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Abstract: Over the past two decades, superconducting quantum circuits have become one of the es-
sential platforms for realizing quantum computers. The Hamiltonian of a superconducting quantum
circuit system is the key to describing the dynamic evolution of the system. For this reason, various
methods for analyzing the Hamiltonian of a superconducting quantum circuit system have been
proposed, among which the LOM (Lumped Oscillator Model) and the EPR (Energy Participation
Ratio) methods are the most popular ones. To analyze and improve the design methods of supercon-
ducting quantum chips, this paper compares the similarities and differences of the LOM and the EPR
quantification methods. We verify the applicability of these two theoretical approaches to the design
of 2D transmon quantum chips. By comparing the theoretically simulated results and the experimen-
tally measured data at extremely low temperature, the errors between the theoretical calculation and
observed measurement values of the two methods were summarized. Results show that the LOM
method has more parameter outputs in data diversity and the qubit frequency calculation in LOM is
more accurate. The reason is that in LOM more coupling between different systems are taken into
consideration. These analyses would have reference significance for the design of superconducting
quantum chips.

Keywords: circuit quantization methods; superconducting quantum chips; circuit quantum electro-
dynamics; quantum information

1. Introduction

Since quantum computing was proposed, many physical solutions have emerged to
realize quantum computing, such as superconducting quantum circuits [1], photons [2], ion
traps [3], semiconductor quantum dots [4], etc. Superconducting qubits stand out among
many schemes due to their strong designability, ample controllable space, high scalability,
and high compatibility with existing micro-nano processing technologies [5–7]. The study
of superconductivity itself is of fundamental importance [8,9]. Moreover, it is also important
in quantum computing, like realizing quantum gates [10,11], and quantum mechanical
sensing [12]. For superconducting quantum circuit, the cavity quantum electrodynamics
theory provides a theoretical basis [13,14], and circuit quantum electrodynamics systems
have become one of the most promising platforms for realizing robust and scalable general-
purpose quantum computers [15–18].

Circuit quantum electrodynamics system consists of two crucial parts: a high-quality
superconducting microwave cavity and superconducting artificial atoms [19,20]. Arti-
ficial atoms are equivalent to non-harmonic circuits composed of Josephson junctions
and capacitors in parallel [21,22]. So far, according to the ratio of Josephson junction
energy Ej to capacitance energy Ec, superconducting qubits can be divided into three
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categories: charge qubit (Ej
/

Ec � 1), magnetic flux qubit (Ej
/

Ec ≈ 100), and phase qubit
(Ej
/

Ec ≈ 104) [16–18]. Transmon qubit [23] is an improved version of charge qubit by
increasing the ratio of Ej

/
Ec to the order of 102, which reduces the qubit’s sensitivity to

charge noise and improves its decoherence time. And it is the most widely used in realizing
superconducting quantum computing [24]. According to whether the qubit frequency can
be tuned, the qubits can be divided into fixed frequency qubits and tunable frequency
qubits. For a fixed frequency qubit, it requires fewer control lines (no DC bias and magnetic
flux crosstalk), so it has long coherence time [16–18,25]. The disadvantage is that its fre-
quency is not tunable, and the qubit frequencies need to be strictly controlled in the process.
On the contrary, the frequencies of frequency-tunable qubits can be tuned by adjusting
the magnetic flux flowing through the SQUID structure which consists of two Josephson
junctions, allowing more flexibility in the implementation of two qubits. But it requires
more control lines which introduce more noise channels, thus the decoherence time is
relatively short. Current long-coherence quantum chips are all based on fixed-frequency
qubits [25–27].

For designing superconducting quantum chips, the set of qubit and readout resonator
can be regarded as an open quantum mechanical system, determining the Hamiltonian of a
system is the key step in deriving its dynamical system. To quantify the Hamiltonian of a
superconducting quantum circuit system, a variety of new quantization methods have been
proposed, such as impedance-based black-box quantization, lumped oscillator model and
energy participation ratio method [28–30], etc. This paper will first introduce the lumped
oscillator model method and the energy participation ratio method. Then, based on these
two methods, a four-qubit fixed-frequency quantum chip is designed and prepared. Finally,
the experimental measurement results will be presented. By comparing the theoretically
calculated values and the experimentally measured data, we verify the feasibility of these
two methods to design two-dimensional superconducting quantum chips and discuss their
advantages and disadvantages.

2. Quantization of Superconducting Circuits
2.1. Lumped Oscillator Model

The lumped oscillator model (LOM) method is derived based on the quantization of
the lumped model. In the LOM method, the distributed microwave circuit is equivalented
to a lumped circuit [31], and the computational efficiency is higher than the full-wave
method [29]. Its core idea is to divide the physical layout of a quantum processor into
disjoint units, each of which can independently extract electrical parameters.

Taking a subsystem coupled to K neighbors as an example, the Hamiltonian of the
composite system [29,31] is

Ĥ f ull = Ĥ0 +
K

∑
n=1

Ĥn +
K−1

∑
n=0

K

∑
m=n+1

Ĥnm, (1)

where Ĥ0 and Ĥn are the Hamiltonians of the subsystem and the n-th adjacent structure,
respectively, and Ĥnm is the Hamiltonian of the interaction between the n-th subsystem
and the m-th subsystem. The interacting Hamiltonian has the following form [29,31]

Ĥnm =
Q̂nQ̂m

Ce f f
nm

+
Φ̂nΦ̂m

Le f f
nm

, (2)

where Ce f f
nm and Le f f

nm represent the effective capacitance and the effective inductance, respec-
tively. Φ̂n and Φ̂m represent the charge operator and the magnetic flux operator, respectively.
From Equation (2), it is found that the confirmation of the Hamiltonian requires solving
the capacitance and inductance values between the different subsystems. These values
can be added to the matrix, which is uniformly expressed by the capacitance matrix. Due
to the detailed consideration of the coupling to other subsystems, the method accurately
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calculates the frequency of the qubit, and its error will be exhibited in the experimental
results section.

The entire schematic diagram of the method is shown in Figure 1. The composite
system consists of qubits, a coplanar waveguide readout resonator, and a coplanar waveg-
uide transmission bus. The node-set for the qubit unit is {Pad1, Pad2, Cl, Ground, Readout}
as shown in Figure 1b. The Maxwell capacitance matrix can be extracted using Ansys
Q3D Extractor, as shown in Figure 1c, based on the physical layout of the qubit, shown
in Figure 1b. The capacitance matrix is symmetric. The elements in the i-th row and the
j-th column represent the coupling capacitance between the corresponding nodes. The
capacitance on the main diagonal is the algebraic sum of the elements in each row. Then,
the different capacitance values of the capacitance matrix are brought into the formula for
calculation, and the theoretical calculation values of different parameters are obtained.

Layout Q3D cell model

Pad2 Pin G ReadPad1

Pad2

Pad1

Pin

G

Cl

M

C11

C22

C33

C44

C55

C12 C13

C23

C15

C24

C34

C25

C35

C45

C14

LOM→wc.wq.T1...

Capacitance matrix Lom analysis

(a) (b)

(c) (d)

Ground

Pad1

Cl

Pad2

Readout

Read

C26

Cl

C16
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C46

C56

C66

Qubit

Bus

Readout Cavity

Figure 1. (a) Schematic diagram of the physical layout of one qubit coupled to one readout resonator.
(b) Schematic diagram of the Q3D model of the Transmon qubit. (c) Capacitance matrix derived from
Q3D simulation. (d) LOM analysis.

For the description of a physical system, we need more parameters. In the LOM
method, the qubit frequency is determined by the following formula:

ωq =
1√
LjCq

− Ec, (3)

where Ec is the capacitance energy of the superconducting qubit, Lj is the inductance of the
Josephson junction, and Cq is the capacitance of the qubit. The relationship between Ec and
Cq is

Ec =
e2

2Cq
. (4)

The inductance of the Josephson junction can be determined by the magnetic flux quantum
and the critical current,

Lj =
Φ0

Ic
. (5)

In this method, for a quarter-wavelength readout resonator, its equivalent capacitance and
inductance are

C =
π

4ωrZc
, L =

1
ωc2C

, (6)



Entropy 2022, 24, 792 4 of 9

respectively, where ωc is the frequency of the resonator, and Zc represents the characteristic
impedance of the resonator. And the relationship between the length and the frequency of
the readout cavity is given by

ωc =
cπ

2l

√
2

εr + 1
. (7)

2.2. Energy Participation Ratio

The Energy Participation Ratio (EPR) method is a circuit quantization method derived
from the first principles. This method transforms the quantization problem of circuits into
an issue of determining an energy proportion: determining how much of the energy of
mode m is stored in element j [28], called the energy participation ratio, denoted by Pmj.
This ratio is the key to resolving the Hamiltonian and plays an essential role in the building
blocks of the many-body Hamiltonian [28].

First, consider a system of simple Transmon qubits coupled directly to a readout
resonator [28]. The Hamiltonian Ĥ f ull of the system can be divided into linear and nonlin-
ear parts:

Ĥ f ull = Ĥlin + Ĥnl , (8)

where Ĥlin is composed of the linear energy part of the Josephson junction and the linear
energy correlation term of the resonator, and Ĥnl is the nonlinear energy correlation term
of the Josephson junction. The Hamiltonians of these two parts are:

Ĥlin = h̄ωc â†
c âc + h̄ωq â†

q âq, (9)

Ĥnl = −Ej

(
cos
(

ϕ̂j
)
+ ϕ̂2

j

/
2
)

, (10)

ϕ̂j = ϕq

(
âq + â†

q

)
+ ϕc

(
âc + â†

c

)
, (11)

where ωc and ωq are the angular frequency of the resonator and the eigenmode frequency of
the qubit, respectively, related to the linear Hamiltonian, and âc and âq are their annihilation
operators, respectively. Ej is the energy of the Josephson junction. ϕc and ϕq are the
quantum zero-point fluctuations in the cavity and qubit modes [28], respectively. By
running the eigensolver within a certain range through finite element analysis, we can
obtain the mixed cavity and qubit modes as well as the eigenfrequencies ωc and ωq, and
finally derive the linear part of the Hamiltonian, namely Ĥlin.

For the nonlinear Hamiltonian Ĥnl , from Equation (10), we need to know the quantum
zero-point fluctuations ϕc and ϕq, which can be calculated from the energy participation
ratio. The energy participation Pm of the junction in mode m is defined as the ratio of the
inductive energy stored in the Josephson junction relative to the inductive energy stored
in the entire circuit [28]. Pm can be calculated from electromagnetic field and is related to
quantum zero-point fluctuations as follows [28]:

ϕc
2 = pc

h̄ωc

2Ej
, (12)

ϕq
2 = pq

h̄ωq

2Ej
, (13)

Therefore, through the energy participation ratio, we can get the description of the total
Hamiltonian Ĥ f ull .

In addition, we also need to determine the coupling strength and transition frequency
of the system in the actual experiment. The effective Hamiltonian of the system is obtained
by approximation:

Ĥe f f =
(
ωq − ∆q

)
n̂q + (ωc − ∆c)n̂c − χqcn̂qn̂c

− 1
2 αqn̂q

(
n̂q − 1̂

)
− 1

2 αcn̂c
(
n̂c − 1̂

)
,

(14)
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where n̂q = â†
q âq and n̂c = â†

c âc represent the cavity and qubit particle number operators,
respectively, ∆q is the “Lamb shift” of the qubit frequency, αq is the anharmonicity of the
qubit, and χqc is the dispersion shift. The main parameters of the Hamiltonian can be
directly calculated from the energy participation ratio,

αq =
1
2

χqq = pq
2 h̄ωq

2

8Ej
, (15)

αc =
1
2

χcc = p2
c

h̄ω2
c

8EJ
, (16)

χqc = pq pc
h̄ωqωc

4EJ
. (17)

And 0 ≤ pq(pc) ≤ 1, pq + pc = 1.

3. Experimental Results

The chip with an area of 8× 8 mm2 contains four fixed-frequency transmon qubits
and two transmission buses. The state of each qubit is readout by a corresponding readout
resonator. We evaporated 100 nm aluminum on a 430 µm sapphire substrate by electron
beam evaporation and then performed photolithography and etching processes to construct
the readout resonator of the chip and the capacitance part of the qubit. We use electron-
beam lithography to pattern Al/AlOx/Al Josephson junctions. Figure 2a is a photo of the
entire chip under the microscope. Figure 2b shows the optical picture of a transmon qubit.
The cryogenic wiring for the chip is shown in Figure 3. The device was tested in a dilution
refrigerator at temperature below 20 mK.

(a) (b)

Figure 2. (a) Optical microscope photo of the chip. (b) Microscope photo of Transmon qubit.

By comparing the theoretically calculated results with the experimentally measured
data, we find that the calculation errors of the LOM method for the qubit frequency, the
resonator frequency, and the room temperature resistance are all within 10%. The qubit
frequency is calculated by Equation (3), where the qubit capacitance can be calculated from
the capacitance matrix. In this example, the capacitance matrix of the qubit is shown in
Table 1. The diagonal elements of the capacitance matrix are the sum of the capacitances of
a node and other nodes. The capacitance of a qubit is formed by adding the capacitance of
the junction to the capacitance of the other parts,

Cq = tCSq + CJ , (18)
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where CJ is the junction capacitance and tCSq is the total capacitance between other
coupling structures,

tCSq = Cs +
C1S× C2S
C1S + C2S

. (19)

where CS is the capacitance between Pad1 and Ground, C1S is the sum of the capacitance
between Ground and Cl, the capacitance between Ground and Pad2, and the capacitance
between Ground and Readout pin. C2S is the capacitance between Pad1 and Pad2, and the
capacitance between Pad1 and Readout pin. Since the calculation of the qubit frequency
takes into account the capacitance of each coupling structure around the bit, the calculation
for the qubit frequency is accurate, with an error of only 0.2%, as shown in Table 2.

RT
300K

PT1 
70K

Still
800mK

CP
200mK

Mc
20mK

PT2 
4K

QPU

20dB

20dB

20dB

DC-
block

3dB

DC-
block

IN OUT

HEMT

LNF-
ISISC4

Figure 3. Cryogenic wiring for one of the qubits. Wiring for other qubits is identical.

The theoretically calculated values and exprimentally measured data are summarized
in the tables below.

Table 1. This is a capacitance matrix, the unit is fF.

Matrix Readout Cl Ground Pad1 Pad2

Reaeout 49.53 −0.008 −33.57 −13.51 −1.63
Cl −0.008 −16.15 −15.64 −0.169 −0.257

Ground −33.57 −15.64 200.25 −43.21 −47.96
Pad1 −13.51 −0.169 −43.21 95.07 −35.17
Pad2 −1.63 −0.257 −47.96 −35.17 88.24
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Table 2. Comparison between the theoretically calculated (c) and experimentally measured (m)

values of the LOM method of qubit parameters. The percentages in the third row are the error values,
i.e., e = |(c−m)/c|.

LOM ωq(GHz) ωc(GHz) α(MHz) Rn(kΩ) T1(µs)

c 4.731 6.5 −286 11.3 135
m 4.732 5.9 −350 11.0 31
e 0.2% 0.9% 22% 2.5% -

The energy participation ratios are obtained by simulating the electric field, then the
important parameters of the Hamiltonian are further calculated using the participation
ratios. As shown in the system discussed in Section 2.2, the model is a Transmon qubit
coupled to a resonant cavity. In the calculation process, we used the eigenmode solver of
HFSS. The Josephson junction is equivalent to a rectangular inductor, and its inductance
value is set to 13 nH. Figure 4 shows the electric field distributions in the qubit mode and the
cavity mode, respectively. We select qubit frequency and anharmonicity for error analysis.
In the EPR method, the qubit frequency error is about 16.8%, and the anharmonicity error
is 13.5% as shown in Table 3.

Table 3. Comparison between the theoretically calculated (c) and experimentally measured (m) of
the EPR method for qubit parameters. The percentages in the third row are the error values, i.e.,
e = |(c−m)/c|.

EPR ωq(GHz) α(MHz)

c 5.690 −405
m 4.732 −350
e 16.8% 13.5%

In terms of data diversity, the LOM method provides more parameter data, such as the
equivalent inductance, critical current, and room temperature resistance of the Josephson
junction.

(a) (b)

Figure 4. (a) Electric field distribution of qubit mode. (b) Electric field distribution of cavity mode.

4. Discussion

The essence of the lumped oscillation model is to convert the traditional microwave
distributed circuit into a lumped circuit, extract the capacitance matrix by using Q3D, and
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then calculate the essential parameters related to the determination of the system Hamil-
tonian. Its advantage is that it is more computationally efficient. The reason for the high
agreement between the calculated value of the qubit frequency and the experimental result
is that the coupling between the subsystem and other systems is fully considered, and the
capacitance matrix is accurate. The coupling capacitance with the subsystem is simulated to
obtain a more precise value of the qubit capacitance. According to the calculation formula
of the qubit frequency, the theoretical calculation value with an error of 0.2% from the
experiment is obtained. In addition, the method also calculates the decoherence time under
different dissipative channels (readout resonator, inter-qubit coupling cavity, control line),
and finally gives the upper limit of T1 time.

The EPR method transforms the problem of determining the Hamiltonian of a super-
conducting quantum system into a parameter calculation problem related to the energy
participation ratio. In this process, the finite element eigenmode solver simulates the qubit
frequency and cavity frequency. Its advantage is that the method is more suitable for multi-
junction circuits. But in this experiment, there was a 12% deviation in the qubit frequency.
The Josephson junction is equivalent to a rectangular inductor in the HFSS eigenmode
solver. However, we found that when the magnitude of the equivalent inductance of
the rectangle is significantly changed, the eigensolver of HFSS does not show a relatively
obvious frequency change, which is an unreasonable phenomenon. Therefore, there is a
specific error in this approximation during this simulation.

5. Conclusions

In this paper, we fabricated a four-qubit fixed-frequency quantum chip designed based
on the LOM and EPR method. By comparing the theoretically calculated values of some
parameters of the chip using these two methods with the corresponding experimental
data, we find that the LOM method is a more efficient method in this experiment. The
reasons for the relatively sizeable relative errors of the EPR method are discussed. From the
previous data, it can be concluded that when designing simpler quantum circuits, such as
small-scale fixed-frequency quantum chips, the LOM method can reasonably approximate
the important parameters of qubits. Besides, this method has more approximate parameters.
For multi-junction circuits, the EPR method is more accurate. However, the approximate
method of Josephson junction in the finite element eigenmode analysis still needs further
research. Moreover, the EPR method can be used to study the dissipation of different
devices, so we guess that the EPR method is expected to be extended to the study of the
decoherence time. Finally, the mathematical description of the energy participation ratio
(or energy dissipation rate) and the qubit decoherence time can be obtained.
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