fusion occurs. Whether SSBc can facilitate the
recognition of KpPriB to ssDNA or increase the contact region of KpPriB to ssDNA remains
to be demonstrated. To further elucidate how the SSBc can improve the activity of KpPriB,
the crystal structure of PriB-SSBc in complex with ssDNA is highly desired.

Many SSB proteins bind to ssDNA with some degree of positive cooperativity [84].
In this study, we found different EMSA behaviors among KpPriB, PriB-SSBc, and SSB
proteins (Figures 5–7). SSB proteins form multiple distinct complexes with ssDNA of
different lengths [50,51,53], whereas KpPriB binding to ssDNA of different lengths only
forms a single complex [48]. When fusing with SSBc, the EMSA behavior of KpPriB was
almost shifted to that of KpSSB. EMSA with the use of a radioactive tracer is a useful
technology in molecular biology [85], allowing the detection of the distinct protein–DNA
complex(es) [64]. The ssDNA binding patterns of PriB-SSBc did not resemble those of
KpPriB; thus, SSBc plays a significant role in regulating the binding mode. These findings
also raise several questions as to why PriB has become a new kind of SSB but compensates
for the loss of SSBc. Apparently, the loss of SSBc leads to a decrease in the ssDNA-binding
ability of KpPriB as compared with that of KpSSB, KpPriB, and PriB-SSBc. Why does
PriB participate in DNA replication differently from its ancestor (SSB)? If tolerable, the
PriB progenitor will not abandon SSBc, an essential protein fragment for many cellular
uses [1,16,17,55,86–88].

We demonstrated that the stimulating effect on the activity of KpPriA was as follows:
PriB-SSBc > KpPriB > KpSSB (Figure 8). It is known that PriB stimulates PriA via an
interaction with ssDNA [37]. Given that the ssDNA-binding ability of KpPriB was lower
than that of KpSSB (Table 3), why KpPriB can stimulate the activity of PriA more than that
induced by KpSSB is unclear (Figure 8). Whether it was caused due to PriB using a different
ssDNA-binding strategy to SSB remains unclear [47]. SSBn [59] and SSB∆C10 [18] cannot
stimulate PriA. Thus, the specific protein–protein interactions, such as within DnaD [83],
are also important for the stimulation effect on PriA. For PriB-SSBc, it is easy to tentatively
speculate that the highest stimulation activity results from the co-action of PriB with SSBc.
The synergistic effect may mean that PriA has more than one access site for stimulation.
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To date, the structure of SSBc has not been observed. As compared to EcSSB, the
crystal structure of KpSSB solved in this study at a resolution of 2.3 Å (Table 1) revealed the
structure of the six additional residues 114-GGRQGG-119 (Figure 9) in SSBc. Based on this
structure, we identified the GGRQ motif as a regulatory switch for controlling the binding
of either SSBn or ssDNA. IDL in SSB can bind to SSBn in the absence of ssDNA [65]; when
the binding of SSBn to ssDNA occurs, IDL is no longer bound by SSBn [65]. Here, our
structure provided convincing evidence for this hypothesis. The GGRQ motif forms several
hydrogen bonds with Asn14, Lys74, and Gln77 in KpSSB (Table 4). Correspondingly, Asn14,
Lys74, and Gln77 in EcSSB [9] and PaSSB [7] are ssDNA-interaction sites revealed by the
complex structures. Thus, we propose that a cycle of conformational changes in GGRQ
with SSBn is associated with ssDNA binding. When binding to ssDNA, the GGRQ motif in
KpSSB will be dynamic and no longer bound by KpSSBn (Figure 10C). Our laboratory is
currently attempting to obtain crystals of the KpSSB–ssDNA complex for this investigation.

Cases involved in self-binding to regulate its DNA-binding activity are found in many
DNA-interaction proteins, for example, the initiation factor σ70, whose negative-charged
subdomain 1.1 acts as a DNA mimic, which competes with promoter DNA for the binding
site on domain 4 [89–91]. The negative-charged subdomain 1.1 in σ70 can regulate the
binding ability to the promoter DNA during the RNA transcription initiation stage. Many
DNA mimic proteins and peptides function by occupying the DNA binding sites of DNA
binding proteins to prevent these sites from being accessed by DNA [92–95]. For SSB,
SSB-Ct is probably in the case as a kind of DNA mimic [13]. Although the GGRQ motif in
SSB does not have DNA-like negative surface charge distributions, this motif can compete
with ssDNA for binding by the three ssDNA-binding residues, Asn14, Lys74, and Gln77
in SSBn. Due to pre-occupying the ssDNA binding sites, the GGRQ motif might also be
considered to function as a kind of DNA mimic peptide.

The binding site on PriB for ssDNA has been proposed to overlap with the binding
sites of PriA and DnaT [28]. This hypothesis can explain a mechanism for a dynamic
primosome assembly process, in which ssDNA is handed off from one primosome protein
to another as a repaired replication fork is reactivated [28]. If so, some regions in PriA and
DnaT may, therefore, serve as a DNA mimic for competing with ssDNA for binding to
PriB. Given that the complex structure of PriA-PriB and DnaT-PriB is not yet available,
these putative binding sites have not been identified. In contrast, the evidence from the
complexed structure of PriB–ssDNA [47] and the thermodynamic analysis [46] indicate that
the PriB dimer behaves like a protein with half-site reactivity, where only one monomer
of the dimer can engage in interactions with the DNA and the partner protein(s). Thus, it
remains to be explored whether the binding site of PriB for ssDNA is necessary to overlap
the binding sites of PriA and DnaT.

Recently, we showed complex structures of PaSSB in which all four OB folds do not
simultaneously participate in the binding to ssDNA [6,7]. As with the case of PriB, ssDNA
bound by PaSSB only occupies half of the binding sites of two OB folds rather than four OB
folds through the ssDNA-binding mode (SSB)3:1 [6]. In many cases, OB folds can be broad
ligand binders to both ssDNA and protein [10]. For the tumor suppressor BRCA2 [96], two
OB folds bind to ssDNA, and a third OB fold is involved in protein–protein interactions.
For RPA, two distinct binding modes can be involved, two OB folds and four OB folds,
respectively [97]. It is possible that the empty OB fold in SSB is open to allow sliding, as
described in single molecule experiments [98,99]. Whether the GGRQ motif, which may be
associated with a binding cycle to ssDNA in the noninteracting OB fold(s) observed in our
KpSSB structure, can, therefore, regulate the timing of ssDNA binding or sliding of SSB via
reptation remains to be experimentally elucidated.

The number of OB-fold proteins has grown rapidly in recent years. The understanding of
how they interact with ssDNA [100] and RNA [101] has improved considerably. The OB-fold
structure is highly dynamic and supports a binding surface for protein–protein interaction
and protein-nucleic acid binding. Loops linking β-strands can adopt different conformations
to open or close the β-barrel. The nucleic acid-binding domains of many OB-fold proteins
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are similar in structure [10]. To execute the specific mission in physiology, these OB-fold
proteins may contain additional different functional domains and regions, such as SSBc in
SSB. The amino acid residues in SSBc are not conserved in amino acid residues identity and
the gene product length, such as for SaSsbA [59], SaSsbB [58], and SaSsbC [57]. Unlike the
Gram-negative bacterial SSBs [18,56], these Gram-positive bacterial SSBs did not stimulate the
activity of PriA. It is possible that these differences are evolved gradually in each SSB to fit
the precise need for binding to their different partner proteins, e.g., the different PriA-directed
primosome assemblies [102]. The three PXXP motifs [1,16,17,55,86,87,103] in the IDL of EcSSB
are known to mediate the different protein–protein interactions. Most Gram-negative bacterial
SSBs, such as StSSB [51] and KpSSB [49], also contain these PXXP motifs, although with a minor
modification [56]. In PaSSB, the second and third PXXP motifs are not significant [56]. This may
be the reason that PaSSB could not enhance the activity of PriA [56].

In conclusion, we characterized and compared the ssDNA-binding properties of un-
tagged KpPriB, KpSSB, and PriB-SSBc. Through protein chimeragenesis, the SSBc fused
with KpPriB can significantly enhance the ssDNA-binding affinity, change the binding
behavior, and further stimulate the PriA activity. SSBc did not mediate a dimeric PriB
to be a tetramer, such as KpSSB. Our crystal structure revealed the dynamic movement
of the GGRQ motif in SSBc as a part of the ssDNA-binding cycle in SSB. More com-
plex structures of PriB are useful in improving our understanding of the primosome
assembly mechanism(s).

4. Materials and Methods
4.1. Construction of Plasmids

Construction of the KpPriA [56], tag-free KpSSB [60] and tag-free KpPriB [31] expres-
sion plasmids has been reported. For PriB-SSBc, we constructed the plasmid following
several steps. To obtain an additional cutting site (SacI) for fusing PriB and SSBc frag-
ments, the pET21b-PriB [48] and pET21b-KpSSB (with the stop codon to avoid having a
His tag fused with the gene product) [60] plasmids were mutated to create a desired SacI
restriction site (aa 98–99 for pET21b-PriB/SacI and aa 111–112 for pET21b-SacI/KpSSB,
respectively). The primers (GAGCAGATTGAGCTCATAGATTCTGGA and TCCAGAAT-
CTATGAGCTCAATCTGCTC) were used for the E98E/L99L-engineered pET21b-KpPriB.
The primers (GGCACCATGCAGGAGCTCGGCGGCCGT and ACGGCCGCC GAGCTC- CT-
GATGGTGCC) were used for the M111E/L112L-engineered pET21b-KpSSB. The E98E/L99L-
engineered pET21b-PriB plasmid was cut with NdeI and SacI restriction enzymes, and the frag-
ment KpPriB(1–98) was purified. Meanwhile, the M111E/L112L-engineered pET21b-KpSSB
plasmid was also treated with NdeI and SacI restriction enzymes, and the resultant DNA
fragment pET21b-KpSSB(112–174) was purified and then ligated with the insert KpPriB(1–98)
DNA fragment. The resultant plasmid pET21b-KpPriB-KpSSBc will express KpPriB1–98 fused
KpSSB112–174 (PriB-SSBc). Note that PriB-SSBc has 161 amino acid residues and does not
have any artificial residues.

4.2. Protein Expression and Purification

Purification of the recombinant KpPriA [56], tag-free KpSSB [60] and tag-free Kp-
PriB [31] has been reported. Briefly, KpSSB was purified by the precipitation of ammonia
sulfate, Q, and Heparin column chromatographies. Unlike KpSSB, recombinant KpPriB and
PriB-SSBc could be purified from the soluble supernatant only in a single chromatographic
step using the SP column by the AKTA-FPLC system (GE Healthcare Bio-Sciences, Piscat-
away, NJ, USA). The recombinant tag-free PriB-SSBc was expressed and purified using the
protocol described previously for KpPriB [31]. PriB-SSBc was expressed in E. coli BL21(DE3)
cells with the expression vector by incubating with 1 mM isopropyl thiogalactopyranoside.
The cells overexpressing the protein were resuspended in Buffer A (20 mM Tris–HCl
and 100 mM NaCl, pH 5.9), and disrupted by sonication on ice. The soluble supernatant
containing PriB-SSBc was applied to the SP column (GE Healthcare Bio-Sciences, Piscat-
away, NJ, USA). PriB-SSBc was eluted with a linear NaCl gradient from 0.1 to 1 M with
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Buffer A using the AKTA–FPLC system and dialyzed against Buffer B (20 mM HEPES and
100 mM NaCl, pH 7.0). The purity of these proteins was determined by Coomassie-stained
SDS–PAGE (Mini-PROTEAN Tetra System; Bio-Rad, CA, USA).

4.3. Gel-Filtration Chromatography

Gel-filtration chromatography was carried out by the AKTA-FPLC system. In brief,
purified PriB-SSBc (4 mg/mL) in Buffer B was applied to a Superdex 200 prep grade
column (GE Healthcare Bio-Sciences, Piscataway, NJ, USA) equilibrated with the same
buffer. The column was operated at a flow rate of 0.5 mL/min, and 0.5-mL fractions were
collected. The proteins were detected by measuring the absorbance at 280 nm. The column
was calibrated with proteins of known molecular weight: thyroglobulin (670 kDa), γ-
globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa), and vitamin B12 (1.35 kDa).
The Kav values for the standard proteins and PriB-SSBc were calculated from the equation:
Kav = (Ve − Vo)/(Vc − Vo), where Vo is column void volume, Ve is elution volume, and
Vc is geometric column volume.

4.4. Preparation of dsDNA Substrate

The dsDNA substrate PS4/PS3-dT30 [57] was used for ATPase assay. PS4/PS3-dT30
was prepared at a 1:1 concentration ratio of PS4 and PS3-dT30. PS4/PS3-dT30 was formed
in 20 mM HEPES (pH 7.0) and 100 mM NaCl by briefly heating at 95 ◦C for 5 min and by
slowly cooling to room temperature overnight.

4.5. ATPase Assay

KpPriA ATPase assay was performed with 0.4 mM [γ−32P] ATP and 0.025 µM KpPriA
in reaction buffer containing 40 mM Tris (pH 8.0), 10 mM NaCl, 2 mM DTT, 2.5 mM MgCl2,
and 0.1 µM PS4/PS3-dT30 DNA substrate. To study the effect, KpSSB (10 µM), KpPriB
(10 µM), or PriB-SSBc (10 µM) was added into the assay solution. Aliquots (5 µL) were
taken and spotted onto a polyethyleneimine cellulose thin-layer chromatography plate,
which was subsequently developed in 0.5 M formic acid and 0.25 M LiCl for 30 m. Reaction
products were visualized by autoradiography and quantified with a phosphorimager
(Typhoon 9410 Molecular Imager; GE Healthcare Bio-Sciences, Piscataway, NJ, USA).

4.6. Crystallography

Purified KpSSB was concentrated to 14 mg/mL for crystallization. Crystals were
grown at room temperature by hanging drop vapor diffusion in 20% PEG 3350, 0.2 M
magnesium acetate tetrahydrate, pH 6.5. The crystals reached full size in 9–12 days. Data
were collected using an ADSC Quantum-315r CCD area detector at SPXF beamline BL13C1
at NSRRC (Taiwan). All data integration and scaling were carried out using HKL-2000 [104].
There were four KpSSB monomers per asymmetric unit. The crystal structure of KpSSB was
solved at 2.3 Å resolution with the molecular replacement software Phaser-MR [105] using
EcSSB as model (PDB entry 1EYG). A model was built and refined with PHENIX [106]
and Coot [107]. The final structure was refined to an R-factor of 0.211 and an Rfree of 0.258
(Table 1). Atomic coordinates and related structure factors have been deposited in the PDB
with accession code 7F2N.

4.7. EMSA

EMSA was conducted in accordance with a previously described protocol for SSB [64].
In brief, ssDNA was radiolabeled with [γ-32P] ATP (6000 Ci mmol−1; PerkinElmer Life
Sciences, Waltham, MA) and T4 polynucleotide kinase (Promega, Madison, WI, USA).
The protein (0–5 µM for KpSSB; 0–5 µM for PriB-SSBc; and 0–50 µM for KpPriB) was
incubated for 30 m at 25 ◦C with 1.7 nM DNA substrate in a total volume of 10 µL in
20 mM Tris–HCl (pH 8.0) and 100 mM NaCl. Aliquots (5 µL) were removed from each of
the reaction solutions and added to 2 µL of gel-loading solution (0.25% bromophenol blue
and 40% sucrose). The resulting samples were resolved on 8% native polyacrylamide gel at
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4 ◦C in TBE buffer (89 mM Tris borate and 1 mM EDTA) for 1 h at 100 V and visualized
through phosphorimaging. A phosphor storage plate was scanned, and data regarding
complex and free DNA bands were digitized for quantitative analysis. The ssDNA binding
ability of the protein was estimated through linear interpolation from the concentration of
the protein that bound 50% of the input DNA.
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