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Abstract: Saliva is a biofluid that can be considered as a “mirror” reflecting our body’s health status.
Vibrational spectroscopy, Raman and infrared, can provide a detailed salivary fingerprint that can be
used for disease biomarker discovery. We propose a systematic literature review based on the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to evaluate the
potential of vibrational spectroscopy to diagnose oral and general diseases using saliva as a biological
specimen. Literature searches were recently conducted in May 2020 through MEDLINE-PubMed and
Scopus databases, without date limitation. Finally, over a period of 10 years, 18 publications were
included reporting on 10 diseases (three oral and seven general diseases), with very high diagnostic
performance rates in terms of sensitivity, specificity, and accuracy. Thirteen articles were related
to six different cancers of the following anatomical sites: mouth, nasopharynx, lung, esophagus,
stomach, and breast. The other diseases investigated and included in this review were periodontitis,
Sjögren’s syndrome, diabetes, and myocardial infarction. Moreover, most articles focused on Raman
spectroscopy (n = 16/18) and more specifically surface-enhanced Raman spectroscopy (n = 12/18).
Interestingly, vibrational spectroscopy appears promising as a rapid, label-free, and non-invasive
diagnostic salivary biometric tool. Furthermore, it could be adapted to investigate subclinical
diseases—even if developmental studies are required.

Keywords: saliva; vibrational spectroscopy; Raman; infrared; diagnosis; systematic review

1. Introduction

Translation of precision medicine into mainstream clinical care is being prioritized worldwide
and is increasingly being advanced as the future paradigm for more effective medical management.
Precision medicine, also coined as P4 medicine by Hood and Friend [1], who characterized it as
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being “predictive”, “preventive”, “personalized”, and “participatory”, embraces a system approach
to understanding underlying disease pathophysiology coupled with individually tailored healthcare
informed by an individual’s genes, lifestyle, and environment [2,3]. The search for biomarkers can
then be beneficial in various clinical situations for patient management: Screening of patients at risk
of the disease or with the disease at an early stage, differential diagnosis of the disease with other
conditions, the prognosis of the disease independently of the treatment, prediction of the response to
treatment, and monitoring of disease evolution [4].

In this context of the search for diagnostic markers, vibrational spectroscopy (VS), infrared
absorption (IR), and Raman scattering spectroscopies, appears to be a promising alternative approach
in research for developing new modalities with the aim to improve patient healthcare via the better
diagnosis, prognosis, and surveillance. vs. modalities hold such promises because the “molecular
fingerprint” that it provides a snapshot of the sample biomolecular composition, and variations therein
can be exploited to identify disease status [4]. The diagnostic potential of vs. approach has been
published. However, in the vast majority of cases as proof-of-concept studies, mainly in malignant
tumors on various types of biosamples, such as biofluids [5], cells [6], or tissues [7]. Biofluids seem
particularly suitable for the detection of many types of diseases, because they are in direct connection
with organs of the human body and are generally easily collected [4,8].

Saliva (or whole saliva or oral fluid) is an interesting biofluid. It is a biological fluid composed of
secretions from the three major salivary glands (parotid, submandibular, sublingual) and from minor
glands (e.g., labial, buccal, lingual, and palatal tissues), gingival crevicular fluid, cell debris, dental
plaque, bacteria, nasal and bronchial secretions, flaking cells, blood and exogenous substances [9]. Total
human saliva is a biofluid, constituted by water (99.5%), proteins (0.3%, e.g., proline-rich, tyrosine-rich,
mucins, sialic acid, lactic acid), and inorganic substances (0.2%, e.g., thiocyanate) reflecting the
physiological and pathological state of the body [9–11]. Saliva includes over 800 identified metabolites
(amino acids, carboxylic acids, steroid derivatives, glucose, etc.) and is comparable to human serum
metabolomes in terms of chemical complexity and abundance of metabolites [9,12].

In a healthy individual, the daily salivary secretion is estimated to be between 0.5 and 1.5 L.
Its collection is easy, non-invasive, painless, and low-cost with minimal risks of exposure to
infectious agents [13]. Studies with different techniques of proteomics, metabolomics, transcriptomics,
or microbiomics have shown the potential interest of using saliva in the diagnosis of oral diseases
(such as periodontitis or oral cancer), but also of systemic diseases (such as breast cancer, diabetes, and
Sjögren’s syndrome) [9,13].

Thus, the aim of this systematic literature review was to demonstrate the real potential of vs.
to diagnose oral and general diseases using saliva. Literature searches were recently conducted without
date limitation, in May 2020, through MEDLINE-PubMed and Scopus databases, according to PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

2. Results

The initial search using keywords combinations returned 172 articles on PubMed and 164 articles
on Scopus. In the first phase, duplicates articles were removed. Titles and abstracts of the remaining
267 papers were reviewed, and 227 of them were excluded as they were not relevant to the inclusion
criteria. The remaining full-text articles have been thoroughly scrutinized, and one additional article
was found after scrutinizing the references of these 40 retained papers.

All 41 articles were assessed for eligibility, and 23 were finally excluded. The reasons for excluding
these full-text articles were because they had less than 20 patients in either group (n = 14), they did not
use saliva (n = 3), the aim of the study was not the diagnosis of a disease (n = 3), it was not an original
document (n = 1), not written in English (n = 1) or because there was no control group (n = 1). Finally,
18 key papers have been included in this systematic literature review (Figure 1).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram for
the selection of relevant studies.

Although this review aimed to investigate the use of vibrational spectroscopies (Infrared and
Raman) as a tool for disease diagnostics, most articles were interested in using Raman spectroscopy
(n = 16/18), and more, specifically surface-enhanced Raman spectroscopy (SERS) (n = 12/18). Only two
articles focused on Fourier Transform Infrared Spectroscopy (FTIR). This is summarized in Figure 2A.
The diagnostic performances in terms of sensitivity, specificity, and accuracy were evaluated by different
algorithms. From Figure 2B, it can be noticed that the model based on PCA-LDA followed by LOOCV
was most widely used.

Among those 18 articles, 10 different diseases were studied: Three oral and seven general diseases.
Moreover, cancers remain the most studied pathology with 13 articles out of 18. The total number
of patients included in studies of this review was 2082 with 1226 patients with diagnosed diseases
(n = 925) or premalignant disorders/intermediate stage (n = 301) and 856 healthy volunteers (Table 1).
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Figure 2. The number of studies, according to vibrational spectroscopy (VS) and algorithms
techniques. (A) Vibrational spectroscopic techniques; (B) Algorithms used for data processing;
* indicates results from the most relevant algorithm according to the authors; PCA, principal component
analysis; LDA, linear discriminant analysis; LOOCV, leave-one-out cross-validation; SPA-QDA,
successive projections algorithm quadratic discriminant analysis; GA-QDA, genetic algorithm quadratic
discriminant analysis; PCA-QDA, principal component analysis quadratic discriminant analysis;
SVM, support vector machine; PLS-DA, partial least squares discriminant analysis; ROC, receiver
operating characteristics.
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Table 1. Studies included in the systematic literature review using salivary vibrational spectroscopy as a diagnostic tool for various diseases.

Diseases VS
Technique Authors Year Number of Patients

Included Algorithm Spectral Range
(in cm−1)

Sensibility Specificity Accuracy

Oral squamous cell
carcinoma

Raman Jaychandran
S. et al. [14] 2016 50 Cancers/87 Premalignant

lesions/21 Healthy PCA-LDA 600 to 1800 - - 93.1%

Raman Rekha P. et al. [15] 2016 32 Cancers/28 Premalignant
lesions/23 Healthy PCA-LDA-LOOCV 800 to 1800 93.8% 82.6% 89.1%

Nasopharynx
cancer

SERS Feng S. et al. [16] 2014 62 Cancers/30 Healthy PCA-LDA-LOOCV
+ ROC curve 500 to 1750 98.4% 73.3% 90.2%

SERS Qiu S. et al. [17] 2016 32 Cancers/30 Healthy PCA-LDA-LOOCV
+ ROC curve 400 to 1750 86.7% 81.3% 83.9%

SERS Lin X. et al. [18] 2017 170 Cancers/71 Healthy PCA-LDA-LOOCV
+ ROC curve 600 to 1750 70.7% 70.3% 70.5%

Lung cancer
SERS Li X. et al. [19] 2012 21 Cancers/20 Healthy PCA-LDA 500 to 2000 78% 83% 80%

SERS Qian K. et al. [20] 2018 61 Cancers/66 Healthy Random Forest *
(SVM -LOOCV) 400 to 1800 96.7% 100% -

Œsophagal cancer

ATR-FTIR Maitra I. et al. [21] 2019

25 OAC/12 HGD/6 LGD/27
Barrett’s/19 Esophageal

inflammatory/38 Healthy
24 OAC/10 HGD/5 LGD/26

Barrett’s/18 Esophageal
inflammatory/35 Healthy

SPA-QDA *
(PCA-QDA,
GA-QDA)

900 to 1800 95.4% # 62.5% # 88.8% #

Raman Maitra I. et al. [22] 2020
SPA-QDA *
(PCA-QDA,
GA-QDA)

800 to 1800 100% # 80% # 95.6% #

Gastric cancer SERS Chen Y. et al. [23] 2018 84 Late cancer/20 Early
cancer/116 Healthy PCA Amino acids

(400–2000) 87.7% # 80% # -

Breast cancer

SERS Feng S. et al. [24] 2015 31 Cancers/33 Benign
tumor/33 Healthy

PLS-DA-LOOCV +
ROC curve 500 to 1780 72.7% # 81.3% # 78.4% #

SERS Hernández-Arteaga
A. et al. [25] 2017 100 Cancers/106 Healthy ROC curve analysis Sialic acid

(400–1800) 94% 98% 92%

SERS Hernández-Arteaga
A. et al. [26] 2019 35 Cancers/129 Healthy ROC curve analysis Sialic acid

(400–1800) 80.6% 93.1% -

Periodontitis SERS Hernandez-Cedillo
A. et al. [27] 2019 33 Periodontitis/30

Gingivitis/30 Healthy ROC curve analysis Sialic acid
(400–1800) 69.6% 100% -
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Table 1. Cont.

Diseases VS
Technique Authors Year Number of Patients

Included Algorithm Spectral Range
(in cm−1)

Sensibility Specificity Accuracy

Sjögren’s syndrome
(SjS)

SERS Stefancu
A. et al. [28] 2019 29 SjS/21 Healthy PCA-LDA-LOOCV 500 to 1750 96.5% 90.5% 94%

SERS Moisoiu V. et al. [29] 2020 31 SjS/22 Healthy PCA-LDA-LOOCV 600 to 1700 77% 74% 75%

Diabetes FTIR Scott D.A. et al. [30] 2010 39 Diabetes/22 Healthy LDA-cross
validation 900 to 1800 90.9% - 88.2%

Myocardial
infarction (AMI) Raman Cao G. et al. [31] 2015 46 AMI/43 Healthy PCA-LDA-LOOCV

+ ROC curve 400 to 1800 80.4% 81.4% -

SERS, surface-enhanced Raman scattering; ATR-FTIR, attenuated total reflectance-Fourier transform infrared; HGD, high-grade dysplasia; LGD, low-grade dysplasia; OAC, esophageal
adenocarcinoma; SjS, Sjögren’s syndrome; AMI, acute myocardial infarction. * results from the most relevant algorithm according to the authors; # minimal value according to the different
categories of patients (≥20 patients).
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2.1. Cancer

Cancer represents the main disease for which vs. has been used as saliva-based diagnostic tool.
Thirteen articles included in this review focused on six different cancers: oral (n = 2), nasopharyngeal
(n = 3), lung (n = 2), esophageal (n = 2), gastric (n = 1), and breast (n = 3) (Table 1).

The total number of patients, including in these cancer studies was 1736 out of which 747 were
with cancer (82 squamous cell carcinoma, 264 nasopharyngeal cancer, 82 lung cancer, 49 esophageal
adenocarcinoma, 104 gastric cancer, and 166 breast cancer), 271 patients were with premalignant
disorders (115 oral, 123 esophageal, and 33 breast lesions) and 718 were healthy patients.

2.1.1. Oral Cancer

Saliva is directly in “contact” with oral squamous cell carcinoma, the most common oral malignancy.
In 2016, Jaychandran et al. presented a study based on conventional Raman spectroscopy, evaluating
saliva for discrimination of oral squamous cell carcinoma (50 patients), compared to oral premalignant
disorders (87 patients) and healthy controls (21 patients) [14]. They also compared their results on saliva
with other ‘liquid biopsies’ (blood and urine) and a conventional tissue biopsy. Spectroscopic data
analysis was through a principal component analysis (PCA) followed by linear discriminant analysis
(LDA). Raman peaks for discrimination between malignant, premalignant, and normal groups were
observed for pyrimidine, amide, mucin, hemocyanin, and carotenoids (Table 2). Results showed that
PCA-LDA was able to discriminate spectra from cancer patients versus non-cancer with an accuracy
of 93.1%. Moreover, accuracy was better with saliva samples than with blood or urine (78% and
90.5%, respectively), with however best results obtained with tissue samples. Mean sensitivities and
specificities were not described.

Rekha et al. performed a study, also using Raman and PCA-LDA, but with a leave-one-out
cross-validation (LOOCV) [15]. They were interested only in saliva sample analysis and compared
samples of 23 healthy volunteers to both, 28 patients with oral submucous fibrosis (premalignant
group), and 32 clinically diagnosed patients for oral squamous cell carcinoma.

Raman peaks showing differences between different patient groups corresponded to various
amino acids, such as histidine, valine, and proline, as well as amide I, nucleic acid, lactic acid, and lipids
(Table 2).

The predictive model based on PCA-LDA showed that it could correctly classify spectra from
cancer (malignant) against non-cancer (normal) groups with a sensitivity, specificity, and accuracy of
93.8%, 82.6%, and 89.1%, respectively. Interesting results were also obtained upon comparing healthy
and precancerous lesion samples (premalignant): 96.4% of sensitivity, 70.2% of specificity, and 84.3%
of accuracy. However, the comparison of the three groups (normal, premalignant, and malignant)
simultaneously resulted in a classification accuracy of only 60.2%.
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Table 2. Molecular biosignatures and tentative assignments identified from saliva using FTIR, Raman, and SERS to diagnose different diseases.

Diseases Authors Year VS Technique Nature of Substrate
(for SERS only)

Peak Wavenumbers (in
cm−1)

Major Assignments

Oral squamous
cell carcinoma

Jaychandran S. et al. [14] 2016 Raman -

767, 1236, 1330, 1662, 1688 Pyrimidine
1652 Amide
1444 Mucine
752 Hemocyanine

Rekha P. et al. [15] 2016 Raman -

806, 1460, 1485 DNA (O-P-O symmetric stretch, Pentose sugar CH2 deformation
vibration, Purine base vibration)

829, 1142, 1169, 1660 Glutathione
870, 896, 986 Proline (C-C stretch, na, na)
918 Histidine
935, 948, 964, 969 Valine (C-C stretch, na, na, na)
1015, 1338, 1360, 1424, 1556 Tryptophan (benzene and pyrrole ring breathe out of
1050, 1090 phase, Fermi resonance doublet, na, na)
1066, 1128, 1302, 1735 Lactic acid (C–CH3 stretch, C–O stretch)
1509 Lipid (na, C-C stretch, CH2 twisting and wagging, C=O stretch)
1180 Phenylalanine
1238, 1258, 1276 Tyrosine, cytosine, guanine, adenine
1636 Amide III (C-N stretch)
806, 1460, 1485 Amide I (C=O stretch)

Nasopharynx
cancer

Feng S. et al. [16] 2014 SERS Ag-Colloids

621, 1004, 1031 Phenylalanine (C-C twisting mode, νs(C-C), δ(C-C))
642, 1173 Tyrosine (ν(C-S))
760 Tryptophan (ring breathing mode)
933 Proline (ν(C-C))
1123 Proteins (ν(C-N))
1337 Collagen (CH3CH2 wagging)
1445 Collagen, phospholipids (δ(C-H))

Qiu S. et al. [17] 2016 SERS Ag-Colloids

447, 1003 Phenylalanine (Ring torsion, νs(C-C))
496 Glycogen
590 Ascorbic acid, Amide VI
635 L-Tyrosine, Lactose (ν(C-S))
725 Adenine, Coenzyme A (δ(C-H))
812 L-Serine (ν(C-C-O))
888 D-Galactosamine (δ(C-O-H))
1052 Protein (C-O/C-N stretching)
1134 D-Mannose (ν(C-N))
1204 L-Tryptophane, Phenylalanine (Ring vibration)
1270 Unsaturated fatty acids (ν(C-H))
1336 Nucleic acid bases (ν(C-H))
1448 Collagen, phospholipids (δ(CH2))
1619 Tryptophan (ν(C=C))
1662 Nucleic acid
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Table 2. Cont.

Diseases Authors Year VS Technique Nature of Substrate
(for SERS only)

Peak Wavenumbers (in
cm−1)

Major Assignments

Nasopharynx
cancer Lin X. et al. [18] 2017 SERS Ag-Colloids

621, 1004, 1031 Phenylalanine (C-C twisting mode, νs(C-C), δ(C-H))
642, 854, 1175 Tyrosine (ν(C-S), Ring breathing mode, δ(C-H))
760, 1208, 1552 Tryptophan (Ring breathing mode, ν(C-C6H5), ν(C=C))
878 Hydroxyproline (ν(C-C))
935 Proline (ν(C-C))
959 α-helix Proline, Valine (ν(C-C))
1049, 1123 Proteins (ν(C-O) ν(C-N), ν(C-N))
1265 Amide III, collagen (ν(CN), δ(NH))
1337 Collagen (CH3CH2 wagging)
1445 Collagen, lipids
1684 Amide I (ν(C=C))

Lung cancer

Li X. et al. [19] 2012 SERS Ag-Colloids

523 Lysozymes, proteins, guanine, thymine
622 Proteins, phenylalanine, adenine
696 Methionine, cytosine
735 Tryptophan, coenzyme A, adenine, cytosine, thymine, guanine
789 Cytosine, uracil, thymine
822 -
884 Proline, valine, glycine, tryptophan, glutamic acid, hydroxyproline
909 Tyrosine
925 Proline, glucose
1009 Tryptophan, lysine, phenylalanine
1077 Lipids, nucleic acids, proteins, carbohydrates
1280 Phospholipid, amide III, proteins, lipids
1369 Tryptohan, porphyrins, lipids, guanine, thymine, proteins
1393 -
1722 Ester group

Qian K. et al. [20] 2018 SERS
Gold nano-modified

chip (OptoTrace
Technologies)

423 Glucose, deuterated glucose

643 (C-H torsion, COO- wag; O-C=O in plane deformation; C-C-C in phase
deformation)

672 Cytosine, guanine (C–S stretch)
732 Adenine (C–S (protein)/CH2 rocking)
852 Tyrosine (Ring breathing mode), Proline Ring (C–C stretch)
923 Proline Ring (C-C stretch), Lactic Acid, glucose
999 Phenylalanine (symmetric ring breathing mode)
1030 (Stretching vibration of the ring, deformation in plane C-H)
1046 N-acetyl glucosamine

1268 Amide III (C–N stretching mode of proteins, indicating mainly a-helix
conformation)

1449 Phenylalanine, Proteins (CH2 bending mode), Bending mode (C=C)
1600 Phenylalanine, Tyrosine (C=C in-plane bending mode)
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Table 2. Cont.

Diseases Authors Year VS Technique Nature of Substrate
(for SERS only)

Peak Wavenumbers (in
cm−1)

Major Assignments

Œsophagal cancer

Maitra I. et al. [21] 2019 ATR-FTIR

902 Phosphodiester region
991 Ribose (C-O), (C-C)
1003 (Ring stretching vibrations mixed strongly with CH in-plane bending)
1014, 1107 Polysaccharides, pectin (ν(CO), ν(CC), δ(OCH), ring)
1068 Ribose (Stretching C-O)
1099 Phosphate II (Stretching PO2

- symmetric)
1431 Polysaccharides, cellulose (δ(CH2))
1558 (Ring base)
1589 Phenyl (Ring C-C stretch)
1604 Adenine (DNA)
1624, 1689 Nucleic acids (base carbonyl stretching, ring breathing mode)
1643 Amide I (C=O stretching vibrations)
1697, 1701 Guanine (C2=O, C5=O)
1716 Thymine (C=O)
1743 Lipids (C=O stretching mode)
1778, 1786 Lipids (ν(C=C), ν(C=C)), fatty acids

Maitra I. et al. [22] 2020 Raman

902 Phosphodiester region
991, 1068 Ribose (C-O), (C-C)
1003 (Ring stretching vibrations mixed strongly with CH in-plane bending)
1014, 1107 Polysaccharides, pectin (ν(CO), ν(CC), δ(OCH), ring)
1068 Ribose (Stretching C-O)
1099 Phosphate II (Stretching PO2

- symmetric)
1431 Polysaccharides, cellulose (δ(CH2))
1558 (Ring base)
1589 Phenyl (Ring C-C stretch)
1604 Adenine (DNA)
1624, 1689 Nucleic acids (base carbonyl stretching, ring breathing mode)
1643 Amide I (C=O stretching vibrations)
1697, 1701 Guanine (C2=O, C5=O)
1716 Thymine (C=O)
1743 Lipids (C=O stretching mode)
1778, 1786 Lipids (ν(C=C), ν(C=C)), fatty acids

Gastric cancer Chen Y. et al. [23] 2018 SERS A/GO NSs

435 Glutamine, hydroxylysine, proline, tyrosine
488 Taurine, glycine, ethanolamine, hydroxylysine, tyrosine
530 Taurine, glutamine, histidine, alanine, glutamic acid
642 Histidine, alanine, proline, tyrosine
725 Taurine, glutamine, histidine, glutamic acid
781 Glycine, glutamic acid, proline, tyrosine
843 Taurine, ethanolamine, histidine, alanine, hydroxylysine, proline, tyrosine
869 Glycine, glutamine, ethanolamine, glutamic acid
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Table 2. Cont.

Diseases Authors Year VS Technique Nature of Substrate
(for SERS only)

Peak Wavenumbers (in
cm−1)

Major Assignments

Gastric cancer Chen Y. et al. [23] 2018 SERS A/GO NSs

435 Glutamine, hydroxylysine, proline, tyrosine
917 Glutamine, alanine, glutamic acid, proline
933 Histidine, glutamic acid, proline
961 Histidine, glutamic acid, proline, tyrosine
1037 Taurine, ethanolamine, alanine, proline, tyrosine
1053 Taurine, glutamine, ethanolamine, hydroxylysine
1109 Taurine, glutamine, ethanolamine, histidine, alanine
1197 Histidine, hydroxylysine, proline, tyrosine
1222 Hydroxylysine, proline, tyrosine

1450 Taurine, glycine, glutamine, ethanolamine, alanine, glutamic acid,
hydroxylysine, proline

1500 Histidine
1710 Glutamine

Breast cancer

Feng S. et al. [24] 2015 SERS Ag-Colloids

621, 643, 1004, 1033 Phenylalanine (C-C twisting mode, C-C twisting mode, νs(C-C), δ(C-H))
760, 1208, 1552 Tryptophan (Ring breathing mode, ν(C-C6H5), ν(C=C))
854, 1176 Tyrosine (Ring breathing mode, δ(C-H))
876 Hydroxyproline (ν(C-C))
935 Proline (ν(C-C))
1049, 1084 Proteins (ν(C-O) ν(C-N), ν(C-N))
1265 Amide III, collagen (ν(CN), δ(NH))
1340 Collagen (CH3CH2 wagging)
1447 Collagen, Lipids (δ(C-H))
1684 Amide I (ν(C=C))

Hernández-Arteaga
A. et al. [25] 2017 SERS Cit-Ag-NP

1002 Pyranose (Ring breathing mode)
1237 Amide III (C-N stretching)
1391 Carboxyl (stretching mode)

Hernández-Arteaga
A. et al. [26] 2019 SERS Cit-Ag-NP

1002 Pyranose (Ring breathing mode)
1237 Amide III (C-N stretching)
1391 Carboxyl (stretching mode)

Periodontitis
Hernandez-Cedillo

A. et al. [27] 2019 SERS Cit-Ag-NP
1002 Pyranose (Ring breathing mode)
1237 Amide III (C-N stretching)
1391 Carboxyl (stretching mode)

Sjögren’s
syndrome (SjS)

Stefancu A. et al. [28] 2019 SERS Ag-NP
724, 1095, 1323, 1450, 1570 Hypoxanthine (na, R2trigd or bC-H (in-plane), C-O, C-N or C-C, C-N)
956, 1134, 1245, 1323 Xanthine (bN-H, R2trigd, C-N, Ring vibrations, C-N, bC-H, C-N)
884, 1130, 1370 Uric acid (na, na, na, C-N, C-H bending)

Moisoiu V. et al. [29] 2020 SERS Cl-Ag-NP

724, 1097, 1324, 1449, 1581 Hypoxanthine (na, Ring vibrations, C-O, C-N or C-C, C-N)
957, 1132, 1245, 1324 Xanthine (na, Ring vibrations, C-N, Mixed ring vibrations/C-N)
812, 886, 1132, 1369 Uric acid (na, na, C-N, C-N, C-H bending)
1002, 1032, 1205, 1651 Proteins (Phe, Phe, Try/Phe, Amide I)
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Table 2. Cont.

Diseases Authors Year VS Technique Nature of Substrate
(for SERS only)

Peak Wavenumbers (in
cm−1)

Major Assignments

Diabetes Scott DA. et al. [30] 2010 FTIR

≈970 (C-C/C-O stretching vibrations in sugar moieties)

≈1150 (C-C/C-O stretching vibrations in sugar moieties, C-O-C symmetric and
asymmetric vibrations of sugar moieties and phospholipids)

≈1410 (vs(COO−1), symmetric and asymmetric carboxyl radical stretching
vibrations of carboxylate groups)

≈1470 (bending vibration of CH2 group of amino acids in protein side chains)

≈1695 (α-helix component in the amide I region, intermolecular antiparallel
b-sheets)

≈1745 (lipid ester band)

Myocardial
infarction (IMA)

Cao G. et al. [31] 2015 Raman

442 (N-C-S stretch)
509 Cystein (ν(S–S) gauche–gauche–gauche)
621, 1002, 1031 Phenylalanine (C–C twisting mode of phenylalanine, δ(C–H))

643, 828, 853 Tyrosine (C–C twisting, Ring breathing tyrosine, Ring breathing mode
of tyrosine)

755 Tryptophan (ν(C–C))
876 Hydroxyproline
925 (C–H bending)
1047 (C–CH3 vibration)
1210 Hydroxyproline, Tyrosine
1330 Nucleic Acids
1449 Proteins (C–H vibration)
1555 Amide II
1670 Amide I

Cit-Ag-NP, citrate-reduced silver nanoparticles; Ag-NP, silver nanoparticles; Cl-Ag-Np, chloride-capped silver nanoparticles; A/GO NSs, graphene oxide nanoscrolls wrapped with gold
nanoparticles; Ag-Colloids, silver colloids; ν, stretching; νs, symmetric stretch; b, bending; R, ring; trigd, trigonal deformation; δ, deformation; na, not assigned. Tentative assignments are
taken from cited publications.
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2.1.2. Nasopharyngeal Cancer

Other cancers can contribute endogenously to the composition of saliva via the nasal and bronchial
secretions, such as cancers of the nasopharynx or lung. Nasopharyngeal carcinoma (NPC) is by far the
most common cancer in the nasopharynx cancers [32].

Feng’s group published three articles between 2014 and 2017 on this subject. In the first, Feng et al.
carried out a SERS analysis on purified proteins from saliva samples from 62 patients with diagnosed
nasopharyngeal cancer and from 30 healthy donors [16]. They used the PCA-LDA model with LOOCV.
The authors attribute the SERS peaks of discrimination to phenylalanine, tyrosine, tryptophan, proline,
certain proteins, collagen, phospholipids, and Amide I (Table 2). The use of a ROC (receiver operating
characteristic) curve allowed them to obtain with this model an AUC (area under curve), providing
some measure of aggregate classification performance. AUC was of 92.4%, as well as sensitivity,
specificity, and accuracy values of 98.4%, 73.3%, and 90.2%, respectively, indicating the approach to be
a promising one.

In 2016, Qiu et al. presented a complementary study with an identical protocol (SERS analysis,
spectral processing with PCA-LDA-LOOCV, and calculation of a ROC curve) and a similar population
(32 patients with nasopharyngeal carcinoma versus 30 non-cancer volunteers) [17]. The only difference
is that the analysis was done on the whole saliva of the patients without prior purification of the
proteins. Major differences in peak intensities between the cancer group and the control group
were highlighted. These peaks were attributed, among others, to adenine, nucleic acids, collagen,
phenylalanine, glycogen, and fatty acids (Table 2). The results obtained here were very slightly lower
than the previous ones: The AUC of the ROC curve was 91.8, and the classification accuracy was 83.9%
for a sensitivity of 86.7%, and a specificity of 81.3%.

In 2017, the same group, Lin X. et al., published another report, with a bigger cohort (170 patients
with nasopharyngeal carcinoma and 71 controls) [18]. Moreover, the spectral analysis was performed on
the purified saliva proteins, and the rest of the protocol remained strictly identical. Specific SERS peaks
were also identified between cancer and control groups, particularly corresponding to phenylalanine,
proline, valine, proteins, and collagens (see Table 2). The performance of the prediction model was,
however, less than with the two previous studies, with an AUC of the ROC curve of 0.795, as well as
sensitivity, specificity, and classification accuracy of 70.7%, 70.3%, and 70.5%, respectively.

2.1.3. Lung Cancer

In 2012, Li et al. used SERS on saliva samples taken from 21 clinically diagnosed lung cancer
patients and from 20 healthy [19]. Major changes regarding peaks between these two groups were
assigned to amino acids and nucleic acid bases (Table 2). After multivariate analysis with PCA combined
with LDA, the study resulted in sensitivity, specificity, and accuracy of 78%, 83%, and 80%, respectively.

Qian et al. carried out in 2018, a study using SERS to discriminate 61 lung cancer saliva samples
from 66 non-cancer controls [20]. Twelve peaks that varied significantly from one group to another
were identified and attributed mainly to change in protein residues and the content of nucleic acid
molecules (Table 2). Chemometrics analysis was performed using two algorithms: Support vector
machine (SVM) and random forest (RF). Differences in SVM results between lung cancer patients and
healthy participants’ saliva were highlighted after a LOOCV. Slightly better results were achieved
with the RF method, reporting an optimal sensitivity and specificity of 96.7% and 100%, respectively,
although the SVM method was not that outdone, with a sensitivity of 95.1% and a specificity of 100%.

2.1.4. Esophageal Cancer

Furthermore, other cancers, such as esophageal and gastric, can contribute endogenously to the
composition of saliva by the gastroesophageal reflux. Maitra et al. published two articles in 2019 and
2020 about esophageal adenocarcinoma, which is the most common esophageal cancer in the developed
world [21,22]. In these studies, they collected samples of four different biofluids (plasma, serum, urine,
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and saliva) from six categories of patients: Patients with a diagnosed esophageal adenocarcinoma
(OAC), with high grade dysplasia (HGD), with low grade dysplasia (LGD), with Barrett’s esophagus
(a premalignant lesion of esophageal adenocarcinoma), with esophageal inflammation, and healthy
volunteers. The two studies differed by the techniques used, attenuated total reflectance-Fourier
transform infrared spectroscopy (ATR-FTIR) for the first, and conventional Raman spectroscopies for
the second. Several predictive models were built using different supervised classification algorithms
(principal component analysis quadratic discriminant analysis, PCA-QDA; successive projections
algorithm quadratic discriminant analysis, SPA-QDA; genetic algorithm quadratic discriminant
analysis, GA-QDA).

With ATR-FTIR, the best results were achieved with SPA-QDA [21]. Category-distinguishing
wavenumbers obtained for SPA-QDA and GA-QDA models corresponded to regions of phosphodiester,
polysaccharides, pectin, phosphate II, phenyl vibrations, amide I, guanine, and lipids (Table 2).
SPA-QDA allowed to correctly classify the different categories of patients, and in particular those
greater than 20 patients: Normal (n = 38), Barrett’s esophagus (n = 27) and OAC (n = 25) with accuracy
values between 88.8% and 96.3%. With SPA-QDA, the value of sensitivity was between 95.4% and
100%, and the value of specificity was between 62.5% (healthy) and 100% (Table 1).

Raman spectroscopy was not outdone, since the most efficient predictive model (SPA-QDA) had a
sensitivity of 100% (for all groups greater than 20 patients, i.e., normal with 35 patients, Barrett’s with
26, OAC with 24) and a specificity between 80% (Barrett’s) et 100% (OAC) [22]. Accuracy values were
between 95.6% and 100%. Discriminant wavenumbers obtained for SPA-QDA or GA-QDA models can
be assigned to regions of phosphodiester, ribose, phenyl vibrations, nucleic acids, amide I, guanine,
thymine, and lipids (Table 2).

2.1.5. Gastric Cancer

Chen et al. [23] performed a study using SERS on saliva samples of 84 late gastric cancer, 20 early
gastric cancer, and 116 healthy volunteers. They relied on studies that demonstrated that certain
metabolites, such as amino acids could be used as cancer biomarkers [33,34]. They first carried
out a saliva assay of the 10 most concentrated amino acids in saliva (taurine, glycine, glutamine,
ethanolamine, histidine, alanine, glutamic acid, hydroxylysine, proline, and tyrosine) and whose
concentrations varied the most between the three categories of patients (Table 2). They found using a
ROC curve that the combination of 10 amino acids allowed them to distinguish patients with gastric
cancer from healthy patients. After this first step, they developed a protocol to detect these amino acids
with SERS, before using it on the saliva samples. Spectroscopic data analysis was performed using
PCA to discriminate the spectra of the patients according to the different groups. With this approach,
they achieved a sensitivity of 87.7% and a specificity of 80% in discriminating advanced gastric cancer
from non-cancer patients. The results concerning early gastric cancer were not to be outdone, with a
sensitivity and a specificity of 80.0% and 88.8%, respectively. Mean accuracy was not described, but a
negative predictive value of 94.5% was given for controls [23].

2.1.6. Breast Cancer

Three studies have investigated breast cancer, although saliva is not in direct contact with
this organ.

The first study on breast cancer screening using vs. of saliva samples was published in 2015
by Feng et al. [24]. They included 31 patients with proven cancer, 33 patients with a benign tumor,
and 33 healthy volunteers. Spectral analysis was performed after saliva protein purification, and the
main observed peaks were attributed to phenylalanine, tryptophan, tyrosine, hydroxyproline, proline,
amide I and III, collagen, and lipids (Table 2). PLS-DA, a regression extension of PCA, was employed
in combination with LOOCV to analyze and discriminate between the saliva protein SERS spectra
of the three groups of participants. The authors achieved a sensitivity between 72.7% and 75.8%, a
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specificity between 81.3% and 93.8%, and an overall accuracy between 78.4% and 87.6% to discriminate
breast cancer, benign breast lesions, and control (Table 1).

In 2017, Hernández-Arteaga et al. published a study on breast cancer diagnosis based on
SERS of salivary sialic acid assay [25] by considering the previous observations by Ozturk et al.,
who demonstrated that sialic acid concentration was significantly higher in breast cancer patients than
in control patients [35]. Using a calibration set of sialic acid (SA), the concentration of SA correlated
well with three peak intensities at 1002, 1237, and 1391 cm−1 corresponding to pyranose, amide III,
and carboxyl, respectively (Table 2). Results showed that salivary SA concentration was significantly
higher in the cancer group (n = 100) compared to the control group (n = 106), 18.5 mg/dL and 3.5 mg/dL,
respectively. Moreover, the authors concluded that the discriminating threshold concentration of sialic
was 7 mg/dL. This method showed a sensitivity of 94%, a specificity of 98%, and an accuracy of 92%.

In 2019, the same group conducted a similar SERS study with 35 breast cancer patients and
129 healthy patients [26]. ROC curve defines a threshold value of salivary SA of 12.5 mg/dL, for which
sensitivity and specificity were 80.6% and 93.1%, respectively. In addition, the Area Under Curve
(AUC) calculated from the ROC curve at this sialic acid concentration reached 0.95, indicating that this
diagnostic test is very promising.

2.2. Other Diseases

Among the 18 selected articles, five dealt with four diseases unrelated to cancer, two concerning
oral diseases directly “in contact” with saliva (periodontitis and Sjögren’s syndrome) In contrast,
two others were systemic diseases (diabetes and myocardial infarction).

2.2.1. Periodontitis

Periodontitis are multifactorial infectious diseases affecting almost 50% of the population with an
inflammatory component. They affect supporting tissues of the tooth and can lead to tooth loss in their
most advanced stages [36].

In 2019, Hernandez-Cedillo et al. reported a study using SERS [27] for discriminating periodontitis
from control samples. This work aimed at carrying out a dosage of sialic acid in the saliva of 93 subjects:
Thirty-three with periodontitis, thirty with gingivitis (superficial periodontal inflammation), and thirty
healthy volunteers. For this purpose, they used the same protocol they had developed in 2017 for breast
cancer [25]. Their results showed that patients with periodontitis could be discriminated from healthy
volunteers, but not from those with gingivitis. Moreover, they determined a “threshold” concentration
of 12 mg/mL of sialic acid above which the diagnosis of periodontitis could be performed. For this
concentration, the test had a sensitivity of 69.6%, a specificity of 100%, and the AUC (ROC curve) was
88.8%.

2.2.2. Sjögren’s Syndrome

Sjögren’s syndrome (SjS) is a systemic autoimmune disease that is characterized by lymphoid
infiltration of the salivary and lacrimal glands [28]. In 2019, Stefancu et al. used SERS of saliva and
serum samples to discriminate SjS (n = 29) from control (n = 21) subjects [28]. For both saliva and
serum, SERS spectra depicted some similar bands that were attributed mainly to purine metabolites,
such as uric acid, xanthine, and hypoxanthine (Table 2). The supervised classification model based
on PCA-LDA followed by LOOCV resulted in a sensitivity, specificity, and accuracy of 96.5%, 90.5%,
and 94% for saliva and 96.5%, 100%, and 98% for serum, respectively. In 2020, the same group,
Moisoiu et al., conducted a SERS analysis on saliva from SjS (n = 31) and control (n = 22) subjects [29].
Spectral analysis and processing remained strictly identical. Mean sensitivity and specificity were 77%
and 74%, respectively, whereas the overall accuracy was 75%. A distinguishing feature of this study
was the association of SERS with a two-dimensional ultrasonic elastography technique that improved
sensitivity, specificity, and accuracy to 80%, 81%, and 81%, respectively.
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2.2.3. Diabetes

Diabetes is a multifactorial metabolic disease characterized by chronic hyperglycemia and
disturbances in the metabolism of carbohydrates, lipids, and proteins. It is caused by a deficiency in
insulin secretion (type I), the action of insulin (type II), or both [30,37,38].

The only publication on the saliva-based diagnosis of diabetes dates from 2010. In this work,
Scott et al. performed an FTIR analysis of saliva samples from 39 diabetic patients and 22 control
patients [30]. An LDA was employed to identify six discriminant spectral regions that best differentiate
diabetic from control patients attributable to glycation products, proteins, and amino acids (Table 2).
An accuracy of 88.2% was obtained with LDA-cross validation on the test set. Sensitivity and specificity
values were not provided.

2.2.4. Acute Myocardial Infarction

Acute myocardial infarction (AMI) is a myocardial necrosis caused by ischemia and persistent
hypoxia related to obstruction of a coronary artery [39].

In 2015, Cao et al. studied saliva samples from 46 AMI patients and 43 healthy volunteers [31].
A conventional Raman spectroscopy analysis was performed, and data were processed by PCA-LDA,
followed by a LOOCV. Prominent Raman peaks were identified and assigned at cysteine, phenylalanine,
tyrosine, tryptophan, hydroxyproline, nucleic acids, proteins, amide I and II (Table 2). A ROC curve
was constructed from the results obtained using the predictive model. The sensitivity and specificity
were 80.4% and 81.4%, respectively, while the calculated AUC was 0.855. This study suggested Raman
spectroscopy as a potential diagnostic tool.

For a visual comparison and in order to summarize the diagnostic performances of the different
prediction models used in the 18 studies concerning vs. of saliva, the values are displayed in Figure 3.
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3. Discussion

In this work, we assessed the potential of vibrational spectroscopy as a biometric tool to diagnose
oral and general diseases using saliva as a biological specimen. This systematic literature review was
conducted using MEDLINE-PubMed and Scopus databases, according to the PRISMA guidelines.

The selected studies show the promising potential of saliva-based vibrational spectroscopy as a
non-invasive and rapid diagnostic tool. The majority of researches in the field of biomedical vibrational
spectroscopy has been based on the analysis of human tissues, healthy and cancerous tissues, such as
breast, lung, colon, prostate, oral, liver, kidney, and many others. In the past decade, there has been
growing interest in a multiple of blood-derived biofluids, also termed “liquid biopsies”, such as serum
and plasma, but also bile, urine, and saliva because of their availability in comparison with solid
biopsies. Indeed, 267 publications have been identified as using vs. of saliva for diagnostics, but a
large majority of them are pilot or proof-of-concept studies, including a small number of patients.

It is important to note that specific characteristics as disease prevalence (impacting positive and
negative predictive values) and sample numbers are important in order to evaluate the clinical utility of
this tool. Hence, in the context of this study, we defined a minimum of 20 patients per group as one of
the criteria according to a report by Bell et al. [40], who showed in 2018 that with this number, the size
effect seems to have a limited impact (small standardized difference) on the results for pilot studies
compared to the main trial. In addition, the size effect has more impact below n = 20 as the sensitivity
and specificity values were very random, although the essential statistical parameters were considered
in the evaluation for clinical utility. Consequently, other vs. studies using saliva, were not included in
this review, due to a number of patients less than 20 per group, and concerning other diseases, such
as burning mouth syndrome [41], asthma [42], Alzheimer’s disease [43], chronic renal failure [44],
ovarian cancer [45], various infections, e.g., influenza [46] or pseudomonas [47], and cystic fibrosis [48].
Therefore, out of the 267 studies, only 18 satisfied the criteria according to the PRISMA guidelines.

In this review, results from all selected publications were very promising with interesting accuracy
values of 70–80% for three studies, 80–90% for five studies, and >90% for five studies. Five studies
presented no accuracy value. It is noteworthy that for both cancer and non-cancer pathologies,
the performance of diagnostic tests via vs. was satisfactory with relatively high accuracy values.
Interestingly, different groups have shown similar results with similar spectral and analytical methods.
For oral cancer, Jaychandran et al. [14] and Rekha et al. [15] obtained a diagnostic accuracy of 93.1%
and 89.1%, respectively, using the same pre-analytical conditions and PCA-LDA.

In contrast and surprisingly enough, for Sjögren’s syndrome (SjS), the same group found different
results with an equivalent number of patients, the same technique (SERS), and an identical prediction
model (PCA-LDA followed by LOOCV). Indeed, in 2019 Stefancu et al. obtained a sensitivity of 96.5%,
specificity of 90.5%, and accuracy of 94% [28], while in 2020 Moisoiu et al. obtained a sensitivity of
77%, specificity of 74%, and accuracy of 75% [29]. These different performances could be related to the
sample preparation method (deproteinized saliva) [28] or not [29]. Furthermore, the same group of
researchers, in 2014, Feng et al. [16] obtained an accuracy value of 90.2% and Qiu et al. in 2016 [17],
and accuracy value of 83.9% for nasopharynx cancer, despite an identical procedure for statistical
analysis (PCA-LDA with LOOCV) and using the same approach as SERS. Again, the differing results
could probably be explained by a change in the saliva preparation, the first group using total purified
protein saliva, the second, frozen total saliva without cells, although the difference in the sample size
may also impact on the accuracy values.

In addition, the salivary composition can be influenced by the collection time (as cortisol secretion
peak between 06:00 to 08:00 a.m.), collection methods (stimulated or not), current medical treatments,
the presence of comorbidities or oral inflammation [11,12]. In this review, for example, the time of
sampling is not always specified in the included studies (n = 10/18), as well as the volume of saliva that
was collected, varying from 1 to 4 mL when specified. The pre-analytical parameters are important
to consider and can constitute a methodological bias. To our knowledge, there are no publications
or guide specifying the importance of the pre-analytical preparation of saliva used in VS. However,
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for blood sampling, it has been shown that storage at −80 ◦C and in plastic tubes has no effect on
generated spectra, whereas variations in the drying and the storage of samples (fresh or frozen,
avoid freeze-thaw cycles) can have an effect [49]. Therefore, standardization of saliva sample handling
(collection, processing, and storage protocols) is crucial to ensure reproducibility and consistency in
the results obtained as suggested by other reports [4,18,50].

The concept of confounding factors is also very important, and yet, in all selected studies of this
review, it is very inadequately addressed. It is difficult to know whether biases in patient selection exist,
for example, with respect to age, sex, comorbidities, tobacco and alcohol consumption, drug uptake
before/after saliva collection, as these factors may strongly influence the saliva content, and hence, its
resulting spectral profile. Derruau et al. recently showed using saliva-based IR spectroscopy, that the
periodontal diseases, a multifactorial inflammatory, and infectious oral disease could influence the
salivary infrared spectra in the spectral range of lipids and proteins absorption (2800–3000 cm−1) [11]
and could become a confounding factor in the detection of other multifactorial inflammatory diseases.
Indeed, for Hernandez et al., in three different reports published in 2017 and 2019 [25–27], periodontal
disease and breast cancer were discriminated by SERS using the same marker bands of sialic acid.
Thus, one pathology becomes a confounding factor of the other, and vice versa. In Hernandez’s
first publication on breast cancer, the patient inclusion criteria were based on information, such as
‘Patients had no oral complaints’. In the second, patients should not have periodontitis or gum
bleeding. However, in both of these, there is no mention of who and how were these criteria evaluated.
No specialists in oral diseases are in the author list. The implication of clinicians in connection with
the development of clinical tests and particularly with respect to the concerned pathology is obvious
to establish the validity of these clinical tests (e.g., in the assessment of patient inclusion criteria).
Twenty-two percent of the publications cited in this review (n = 4/18) do not present any clinicians
related to the studied pathology among the authors.

Other criteria are to be taken into account as the type of vs. used as analytical methods.
In this review, selected studies on saliva using IR, Raman, and SERS, respectively, gave accuracy

values in the ranges 88.2–88.8%, 89.1–95.6%, and 70.5–94%. ATR-FTIR spectroscopy is very applicable
to the routine monitoring of biofluids [51], but the drying of the sample is necessary, inducing a longer
pre-analytical preparation time, which may however limit its clinical application. As water is a weak
scatterer, Raman microspectroscopy is unaffected by aqueous solutions, permitting in vivo and live-cell
imaging [52] and particularly amenable to saliva samples. Thus, in this review, this could explain the
higher number of Raman studies (n = 16) compared to IR (n = 2).

However, it is difficult to conclude that one technique can perform better than the other, although
in the case of IR, the drying process of the sample can introduce chemical and physical inhomogeneities
in the sample, due to the so-called “coffee ring” effect, cracking and gelation patterns, that could
impact on the reproducibility and sensitivity [53–55]. The comparison between these complementary
vs. techniques was difficult in this review as the included studies were hardly comparable: (i) Only
one study per disease was found for diabetes [30], gastric cancer [33], acute myocardial infarction [31],
or periodontitis [27], (ii) the number of included patients is low, and (iii) only one group, Maitra et al.,
has used both techniques on the same set of saliva samples in the case of esophageal cancer. If the
criterium n ≥ 20 is taken into account, only the control, Barrett’s esophagus, and OAC groups are
potentially useful, with accuracy values of 88.8% and 95.6% for IR and Raman, respectively, using SPA
QDA data processing.

In addition, in 2010, Scott et al. obtained quite similar IR results as Maitra et al. [21] for diabetes
with an accuracy of 88.2% IR. On the other hand, if one considers the study by Caixeta et al., in 2020
on rats (n = 21), an accuracy of 95.2% and sensitivity of 100% were achieved [56]. The publication of
robust larger studies is paramount for a proper comparison of the different techniques. More recently,
Parachalil et al., undertook a similar comparison of Raman and ATR-FTIR of plasma using identical
sample preparation and analysis protocols, to quantitatively monitor diagnostically relevant changes
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of glucose [57]. They demonstrated that liquid Raman spectroscopy can perform at least, as well as
ATR-FTIR, which requires a drying step.

Based on the adsorption of molecules of the sample on metallic nanoparticles (NPs), the SERS
approach has been developed to significantly increase the signal intensity (of the order of 105 to 106),
as well as to decrease any sample autofluorescence [58]. By exploiting NPs, such as silver (Ag) or gold
(Au), enhanced spectra are generated to allow a better characterization, detection, and identification
of biomolecular analytes in a shorter timeframe. This explains the higher number of SERS studies
(n = 12/18) in the selected articles. Yet, the intensity and shape of a SERS spectrum strictly depend
on the combination of many experimental conditions, and the SERS effect could also be influenced
by many factors, like laser power, temperature, solvent, SERS substrate, the ratio between the total
number of nanoparticles and the volume of biofluid, but also on the stability of the NPs, the state of
the analyte, and exposure time. All these factors could explain the disparities in the accuracy results
obtained between 70.5% and 94%, whatever the studied pathologies. These are not significantly very
different from values obtained with conventional Raman spectroscopy in the selected articles (from
89.1% to 95.6%).

Furthermore, it is also important to note that the choice of the data pre-processing and processing
methods is also an important factor to be considered as they form part of the pre-analytical parameters.
In 2014 and 2017, Feng et al. and Lin et al., from the same research group, reported accuracy values of
90.2% for 62 cancer and 30 healthy patients and 70.5% for 170 cancer and 71 healthy individuals using
SERS and PCA-LDA-LOOCV for data analysis and the same saliva preparation. These results again
show the importance of sample size, but also that data processing with a small number of patients
may lead to an overestimation of the performances of the classification model. These models often
require splitting into a training set, a validation set, and an independent prediction set, thus requiring
a significantly high number of patients initially.

Another important aspect is the ROC curve analysis that is widely considered as the most objective
and statistically valid method for evaluating biomarker performance, particularly in the context of
clinical test development [16]. However, out of these 18 publications, only eight studies published by
three teams used ROC curves with accuracy values ranging from 70.5% to 92%. In 2015, Feng et al.
reported an accuracy value of 78.4% for breast cancer using SERS and PLS-DA-LOOCV associated
with ROC curve, while Hernandès et al. in 2017 obtained an accuracy of 92%. It can be noted that
Feng et al. based their classification model on 17 discriminant wavenumbers while Hernandès et al.
exploited only three specific wavenumbers corresponding to sialic acid that is considered as a saliva
biomarker for oral cancer [59]).

During the past years, single-molecule studies using SERS have been developed with the aim
of quantifying the molecule implicated in the studied pathology. Indeed, in 2017, Hernandez et al.
demonstrated the ability of SERS to measure concentrations of sialic acid in human saliva and
to discriminate healthy from breast cancer patients with an accuracy of 92% [25]. Yet, in 2019,
Hernandez et al., used the same technique and same discriminant frequencies, to delineate control
patients from those with periodontitis, with an accuracy of 88.8% [26]. Although the good accuracy
values indicate a high-performance classifier, these results raise several remarks. For instance, the same
three marker bands related to sialic acid identified two different pathologies at two different anatomical
sites, in breast cancer and in inflammatory disease of infectious origin (periodontitis). It appears that
sialic acid does not represent a discriminating molecule in the evaluation of these two pathologies
by SERS.

Furthermore, Stefenelli et al. reported that sialic acid levels are increased in the serum of patients
with uterus, lung, colon/rectum, stomach, or prostate cancer. This may be indicative of the presence not
only of breast cancer, but also of other types of cancers and/or cancer unrelated severe inflammatory
conditions [60]. Sialic acid used alone can be a confounding factor, which confirms the importance of
the selection of patients included by a history and collection of precise clinical data. A clinical test
based on a number of discriminating bands should become more specific for the sought pathology.
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In the majority of the selected studies (n = 15/18), tentative assignments suggest the presence of several
bands corresponding to proteins and amino acids (n = 7/18), lipids (n = 5/18), and DNA and/or RNA
bases (n = 4/18). Lipid rich features in normal conditions and prominent protein features in tumors
and other pathological conditions have been described. Among all these studies, some molecules
more often appear to discriminate between healthy and diseased patients. In particular, the amide I
band was assigned as a discriminant in 14 out of 18 studies, phenyl vibrations in 10 studies, Amide III,
phenylalanine, tyrosine in eight studies, and tryptophan, proline in seven studies. Further, several
research works have been reported on the profile of amino acids of human saliva and their use in
disease diagnosis [61,62]. The varying levels of these amino acids in saliva, related to the degradation
of proteins present in saliva, represent interesting markers for pathology detection [15].

In fact, the access to multiple biomarkers rather than single or few biomarkers would be better for
patient care, in particular for screening patients at high risk or at an early stage of the disease [4]. Indeed,
some selected studies in this review do not only include healthy or diseased patients, but also patients
with precancerous lesions (oral and esophageal; n = 4), benign lesions (breast; n = 1), differentiate
between early and late stages of cancer (gastric; n = 1) or superficial or deep damage (periodontal;
n = 1). Early detection and prevention are the key strategies to manage cancer and intervenes at an
early stage, therefore significantly reducing morbidity and mortality from the malignant disease [32].
There is a continuing effort in the search of new technology that can detect early biochemical signs
of malignancy, and therefore, respond to these objectives. Using Raman spectroscopy, Jaychandra’s
study revealed an efficient classification with an accuracy of 93.1% for saliva samples between normal,
precancerous, and oral squamous cell carcinoma patients [14]. The biological components, pyrimidine,
glycoproteins especially mucin, oxygenated hemocyanin, and carotenoids showed differences in the
three groups of saliva, normal (n = 21), premalignant (oral leukoplakia, oral submucous fibrosis,
(n = 87)), and malignant (oral squamous cell carcinoma, (n = 50)). Particularly, the peaks at 752 cm−1 of
oxygenated hemocyanin, at 1158 and 1525 cm−1 of carotenoids in saliva show variations between the
three groups. In 2017, Rekha et al., also succeeded using Raman spectroscopy, to separate control from
precancerous and from malignant lesions of the same cancer type with a performance of 82.4% and
89.1%, respectively, in cross-validated groups [15]. The intensity of the amide band I was higher for
malignancies than for pre-malignancies or normal patients, while the opposite was observed for the
lipids intensity bands (1128, 1310, and 1742 cm−1). However, the accuracy value calculated from a
normal group versus premalignant and malignant groups was only 55.4% The premalignant patient
group with malignant patients in 25% of cases and 21.4% with control ones while malignant patients
group with premalignant ones in 37.5% of cases. The study by Maitra et al. is even more revealing of
the problem of choice and of the number of patients per group, and thus, failed to discriminate between
premalignant and normal stages [21]. This finding underscores the need for larger-scale studies or for
using alternative spectral data processing methods.

The validation of a new clinical diagnostic method, a long-term follow-up, and correlation with
gold standard endpoints is primordial. To be accepted in routine practice, sensitivity, specificity,
and accuracy values for disease diagnosis need to be exceptional, as is the ability to determine emerging
or progressive diseases. The use of saliva-based vs. could become complementary to radiological,
biological, histological investigations.

For breast core biopsy, the histopathological examination has reported sensitivity values between
90.1 and 93% and is more operator-dependent, while publications referred to in this review report
accuracy values of 78.4 to 92% depending on the analytical methods used. For oral cancers,
the diagnostic gold standard is clinical examination followed by a biopsy for histopathological
confirmation, with accuracy values ranging from 75 to 90% [63,64].

This range can be explained, among other things, by the method of taking the biopsy, but is also
very operator dependent. In this review, for this same pathology, Jaychandran et al. and Rekha et al.
obtained accuracy values of 93.1 and 89.1%, respectively, using Raman spectroscopy. [14,15]. In addition,
for lung cancers, the initial gold standard is the clinical examination associated with the chest X-ray
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with an accuracy of 81%, according to Quekel et al. 1999 [63]. In this review, for the diagnosis of lung
cancer by salivary VS, the accuracy value obtained was 80% [19].

In summary, the accuracy values obtained by saliva-based vs. in comparison with those of
gold-standard diagnostics, are quite comparable for cancer, results also found with other non-cancer
pathologies, such as SjS [28,29,65]. Overall, the reported diagnostic measures for saliva-based vs. are
promising with existing diagnostic modalities. Although diagnostic accuracy levels are high for VS,
it is difficult to replace gold standards. However, the advantages of saliva-based vs. are numerous
over, for example, invasive, painful, and complication-risk biopsies, radiography, and CT-induced
irradiations. Saliva-based vs. is non-invasive, painless, with minimal or no sample preparation,
no labeling, extemporaneous, quick, and easy to perform. In addition, saliva is a complex biofluid
reflecting the physiological and pathological state of the body, due to the presence of numerous
biocomponents. Saliva-based vs. could become a diagnostic tool complementary to the gold standard
by detecting and potentially quantifying metabolites induced by the pathology and its evolution.
Therefore, this technology could be used through a large range of clinical situations: screening of
patients at risk of the disease or with the disease at an early stage, differential diagnosis of the disease
with other conditions, the prognosis of the disease independently of the treatment, prediction of the
response to treatment, and monitoring of disease progress [4,66].

Saliva is also comparable to human serum metabolomes in terms of chemical complexity and
abundance of metabolites [9,12]. Also, vs. of saliva could be an alternative to vs. using blood or its
derived products, without being invasive and stressful for the patient and not requiring a more complex
storage mode. In this review, only three reports compared saliva with blood as sampling media. In the
case of oral cancers, Jaychandan et al. obtained accuracy values of 91.3% and 78% for saliva and blood,
respectively, using Raman spectroscopy [14]. In the case of esophageal cancers, Maitra et al. obtained
accuracy values of 95.6%, 82.6%, and 91.3% for saliva, plasma, and serum, respectively [21].

The use of saliva-based vs. is promising in comparison with blood-based vs. and may appear
more adequate also in the case of oral cancers, which are in direct contact with this biofluid.

4. Material and Methods

This study was conducted following the Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines [67].

4.1. Research Question/Focused Question

This systematic review aimed at appreciating if Vibrational Spectroscopy could be applied to
saliva samples as a disease diagnostic tool.

4.2. Search Strategy

Two electronic databases were searched: MEDLINE (PubMed, Public access to Medline) and
Scopus. The last research was conducted on 30th May 2020, and any publication to this date was
evaluated for inclusion. Keywords sentences for both databases are described in Table 3. Studies
obtained for screening were downloaded into the Zotero research tool, duplicates were then identified
and excluded from the total list of articles.
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Table 3. Search strategies.

MeSH Terms Used for MEDLINE Search Keywords Used for Scopus Search

(“saliva”[MeSH Terms] OR
saliva[Title/Abstract]) AND

(“diagnosis”[MeSH Terms] OR
diagnosis[Title/Abstract] OR

“biomarkers”[MeSH Terms] OR
biomarkers[Title/Abstract] OR

diagnostic[Title/Abstract]) AND
(“spectroscopy, fourier transform infrared”[MeSH

Terms] OR “infrared
spectroscopy”[Title/Abstract] OR “spectrum

analysis, Raman”[MeSH Terms] OR
“Raman”[Title/Abstract])

(saliva) AND (diagnosis OR biomarkers OR diagnostic)
AND (“infrared spectroscopy” OR Raman)

4.3. Inclusion and Exclusion Criteria/Eligibility Criteria/Study Selection Criteria

The PICOS framework (Population, Intervention, Comparison, Outcome, Study design process
with added qualitative search terms) was used to set inclusion and exclusion criteria. Details of
eligibility and exclusion criteria of studies are shown in Table 4.

Table 4. Criteria for inclusion and exclusion of studies in the systematic review.

Item Criteria of Inclusion Criteria of Exclusion

population and conditions
of interest

human population with clinical signs
of disease with or without

histopathologically confirmed disease
diagnosis

non-human study

intervention/exposure/investigation
application of vs. to the analysis of

human saliva with the specific aim of
disease diagnosis

method other than vs. used as the
main method of analysis

comparison diseased population versus healthy
population as the control group no control group

outcomes of interest performance of diagnostic tool
(sensitivity, specificity, accuracy) n.s.

study design any study design fitting the
above criteria

study with less than 20 participants in
each group (diseased and control)

type of paper original paper. manuscript is written
in English

review article, opinion, commentary
abstract from a conference, or not a

peer-reviewed article.

n.s., not stated.

Only publications with both a clinically and/or a histopathologically confirmed disease and a
control group, each containing more than 20 participants, were included [40,68]. Studies involving
non-saliva, non-human, animals, tissue samples, or pooled cells were excluded. Studies had to report
characteristic parameters of the diagnostic tool, such as sensitivity, specificity, accuracy, or AUC of
ROC curve.

4.4. Screening for Eligibility/Inclusion

Articles identified with keywords from MEDLINE-PubMed and Scopus search were screened
by two members of the review team based on title and abstract according to inclusion and exclusion
criteria. Potential divergences were solved by discussion. A full-text review of the selected articles
was then performed by the same two members. The references of these articles were also checked to
include any interesting papers that were not picked up during direct MEDLINE-PubMed and Scopus
search. If relevant, these new publications were also downloaded and added to the list of full-text
articles for assessment. Eligible articles were finally included in the systematic review.



Molecules 2020, 25, 4142 23 of 27

4.5. Outcomes and Data Extraction

The outcomes related to the ability of vs. to diagnose diseases by analysis of human saliva
included: sensitivity, specificity, accuracy, and AUC values.

Data were extracted from each article and stored in Excel® (Microsoft, Redmond, Washington,
USA) format. When multiple spectral techniques or data analysis techniques were evaluated within a
study, data were described based on the most effective technique used. When data were presented for
both a training set and test/cross-validation set, data from the test set were presented as these reflect
most closely the performance of the test in clinical practice.

5. Conclusions

Saliva-based vs. appears promising, as it is based on the abilities to objectively fingerprint the
biochemical profile underlying the early onset of disease. However, the studies included in this review
lack robustness and are hardly comparable, which may further explain the divergence of the results
and that a meta-analysis on this subject is currently not feasible. Furthermore, several parameters, such
as the use of different substrates, laser frequency, detectors, temperatures, sample solvents, and others
(pre-analytical conditions, data processing, etc.) impact on the performances of vs. techniques and
could be a hindrance for routine clinical translation in the near future. Moreover, new methodological
and technical strategies need to be developed to improve the reproducibility and the “standardization”
of VS.

The recent years have evidenced the emergence of high-throughput screening (HTS) VS.
techniques capable of providing rapid data collection, quality control, and classification processes.
These approaches could indeed be promising for future saliva-based diagnostics approaches. Based on
ATR-FTIR platform technology, the ClinSpec Dx™ spectroscopic liquid biopsy (blood), able to
identify brain cancer disease at an early stage, is one of the first portable vs. applied in clinical
practice. Furthermore, fiberoptic probes and miniaturization of instruments are also interesting
for real-time and routine diagnosis. Interestingly, DIAFIR, a medtech company, has developed
NASHMIR®, a non-invasive test based on the metabolic signature of NASH, from a simple drop
of serum. This technology combines mid-IR technology with an ATR-based optical fiber biosensor.
These portable tools could be particularly adapted to saliva for clinical applications. Concerning
the SERS technology, there has been an ongoing development of SERS substrates—especially those
involving gold- or silver-NPs in order to increase the reproducibility and enhance significantly
molecule detection. The approach will require further refinement and substrate cost reduction for
clinical application.

Taken together, although promising, further work is required before saliva-based vs. diagnostics
could be confirmed, especially on larger cohorts, and translated to routine clinical use. Efforts should
be ongoing to standardize saliva-based VS, taking into account pre-analytical and analytical requisites,
prior to its development as a diagnostic/screening test for human diseases.
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molecular signatures in infrared spectra of human saliva. Diabetol. Metab. Syndr. 2010, 2, 48–57. [CrossRef]

31. Cao, G.; Chen, M.; Chen, Y.; Huang, Z.; Lin, J.; Lin, J.; Xu, Z.; Wu, S.; Huang, W.; Weng, G.; et al. A potential
method for non-invasive acute myocardial infarction detection based on saliva Raman spectroscopy and
multivariate analysis. Laser Phys. Lett. 2015, 12, 125702. [CrossRef]

32. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer
J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

33. Chen, Y.; Zhang, J.; Guo, L.; Liu, L.; Wen, J.; Xu, L.; Yan, M.; Li, Z.; Zhang, X.; Nan, P.; et al. A characteristic
biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS
analysis. Oncotarget 2016, 7, 87496–87510. [CrossRef] [PubMed]

34. Abate-Shen, C.; Shen, M.M. The prostate-cancer metabolome. Nature 2009, 457, 799–800. [CrossRef] [PubMed]
35. Ozturk, L.K.; Emekli-Alturfan, E.; Kasikci, E.; Demir, G.; Yarat, A. Salivary Total Sialic Acid Levels Increase

in Breast Cancer Patients: A Preliminary Study. Med. Chem. 2011, 7, 443–447. [CrossRef] [PubMed]
36. Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.;

Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant
diseases and conditions – Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018,
45, S1–S8. [CrossRef]

37. Xiang, X.; Duarte, P.M.; Lima, J.A.; Santos, V.R.; Gonçalves, T.D.; Miranda, T.S.; Liu, K.-Z. Diabetes-Associated
Periodontitis Molecular Features in Infrared Spectra of Gingival Crevicular Fluid. J. Periodontol 2013,
84, 1792–1800. [CrossRef]

http://dx.doi.org/10.1039/C9AN01749F
http://dx.doi.org/10.1002/jbio.201960132
http://www.ncbi.nlm.nih.gov/pubmed/31794123
http://dx.doi.org/10.1166/jbn.2018.2621
http://www.ncbi.nlm.nih.gov/pubmed/30041723
http://dx.doi.org/10.2147/IJN.S71811
http://www.ncbi.nlm.nih.gov/pubmed/25609959
http://dx.doi.org/10.1007/s12274-017-1576-5
http://dx.doi.org/10.1016/j.arcmed.2019.05.013
http://dx.doi.org/10.1111/odi.13141
http://dx.doi.org/10.1007/s00216-019-01969-x
http://dx.doi.org/10.1016/j.saa.2020.118267
http://dx.doi.org/10.1186/1758-5996-2-48
http://dx.doi.org/10.1088/1612-2011/12/12/125702
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.18632/oncotarget.11754
http://www.ncbi.nlm.nih.gov/pubmed/27589838
http://dx.doi.org/10.1038/457799a
http://www.ncbi.nlm.nih.gov/pubmed/19212391
http://dx.doi.org/10.2174/157340611796799230
http://www.ncbi.nlm.nih.gov/pubmed/21801151
http://dx.doi.org/10.1111/jcpe.12935
http://dx.doi.org/10.1902/jop.2013.120665


Molecules 2020, 25, 4142 26 of 27

38. Baeza, M.; Morales, A.; Cisterna, C.; Cavalla, F.; Jara, G.; Isamitt, Y.; Pino, P.; Gamonal, J. Effect of periodontal
treatment in patients with periodontitis and diabetes: Systematic review and meta-analysis. J. Appl. Oral Sci.
2020, 28, e20190248. [CrossRef]

39. Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. [CrossRef]
40. Bell, M.L.; Whitehead, A.L.; Julious, S.A. Guidance for using pilot studies to inform the design of intervention

trials with continuous outcomes. Clin. Epidemiol. 2018, 10, 153–157. [CrossRef]
41. Rodrigues, L.M.; Magrini Alva, T.D.; da Silva Martinho, H.; Almeida, J.D. Analysis of saliva composition

in patients with burning mouth syndrome (BMS) by FTIR spectroscopy. Vib. Spectrosc. 2019, 100, 195–201.
[CrossRef]

42. Zamora-Mendoza, B.N.; Espinosa-Tanguma, R.; Ramírez-Elías, M.G.; Cabrera-Alonso, R.; Montero-Moran, G.;
Portales-Pérez, D.; Rosales-Romo, J.A.; Gonzalez, J.F.; Gonzalez, C. Surface-enhanced raman spectroscopy:
A non invasive alternative procedure for early detection in childhood asthma biomarkers in saliva.
Photodiagn. Photodyn. Ther. 2019, 27, 85–91. [CrossRef] [PubMed]

43. Ralbovsky, N.M.; Halámková, L.; Wall, K.; Anderson-Hanley, C.; Lednev, I.K. Screening for Alzheimer’s
Disease Using Saliva: A New Approach Based on Machine Learning and Raman Hyperspectroscopy.
J. Alzheimers Dis. 2019, 71, 1351–1359. [CrossRef] [PubMed]

44. Rodrigues, R.P.; Aguiar, E.M.; Cardoso-Sousa, L.; Caixeta, D.C.; Guedes, C.C.; Siqueira, W.L.; Maia, Y.C.P.;
Cardoso, S.V.; Sabino-Silva, R. Differential Molecular Signature of Human Saliva Using ATR-FTIR
Spectroscopy for Chronic Kidney Disease Diagnosis. Braz. Dent. J. 2019, 30, 437–445. [CrossRef]
[PubMed]

45. Zermeño-Nava, J.d.J.; Martínez-Martínez, M.U.; Rámirez-de-Ávila, A.L.; Hernández-Arteaga, A.C.;
García-Valdivieso, M.G.; Hernández-Cedillo, A.; José-Yacamán, M.; Navarro-Contreras, H.R. Determination
of sialic acid in saliva by means of surface-enhanced Raman spectroscopy as a marker in adnexal mass
patients: Ovarian cancer vs. benign cases. J. Ovarian Res. 2018, 11, 61.

46. Eom, G.; Hwang, A.; Kim, H.; Yang, S.; Lee, D.K.; Song, S.; Ha, K.; Jeong, J.; Jung, J.; Lim, E.-K.; et al.
Diagnosis of Tamiflu-Resistant Influenza Virus in Human Nasal Fluid and Saliva Using Surface-Enhanced
Raman Scattering. ACS Sens. 2019, 4, 2282–2287. [CrossRef] [PubMed]

47. Žukovskaja, O.; Jahn, I.J.; Weber, K.; Cialla-May, D.; Popp, J. Detection of Pseudomonas aeruginosa metabolite
pyocyanin in water and saliva by employing the SERS technique. Sensors 2017, 17, 1704. [CrossRef]

48. Malkovskiy, A.V.; Yacob, A.A.; Dunn, C.E.; Zirbes, J.M.; Ryan, S.P.; Bollyky, P.L.; Rajadas, J.; Milla, C.E.
Salivary Thiocyanate as a Biomarker of Cystic Fibrosis Transmembrane Regulator Function. Anal. Chem.
2019, 91, 7929–7934. [CrossRef]

49. Lovergne, L.; Lovergne, J.; Bouzy, P.; Untereiner, V.; Offroy, M.; Garnotel, R.; Thiéfin, G.; Baker, M.J.;
Sockalingum, G.D. Investigating pre-analytical requirements for serum and plasma based infrared
spectro-diagnostic. J. Biophotonics 2019, 12, e201900177. [CrossRef]

50. Calado, G.; Behl, I.; Daniel, A.; Byrne, H.J.; Lyng, F.M. Raman spectroscopic analysis of saliva for the diagnosis
of oral cancer: A systematic review. Translational Biophotonics 2019, 1, e201900001. [CrossRef]

51. Dorling, K.M.; Baker, M.J. Rapid FTIR chemical imaging: Highlighting FPA detectors. Trends Biotechnol. 2013,
31, 437–438. [CrossRef]

52. Patel, I.I.; Trevisan, J.; Evans, G.; Llabjani, V.; Martin-Hirsch, P.L.; Stringfellow, H.F.; Martin, F.L. High contrast
images of uterine tissue derived using Raman microspectroscopy with the empty modelling approach of
multivariate curve resolution-alternating least squares. Analyst 2011, 136, 4950–4959. [CrossRef]

53. Baker, M.J.; Byrne, H.J.; Chalmers, J.; Gardner, P.; Goodacre, R.; Henderson, A.; Kazarian, S.G.; Martin, F.L.;
Moger, J.; Stone, N.; et al. Clinical applications of infrared and Raman spectroscopy: State of play and future
challenges. Analyst 2018, 143, 1735–1757. [CrossRef]

54. Filik, J.; Stone, N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 2008, 616, 177–184.
[CrossRef] [PubMed]

55. Filik, J.; Stone, N. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst 2007, 132, 544–550.
[CrossRef] [PubMed]

56. Caixeta, D.C.; Aguiar, E.M.G.; Cardoso-Sousa, L.; Coelho, L.M.D.; Oliveira, S.W.; Espindola, F.S.; Raniero, L.;
Crosara, K.T.B.; Baker, M.J.; Siqueira, W.L.; et al. Salivary molecular spectroscopy: A sustainable, rapid and
non-invasive monitoring tool for diabetes mellitus during insulin treatment. PLoS ONE 2020, 15, e0223461.
[CrossRef] [PubMed]

http://dx.doi.org/10.1590/1678-7757-2019-0248
http://dx.doi.org/10.1016/S0140-6736(16)30677-8
http://dx.doi.org/10.2147/CLEP.S146397
http://dx.doi.org/10.1016/j.vibspec.2018.12.002
http://dx.doi.org/10.1016/j.pdpdt.2019.05.009
http://www.ncbi.nlm.nih.gov/pubmed/31082526
http://dx.doi.org/10.3233/JAD-190675
http://www.ncbi.nlm.nih.gov/pubmed/31524171
http://dx.doi.org/10.1590/0103-6440201902228
http://www.ncbi.nlm.nih.gov/pubmed/31596327
http://dx.doi.org/10.1021/acssensors.9b00697
http://www.ncbi.nlm.nih.gov/pubmed/31407570
http://dx.doi.org/10.3390/s17081704
http://dx.doi.org/10.1021/acs.analchem.9b01800
http://dx.doi.org/10.1002/jbio.201900177
http://dx.doi.org/10.1002/tbio.201900001
http://dx.doi.org/10.1016/j.tibtech.2013.05.008
http://dx.doi.org/10.1039/c1an15717e
http://dx.doi.org/10.1039/C7AN01871A
http://dx.doi.org/10.1016/j.aca.2008.04.036
http://www.ncbi.nlm.nih.gov/pubmed/18482601
http://dx.doi.org/10.1039/b701541k
http://www.ncbi.nlm.nih.gov/pubmed/17525811
http://dx.doi.org/10.1371/journal.pone.0223461
http://www.ncbi.nlm.nih.gov/pubmed/32182246


Molecules 2020, 25, 4142 27 of 27

57. Parachalil, D.R.; Brankin, B.; McIntyre, J.; Byrne, H.J. Raman spectroscopic analysis of high molecular weight
proteins in solution–considerations for sample analysis and data pre-processing. Analyst 2018, 143, 5987–5998.
[CrossRef] [PubMed]

58. Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman spectroscopy for medical diagnostics—From in-vitro
biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [CrossRef] [PubMed]

59. Achalli, S.; Madi, M.; Babu, S.G.; Shetty, S.R.; Kumari, S.; Bhat, S. Sialic acid as a biomarker of oral potentially
malignant disorders and oral cancer. Indian J. Dent. Res. 2017, 28, 395–399. [CrossRef]

60. Stefenelli, N.; Klotz, H.; Engel, A.; Bauer, P. Serum sialic acid in malignant tumors, bacterial infections, and
chronic liver diseases. J. Cancer Res. Clin. Oncol. 1985, 109, 55–59. [CrossRef]

61. Reddy, I.; Sherlin, H.J.; Ramani, P.; Premkumar, P.; Natesan, A.; Chandrasekar, T. Amino acid profile of saliva
from patients with oral squamous cell carcinoma using high performance liquid chromatography. J. Oral Sci
2012, 54, 279–283. [CrossRef]

62. Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass
spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles.
Metabolomics 2010, 6, 78–95. [CrossRef] [PubMed]

63. Chen, S.; Forman, M.; Sadow, P.M.; August, M. The Diagnostic Accuracy of Incisional Biopsy in the Oral
Cavity. J. Oral Maxillofac. Surg. 2016, 74, 959–964. [CrossRef] [PubMed]

64. Pentenero, M.; Carrozzo, M.; Pagano, M.; Galliano, D.; Broccoletti, R.; Scully, C.; Gandolfo, S. Oral mucosal
dysplastic lesions and early squamous cell carcinomas: Underdiagnosis from incisional biopsy. Oral Dis.
2003, 9, 68–72. [CrossRef] [PubMed]

65. Giovelli, R.A.; Santos, M.C.S.; Serrano, É.V.; Valim, V. Clinical characteristics and biopsy accuracy in suspected
cases of Sjögren’s syndrome referred to labial salivary gland biopsy. BMC Musculoskelet. Disord. 2015, 16, 30.
[CrossRef] [PubMed]

66. Unertl, K.M.; Fair, A.M.; Favours, J.S.; Dolor, R.J.; Smoot, D.; Wilkins, C.H. Clinicians’ perspectives on and
interest in participating in a clinical data research network across the Southeastern United States. BMC Health
Serv. Res. 2018, 18, 568. [CrossRef]

67. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred reporting items for systematic
reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [CrossRef]

68. Hertzog, M.A. Considerations in determining sample size for pilot studies. Res. Nurs. Health 2008, 31, 180–191.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C8AN01701H
http://www.ncbi.nlm.nih.gov/pubmed/30325366
http://dx.doi.org/10.1016/j.addr.2015.03.009
http://www.ncbi.nlm.nih.gov/pubmed/25809988
http://dx.doi.org/10.4103/ijdr.IJDR_632_16
http://dx.doi.org/10.1007/BF01884255
http://dx.doi.org/10.2334/josnusd.54.279
http://dx.doi.org/10.1007/s11306-009-0178-y
http://www.ncbi.nlm.nih.gov/pubmed/20300169
http://dx.doi.org/10.1016/j.joms.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26682520
http://dx.doi.org/10.1034/j.1601-0825.2003.02875.x
http://www.ncbi.nlm.nih.gov/pubmed/12657031
http://dx.doi.org/10.1186/s12891-015-0482-9
http://www.ncbi.nlm.nih.gov/pubmed/25887888
http://dx.doi.org/10.1186/s12913-018-3399-9
http://dx.doi.org/10.1136/bmj.b2535
http://dx.doi.org/10.1002/nur.20247
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Cancer 
	Oral Cancer 
	Nasopharyngeal Cancer 
	Lung Cancer 
	Esophageal Cancer 
	Gastric Cancer 
	Breast Cancer 

	Other Diseases 
	Periodontitis 
	Sjögren’s Syndrome 
	Diabetes 
	Acute Myocardial Infarction 


	Discussion 
	Material and Methods 
	Research Question/Focused Question 
	Search Strategy 
	Inclusion and Exclusion Criteria/Eligibility Criteria/Study Selection Criteria 
	Screening for Eligibility/Inclusion 
	Outcomes and Data Extraction 

	Conclusions 
	References

