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Abstract 

Understanding phylogenetic relationships among species is essential for many biological studies, which call for an accurate phyloge-
netic tree to understand major evolutionary transitions. The phylogenetic analyses present a major challenge in estimation accuracy 
and computational efficiency, especially recently facing a wave of severe emerging infectious disease outbreaks. Here, we introduced a 
novel, efficient framework called Bases-dependent Rapid Phylogenetic Clustering (Bd-RPC) for new sample placement for viruses. In this 
study, a brand-new recoding method called Frequency Vector Recoding was implemented to approximate the phylogenetic distance, 
and the Phylogenetic Simulated Annealing Search algorithm was developed to match the recoded distance matrix with the phyloge-
netic tree. Meanwhile, the indel (insertion/deletion) was heuristically introduced to foreign sequence recognition for the first time. Here, 
we compared the Bd-RPC with the recent placement software (PAGAN2, EPA-ng, TreeBeST) and evaluated it in Alphacoronavirus, Alpha-
herpesvirinae, and Betacoronavirus by using Split and Robinson-Foulds distances. The comparisons showed that Bd-RPC maintained the 
highest precision with great efficiency, demonstrating good performance in new sample placement on all three virus genera. Finally, a 
user-friendly website (http://www.bd-rpc.xyz) is available for users to classify new samples instantly and facilitate exploration of the 
phylogenetic research in viruses, and the Bd-RPC is available on GitHub (http://github.com/Bin-Ma/bd-rpc).
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Phylogenetic relationships among species have a pivotal role in 
almost every branch of biology (Kapli, Yang, and Telford 2020; Yang 
and Rannala 2012). Furthermore, when humans come across new 
virus species, they must analyze their phylogenetic relationships 
to classify and monitor the viruses for public health purposes 
(of 2020). To clarify the relationships among species, construct-
ing a phylogenetic tree is crucial in evolutionary biology research 
(Cheon, Zhang, and Park 2020; Vakirlis et al. 2016). Over the past 
few decades, evolutionary theory and computational phylogenet-
ics have advanced rapidly (Kobert et al. 2014; Aberer, Pattengale, 
and Stamatakis 2010; Felsenstein 1981; Huelsenbeck and Ronquist 
2001; Kobert, Stamatakis, and Flouri 2017; Yang 1993; Yang 1994). 
Among these, the phylogenetic trees based on Maximum Like-
lihood (ML) and Bayesian inference methods are often regarded 
as the ‘gold standard’ for tree construction nowadays, such as 
IQ-TREE2, MrBayes, and MEGA (Kapli, Yang, and Telford 2020; 
Felsenstein 1981; Huelsenbeck and Ronquist 2001; Minh et al. 
2020; Tamura, Stecher, and Kumar 2021). This approach provided a 
more accurate estimation with a realistic substitution model, and 
most phylogenetic developments were achieved in this framework 
(Yang and Rannala 2012; Chen, Lewis, and O 2014; Yang 2006).

Nevertheless, the heavy computational demand for these 
methods is still a serious drawback, which limits the applicability 
on large datasets (Kapli, Yang, and Telford 2020). Nowadays, the 
unprecedented accumulation of viral genome sequences calls for 
the development of speeding algorithms. More and more place-
ment methods with fundamental advances, including UShER, 
MAPLE, PAGAN2, EPA-ng, and TreeBeST, have been developed to 
enhance efficiency (Loytynoja, Vilella, and Goldman 2012; Bar-
bera et al. 2019; De Maio et al. 2023; Ruan et al. 2008; Turakhia 
et al. 2021). Among these methods, researchers spent plenty of 
effort on inspired innovation, including the mutation-annotated 
tree (UShER), a novel Felsenstein pruning algorithm (MAPLE), 
the phylogeny-aware graph algorithm (PAGAN2), the evolution-
ary placement algorithm (EPA-ng), and the constructing algorithm 
guided by species tree (TreeBeST). By placing the new samples 
into the reference tree or optimizing existing algorithms to con-
struct the phylogenetic tree, the UShER and MAPLE achieved 
better computational efficiency in some specific situations (De 
Maio et al. 2023; Turakhia et al. 2021). However, the UShER and 
the MAPLE prefer to perform well on highly similar sequence 
datasets (De Maio et al. 2023; Turakhia et al. 2021). Meanwhile, 
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in this study, we found that the other methods (PAGAN2, EPA-
ng, and TreeBeST) do not show enough accuracy and robustness 
in multiple datasets compared with the Maximum-likelihood tree 
constructed by IQ-TREE2 (Minh et al. 2020; Loytynoja, Vilella, and 
Goldman 2012; Barbera et al. 2019; Ruan et al. 2008). There-
fore, efficient phylogenetic estimation with high accuracy is an 
important unsolved problem and particularly relevant during the
epidemic.

In this work, we describe an efficient method that facilitates 
rapid and accurate placement, called Bases-dependent Rapid Phy-
logenetic Clustering (Bd-RPC). Here, we integrate various recoding 
methods and present a creative way of using the recoding method 
called Frequency Vector Recoding, which combines nucleotide 
base frequency into the recoding methods and takes the influ-
ence of transition–transversion bias into account. Furthermore, 
in this study, we shed new light on using indel characters and 
develop a novel algorithm for the problem of rooted variants in 
phylogenetic trees called the Phylogenetic Simulated Annealing 
Search algorithm. Here, we examined the effectiveness of each 
Bd-RPC module, including the Phylogenetic Simulated Anneal-
ing Search algorithm, Indel Recognition, and PCA Improvement 
in this study. In addition, we compared Bd-RPC’s running time 
and accuracy to the other current state-of-the-art methods of 
phylogenetic placement (PAGAN2, EPA-ng, TreeBeST) in multiple 
genera (Alphacoronavirus, Alphaherpesvirinae, and Betacoronavirus) 
(Loytynoja, Vilella, and Goldman 2012; Barbera et al. 2019; Ruan 
et al. 2008). Bd-RPC worked well in accuracy and efficiency and 
maintained good stability across different datasets. Nowadays, 
the database of Alphacoronavirus, Alphaherpesvirinae, and Betacoro-
navirus has been posted to the website for new sample placement 
(http://www.bd-rpc.xyz).

Methods
Implementation of algorithms in Bd-RPC
In this study, we developed a software/website for new sample 
placement called Bd-RPC. To perform the placement function, we 
first classify the existing sequences, and this section is defined 
as ‘Make Database’, which is utilized to obtain the relationships 
among existing sequences (Fig. 1A and B). After that, we place new 
samples into the database; the second section is called ‘Clustering 
New Sequences’ of Bd-RPC (Fig. 1C and D).

In the ‘Make Database’ section, Bd-RPC approximates the 
phylogenetic distance using the sequences treated by the Fre-
quency Vector Recoding and matches the background informa-
tion, including taxonomy information or phylogenetic tree by 
using hierarchical clustering as well as the Phylogenetic Simu-
lated Annealing Search algorithm (Fig. 1E and F). In this study, 
the sequences, highly matched to the background information, are 
defined as a cluster, and many clusters are merged into a database 
for further analysis.

In the ‘Clustering New Sequences’ section, Bd-RPC first re-
aligns the existing sequences with the new samples using the 
multiple sequence alignment program (Multiple Alignment using 
Fast Fourier Transform, MAFFT) and analyses the indel changes 
to recognize the foreign sequences (Katoh and Standley 2013). 
One of the functions of the ‘Clustering New Sequences’ section 
is pathogen identification based on taxonomy with high speed. 
Bd-PRC calculates the distance among total sequences (contain-
ing new samples) using the same recoding methods as in the 
‘Make Database’ section and classifies the new samples into the 
database’s clusters through the minimum distance for microor-
ganisms identification. The other function of the ‘Clustering New 

Sequences’ section is constructing the phylogenetic tree. Bd-RPC 
will extract the clusters for tree construction using IQ-TREE2 and 
combine them into the phylogenetic tree users provided as the 
output (Minh et al. 2020).

The detailed workflow of Bd-RPC is available in Supplementary 
Methods.

Data collection and phylogenetic analysis
As of 25 February 2021, 30,142 Betacoronavirus sequences with 
complete clinical data (Host, Collection Date, and Isolated Coun-
try) were obtained from the National Center for Biotechnology 
Information (NCBI) and GISAID (http://gisaid.org/). In this study, a 
total of 29,220 SARS-CoV-2 sequences were de-replicated using the 
mash algorithm of the dRep software, and the spike (S) gene was 
selected by python scripts (Olm et al. 2017). Here, the sequences 
with an ANI of 0.9992 were chosen, which contained a total 
of eight clades (S, L, V, G, GH, GR, GV, and O) of GISAID (Sup-
plementary Figure S1A). Furthermore, the reference sequences 
and the first reported sequences (alpha, beta, gamma) of SARS-
CoV-2 have been put into the total sequences. Meanwhile, the 
high-quality genome sequences with all three types of clinical 
data were selected in the other sequences. In contrast, the 127 
sequences with any two types of clinical data were defined as 
the unclassified sequences for evaluation (Supplementary Figure 
S1B). As a result, 1,482 sequences of Betacoronavirus (Spike gene) 
were identified as high-quality genome sequences for database 
creation, and 127 sequences were chosen to evaluate the software 
in the clustering region. Here, high-quality sequences have been 
aligned using the MAFFT program, and the phylogenetic tree was 
generated by IQ-TREE2 for the dataset preparation of the ‘Make 
Database’ section in Bd-RPC (Supplementary Figure S1C) (Minh 
et al. 2020), (Katoh and Standley 2013). The clinical data and tax-
onomy information were collected by python scripts, and manual 
adjustments were made afterward (Supplementary Table S1 and 
Supplementary Table S2).

We introduced two other datasets, including DNA and RNA 
viruses (Alphacoronavirus and Alphaherpesvirinae) to the new sam-
ple placement for a comprehensive evaluation. Among these 
viruses, the ORF1ab gene of Alphacoronavirus and the genes asso-
ciated with the DNA replication machinery (UL5, UL8, UL9, UL29, 
UL30, UL42, UL52) of Alphaherpesvirinae were selected separately 
by python scripts for the tests. Here, the sequences that contained 
full clinical data (Host, Collection Date, and Isolated Country) were 
defined as the high-quality sequences for database creation, and 
the other sequences were used to place into the database. The 
high-quality sequences were aligned using the MAFFT program, 
and the phylogenetic trees were generated using IQ-TREE2 (Minh 
et al. 2020), (Katoh and Standley 2013). Finally, 1,139 sequences 
of Alphacoronavirus were defined as high-quality sequences for 
database creation, and 171 sequences were used to place into 
the database (Supplementary Table S3 and Supplementary Table 
S4). Meanwhile, 197 sequences of Alphaherpesvirinae were used in 
database creation, and the other 217 sequences were selected for 
placement (Supplementary Table S5 and Supplementary Table S6).

Optional parameters evaluation of Bd-RPC
In this study, we compared the performance of Bd-RPC with differ-
ent parameter settings. To evaluate the robustness of the database 
creation, simulated sequences with different lengths, phyloge-
netic distances, and nucleotide base preferences were generated 
based on the Betacoronavirus phylogenetic tree by Seq-gen for 
database evaluation (Rambaut and Grassly 1997). Here, ten repli-
cations of the experiment were performed for each simulation 
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Figure 1. Overview of the Bd-RPC workflow. The Bd-RPC includes two section: ‘Make Database’ and ‘Clustering New Sequences’. The Make Database 
section consists of two main components: (A) calculating the distance matrix and (B) matching the distance matrix with the background information. 
(A) In the first component, each base of multiple sequence alignments is initially recoded as a numeric vector based on user-defined methods, causing 
the width of the sequence matrix to increase substantially. Bd-RPC extracts the principle components to reduce the width of the sequence matrix by 
PCA Improvement, and the output matrix is used to calculate the distance matrix using Minkowski Distance. (B) Two types of background information 
are accepted (taxonomy information or phylogenetic tree), and the background information is matched with the hierarchical tree generated by the 
distance matrix using the Simulated Annealing Search algorithm (described in E and F). The cluster whose MI score is larger than the cutoff value is 
accepted for database creation, and the density of the cluster is defined as the max sequences’ distance of this cluster. The Clustering New Sequences 
section consists of two main components: (C) Indel Recognition and (D) new sample placement. (C) Unclassified sequences are inserted into multiple 
sequence alignments using the MAFFT to generate a combined multiple sequence alignment for downstream analysis. Bd-RPC counts the indel 
change resulting from each new sequence insertion and compares the median of the change to the Indel Fold to assess whether the sequence belongs 
to the database. (D) The distance matrix is calculated using the combined multiple sequence alignments (filtered) based on the database creation 
settings. The minimum distance (orange numbers) of each new sample is selected and compared with the density of the corresponding cluster to 
place the new samples in the existing clusters. IQ-TREE2 will construct the subtree tree using the new sequences and the sequences from the 
corresponding cluster, if the phylogenetic tree is provided by users to the Bd-RPC. The subtrees will then be merged into a single tree as the output. For 
the Simulated Annealing Search algorithm, (E) the tree on the left is the hierarchical clustering result (dotted line) of the Bd-RPC distance matrix, and 
the one on the right is the tree transformed by background information including taxonomy information and the phylogenetic tree. The point on the 
branch (Bd-RPC hierarchical result and Background information) is the searching point for matching trees. For each searching point of the background 
information, the corresponding sequence (CS) ids are collected and compared with the sequence id of hierarchical results performed by Bd-RPC. The 
MI score of each clustering result is calculated independently, and the Bd-RPC searching point jumps forward to the maximum value for further 
searching. (F) After each jump of the Bd-RPC searching point, the Bd-RPC will perform a deeper search at the previous searching point (red arrow), thus 
reducing the impact of local maximum. By comparing the MI scores of the two searching points of Bd-RPC, the branch with the maximums value is 
chosen for the next jump.
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parameter. For sequence length, we simulated different sequence 
datasets ranging from 1 Kbp to 1 Mbp. For phylogenetic distance, 
the sequence length was set to 5 Kbp and the average phylogenetic 
distances of the simulated sequences ranged from 0.1 to 3 times 
the average phylogenetic distance of Betacoronavirus. Meanwhile, 
for nucleotide base preferences, the sequence length was also set 
to 5 Kbp and the frequency of each base nucleotide varied from 
0.1 to 0.7. The ratio of high-quality clusters (Matching Identity [MI] 
score >0.8) was used to determine the performance of Bd-RPC.

To assess the robustness of Indel Recognition, we first inserted 
other genera sequences into the dataset and collected the num-
ber of indels for performance evaluation (Supplementary Table 7). 
Additionally, we removed one species from each subgenus (HKU1, 
MERS-CoV, GCCDC1, SARS-CoV-2) and reinserted them into the 
residual database (337 sequences) for further assessment.

To evaluate the performance of recoded and uncoded genetic 
distance, we first selected the distance (Recoding Method 1, P, 
and K80 distance) and compared it against the patristic dis-
tance derived from the ML tree in three datasets: Betacoronavirus, 
Alphacoronavirus, and Alphaherpesvirinae. Furthermore, we used all 
seventeen uncoded genetic distance metrics available in the R 
package ‘ape’ for more comprehensive comparison with the six 
recoded distance metrics mentioned in this study (Paradis, Claude, 
and Strimmer 2004). In this comparison, the high-quality cluster 
ratio and new sample placement ratio were employed to evaluate 
the performance of these distance metrics in all three datasets.

Performance evaluation of Bd-RPC
We generated different ways to evaluate the performance of the 
Bd-RPC with different types of databases. For the database created 
by taxonomy information, we offered two different datasets to 
evaluate Bd-RPC. Firstly, we selected data up to 2015 for database 
creation (409 sequences) and placed the remaining data (1,073 
sequences) for software performance evaluation (Supplementary 
Figure S2). Secondly, we chose total high-quality sequences for the 
database creation (1,482 sequences), and 127 sequences, which 
only carry two clinical data, were treated as new samples for 
testing (Supplementary Figure S1B).

In terms of Bd-RPC using the database created by the phyloge-
netic tree, we compared Bd-RPC to four other recent placement 
software: EPA-ng v.0.3.8; PAGAN2 v.1.53; TreeBeST v.1.92; and 
MAPLE v.0 18 (Minh et al. 2020; Loytynoja, Vilella, and Goldman 
2012; Barbera et al. 2019; De Maio et al. 2023; Ruan et al. 2008). To 
assess the adaptability of Bd-RPC, we picked DNA as well as RNA 
viruses (Alphacoronavirus, Betacoronavirus, and Alphaherpesvirinae) 
in this comparison and employed various genes (ORF1ab, Spike, 
and Concatenation of UL5, UL8, UL9, UL29, UL30, UL42, UL52) 
to evaluate the software’s robustness. Here, the MAPLE v.0.18 is 
not suitable for the datasets whose branches are typically more 
than 0 01 (De Maio et al. 2023), and a detailed list of commands 
used to perform each algorithm can be found in Supplementary 
Table S8. Furthermore, the running time of phylogenetic place-
ment was also collected by the python scripts. The accuracy of 
these placements was evaluated using the Robinson-Foulds dis-
tance and Split distance, which was assessed using the R package 
‘TreeDist’ and the software TOPD/FMTS (Robinson and Foulds 
1981; Smith and Schwartz 2020; Bogdanowicz and Giaro 2011; 
Puigbo, Garcia-Vallve, and McInerney 2007). Meanwhile, the sta-
tistical analysis among each result of the software was performed 
using the one-sided paired Student’s t-test.

Program implementation
Bd-RPC was developed using Python 3 and tested in macOS and 
Linux operating systems. In this study, all analyses were run 

on a 40-core Ubuntu 18.04.5 system with 187 GB of RAM, and 
the code is available on GitHub (http://github.com/Bin-Ma/bd-
rpc). The Bd-RPC website was designed and implemented using 
the Django framework (https://www.djangoproject.com), which 
improves maintainability, extendibility, and portability. The web-
site has been tested in several web browsers, such as Firefox, 
Google Chrome, and Internet Explorer. 

Results
Evaluation of the ‘Bases Recoding’ module in the 
‘Make Database’ section
In this study, six recoding methods were designed for distance esti-
mation, and the distance displayed a high correlation (Pearson 
correlation coefficient >0.96) to the patristic distance measured 
from the phylogenetic tree (Table 1 and Supplementary Figure S3). 
Moreover, Method 1 as the default method, which showed the 
highest Pearson correlation coefficients with 0.965, was selected 
for further analysis. At the same time, it can be shown that 
the recoding method can be used to approximate phylogenetic 
distance with high accuracy.

Evaluation of the ‘PCA Improvement’ module in 
the ‘Make Database’ section
After the Base Recoding, the principal component analysis (PCA) 
was applied to speed up the distance estimation (Hotelling 1936). 
The running time showed that the PCA Improvement using 1,482 
components enhanced computational efficiency significantly with 
a P-value of 1*10−47 for the one-sided Student’s t-test (Supplemen-
tary Figure S4A). As the length of the sequence rose from 1 kbp 
to 1 Mbp, the reduction time due to PCA Improvement increased 
from −1.3 s to 4450.6 s (Supplementary Figure S4B). In terms of 
the accuracy assessment, we calculated the Pearson Correlation 
Coefficient between the distance calculated by each number of 
components and the raw recoded distance using the Euclidean 
Distance (Supplementary Figure S4C). It can be found that the 
Pearson Correlation Coefficient by using the PCA Improvement 
with 1,482 components was equal to 1, representing a strong 
positive correlation. This shows that the ‘PCA Improvement’ 
can significantly improve computational speed while maintain-
ing accuracy. Meanwhile, the recoded sequences were simplified 
using the PCA Improvement with 1,482 components for further
analysis.

Evaluation of the ‘Phylogenetic Simulated 
Annealing Search’ algorithm in the ‘Make 
Database’ section
The Phylogenetic Simulated Annealing Search algorithm was used 
to maximize the MI score in terms of the database created by the 
phylogenetic tree, as shown in ‘Supplementary Methods’. Com-
paring the number of high-quality clusters, the database using 
the Phylogenetic Simulated Annealing Search algorithm showed 
a significant increase in the proportion of high-quality clusters 
from 87.5 per cent to 93.4 per cent (Supplementary Figure S4D). 
It can be inferred that the Phylogenetic Simulated Annealing 
Search algorithm can effectively improve the matching between 
the hierarchical distance and the phylogenetic tree.

Evaluation of the ‘Make Database’ section using 
the simulated datasets
To evaluate the stability of Bd-RPC’s database creation, we gen-
erated 1,482 simulated sequences based on the Betacoronavirus
phylogenetic tree with various lengths, phylogenetic distances, 
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Table 1. Recoding methods and the correlation against patristic distance.

 Recoding methods  Recoded distance

A Transitions Transversions Pearson correlation

Method 1 (1 − 𝜋A, 0, 0, 0, 1 − 𝜋A, 0 ) √(1 − 𝜋i)
2 + (1 − 𝜋j)

2
+ (𝜋i − 𝜋j)

2 √2 ⋅ (1 − 𝜋i)
2 + 2 ⋅ (1 − 𝜋j)

2
0.9650

Method 2 (1 − 𝜋A, 0, 0, 0) √(1 − 𝜋i)
2 + (1 − 𝜋j)

2 √(1 − 𝜋i)
2 + (1 − 𝜋j) 0.9624

Method 3 (𝜋A, 0, 0, 0, 𝜋A, 0 ) √𝜋i
2 + 𝜋j

2 + (𝜋i − 𝜋j)
2 √2 ⋅ (𝜋i

2 + 𝜋j
2) 0.9627

Method 4 (𝜋A, 0, 0, 0) √𝜋i
2 + 𝜋j

2 0.9606

Method 5 (1, 0, 0, 0, 1, 0)
√

2 2 0.9645
Method 6 (1, 0, 0, 0)

√
2

√
2 0.9620

Figure 2. Performance evaluation of database creation. (A–C) The Simulated sequences and the high-quality cluster ratio (MI score ≥0.8) of the 
phylogenetic database were used to evaluate the robustness of Bd-RPC. (A) The x-axis represents the branch length scaling factor to simulate the 
sequences with various phylogenetic distances, and the ratio of high-quality clusters is represented on the y-axis. (B) Each box on the polyline 
corresponds to the simulation sequence’s length, shown on the x-axis, and the high-quality cluster ratio is shown on the y-axis. (C) The frequency of 
the four bases is changed from 0.1 to 0.7, and detailed information of base frequency is available on the x-axis. Each box represents ten simulation 
sequences with specific base frequency, and the high-quality cluster ratio is shown on the y-axis. (D) The Betacoronavirus ML tree was generated using 
a random sequence in each species, and the colorful dots reflect the Matching Identity score of each cluster. (E) Statistical results of the Matching 
Identity score in the databases, established using two types of background information, were displayed as a stacked bar chart. The first and second bar 
represent the results with or without unclassified species, and the others show the distribution of the Matching Identity score under different 
boot-strap cutoff values.
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and nucleotide base preferences to evaluate the robustness of 
Bd-RPC (Fig. 2A, B, and C).

For each value of average phylogenetic distances, the ratio fluc-
tuations caused by phylogenetic distance changes were within a 
small range size (<10 per cent) (Fig. 2A). Similarly, the results of 
the ratio calculated in different sequence lengths also showed a 
small fluctuation (<10 per cent) in Bd-RPC, emphasizing the stabil-
ity of Bd-RPC (Fig. 2B). Meanwhile, to evaluate the impact caused 
by nucleotide base frequency on database creation, the percent-
age of high-quality clusters in each database was collected. The 
results showed that as the frequency of the four bases changed 
from 0.1 to 0.7, the ratio of high quality clusters maintained a 
small variation (<10 per cent), highlighting the stability of Bd-RPC 
(Fig. 2C). Altogether, it was suggested that Bd-RPC maintained the 
robustness in the section ‘Make Database’.

Evaluation of the ‘Make Database’ section using 
the Betacoronavirus dataset
Specifically, for the database created by taxonomy information, 
we found that the majority of species had great MI scores (>0.8), 
and some species with low MI scores (<0.8) were most defined as 
‘unclassified’ by NCBI (Fig. 2D). To explore the influence of unclas-
sified species, we removed sequences defined as ‘unclassified’ by 
NCBI from the input data and noticed that the MI score had a 
great improvement (MI of all clusters >0.9), as shown in Fig. 2E. It 
can be inferred that the MI score can be used to evaluate the con-
sistency between the clustering result of recoded distance matrix 
and taxonomy information.

Besides, for the database created by phylogenetic tree, the boot-
strap cutoff value is optional for users, and the program will stop 
searching if the branch’s bootstrap value is less than the boot-
strap cutoff value. As shown in Fig. 2E, the results indicated that 
most clusters’ MI score was greater than 0.8, and the cluster with 
a high MI score (>0.8) was defined as a high-quality cluster in 
this study. As the bootstrap cutoff value increased from 60 to 100, 
the number of high-quality clusters was distributed from 39 to 
93, while the number of high-quality clusters identified by tax-
onomy information was 18 or 21. Aside from these findings, as 
the bootstrap cutoff value decreased, the percentage of clusters 
with low MI scores increased from 4.8 per cent to 16.2 per cent, 
which may result in misclassifications. As a result, the database 
created using the phylogenetic tree contained more numbers of 
high-quality clusters, which performed better than the database 
created using taxonomy information. Furthermore, the results 
showed that decreasing the bootstrap cutoff value would cause 
misclassifications that may affect the accuracy of Bd-RPC.

Evaluation of the ‘Indel Recognition’ module in 
the ‘Clustering New Sequence’ section
In the ‘Clustering New Sequence’ section, Bd-RPC first removed 
the foreign sequences by Indel Recognition. To identify the for-
eign sequence among the new samples, the indel number was 
re-counted after the alignment with the addition of the new 
sequences. In Betacoronavirus, foreign sequence recognition was 
determined by the default Indel Fold, defined as the median 
fold-change (±10 per cent) of existing sequences’ indels (Supple-
mentary Figure S5). Here, Supplementary Figure S5A showed the 
movement of the indel quantity distribution after inserting foreign 
sequence.

By analyzing the median indel number of each sample, it can 
be found that the sequences have achieved a correct classification 
by comparing to the taxonomy information of NCBI (Supplemen-
tary Figure S5B). To assess the validity of Indel Recognition, four 

species of Betacoronavirus were removed from the database. Sup-
plementary Figure S5C indicated that the four species treated as 
the new samples in this assessment were correctly classified into 
the Betacoronavirus by performing Indel Recognition. In summary, 
these results demonstrated the feasibility and high classification 
accuracy of the Indel Recognition module.

The accuracy and efficiency evaluation of Bd-RPC 
with database constructed by taxonomy 
information
After removing the foreign samples through Indel Recognition, 
the remaining sequences were classified into clusters of the exist-
ing database. It was found that the number of Betacoronavirus
sequences rose sharply after 2015 (Supplementary Figure S2). 
Here, 1,066 new sequences were correctly classified within about 
3 minutes. Only seven samples, which belong to the species with 
few sequences uploaded in NCBI before 2015, were mostly clas-
sified into the correct sub-genus (6/7) but not species (Supple-
mentary Figure S6). Among these, SARS-CoV-2 was an outbreak 
in November 2019 and was first deemed as SARS-like Coron-
aviruses in 2020 (of 2020). Based on the existing sequences before 
2015, Bd-RPC correctly classified the SARS-CoV-2 sequences into 
the SARS-CoV. Meanwhile, the BtRs-BetaCoV and Pangolin coron-
avirus were deemed ‘unclassified’ in NCBI, which were identified 
as SARS-like CoV after the worldwide outbreak of SARS-CoV-2 
(Lam et al. 2020; Zhou et al. 2020). This study successfully clas-
sified these sequences into the SARS-CoV by Bd-RPC using the 
existing sequences before 2015.

Moreover, the 127 unclassified sequences with any two types 
of clinical data were employed as the new samples for evaluat-
ing the robustness of Bd-RPC performance. Here, all 127 samples 
were classified into the clusters of the existing database with 1,482 
sequences using about 1 minute, and the Bd-RPC correctly iden-
tifies new samples into the corresponding species compared to 
the taxonomy information from NCBI (Fig. 3). The Bd-RPC using 
the database created by taxonomy information (user provided) 
enables rapid and accurate identification of new samples.

The comparation of frequency vector recoding to 
the other distance metrics
To evaluate the performance of recoded versus uncoded genetic 
distance, the recoded distance (Method 1) and uncoded genetic 
distance (P and K80 distance) were selected to compare against the 
patristic distance derived from the ML tree. As shown in Supple-
mentary Figure S7, these distance metrics were evaluated in three 
datasets (Betacoronavirus, Alphacoronavirus, and Alphaherpesvirinae). 
When the patristic distances between sequences are close to zero, 
the recoded distance using Frequency Vector Recoding shows a 
steeper slope compared to the other two distances (P and K80 dis-
tance). This indicates a higher discriminative power of recoded 
distance for sequences with close patristic distances.

Moreover, we evaluated the performance of six recoded and 
seventeen uncoded genetic distance metrics in Bd-RPC using high-
quality cluster ratio and new sample placement ratio. In Beta-
coronavirus, while all distance metrics enabled completely new 
sample placement, six recoded distance metrics outperformed 
the uncoded genetic distance metrics in terms of high-quality 
cluster ratio (Supplementary Figure S8A). Statistical analysis con-
firmed that these six recoded distance metrics significantly sur-
passed the uncoded genetic distance metrics in high-quality clus-
ter ratio (Supplementary Figure S8B). Similar trends were observed 
in Alphacoronavirus, where the six recoded distance metrics sig-
nificantly outperformed the uncoded genetic distance metrics in 
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Figure 3. Accuracy evaluation of new sample placement in taxonomy database. The radar chart displays the 1.5-fold density of clusters (MI score 
≥0.8, default value) and the shortest distance of new samples (red dot) to the cluster in the database. The colorful sectors show the clusters in the 
graphic, and the radius (distance-to-center) denotes the density of the clusters (new samples).

terms of high-quality cluster ratio (Supplementary Figure S8C 
and D). Additionally, it was noted that most distance metrics 
failed to place all new sequences in Alphaherpesvirinae. In this 
dataset, recoded distance metrics outperformed uncoded genetic 
distances in terms of new sample placement ratio but were infe-
rior to some uncoded genetic distance metrics in high-quality 
cluster ratio (Supplementary Figure S8E and F).

The comparation of Bd-RPC to the other 
placement software
This study compared the recent developments of phylogenetic 
placement software (PAGAN2, EPA-ng, and TreeBeST) with Bd-
RPC in running time and accuracy. Multiple datasets, includ-
ing Alphacoronavirus, Alphaherpesvirinae, and Betacoronavirus, were 
selected to evaluate the performance and robustness of Bd-RPC 
in new sample placement with five repetitions. The Split and 
Robinson-Foulds distances, frequently employed to quantify vari-
ation between phylogenetic trees, were used to assess the accu-
racy of software (Robinson and Foulds 1981; Smith and Schwartz 
2020; Bogdanowicz and Giaro 2011). In this study, the recoded 
distance metric (Method 1) was used in Alphacoronavirus and Beta-
coronavirus, while the ‘logdet’ distance metric was employed for 
Alphaherpesvirinae (Paradis, Claude, and Strimmer 2004).

In the Betacoronavirus datasets, the running time of Bd-RPC 
was significantly faster than PAGAN2 and TreeBest (Fig. 4A). 
Meanwhile, Bd-RPC achieved the highest similarity to the ML 
tree compared with other placement software (PAGAN2, EPA-ng, 
and TreeBeST) through the Split and Robinson-Foulds distances 
(Fig. 4B). Similar results were observed in Alphacoronavirus, where 
the Bd-RPC achieved the highest accuracy and maintained high 
efficiency (faster than PAGAN2 and TreeBest) (Fig. 4C and D). 
Furthermore, in the Alphaherpesvirinae dataset, Bd-RPC showed 
the highest accuracy of all placement software and achieved 

better efficiency than PAGAN2 (Fig. 4E and F). Overall, these find-
ings showed that Bd-RPC maintained a good efficiency compared 
with the other placement software in viruses. Notably, Bd-RPC 
produced the most stable and accurate results among all methods 
in viruses.

Discussion
In this study, we provided a highly flexible, efficient computa-
tional software/website for new sample placement called Bd-
RPC. Here, we heuristically introduced Frequency Vector Recod-
ing, Indel Recognition, and the Phylogenetic Simulated Anneal-
ing Search algorithm into the new sample placement. Testing 
against multiple genera (Alphacoronavirus, Alphaherpesvirinae, and 
Betacoronavirus) revealed that the new software provided efficient 
performance and maintained stable accuracy.

For the phylogenetic analysis using recoding methods, plenty 
of effort has been made on bases and amino acids in recent years 
(Sridhar et al. 2007; Konishi et al. 2019; Phillips and Penny 2003; 
Hernandez, Ryan, and Uyeda 2021; Vera-Ruiz et al. 2014). How-
ever, it is well known that the estimation accuracy of recoding 
methods carries serious drawbacks (Vera-Ruiz et al. 2014). For 
example, the six-stats recoding in the protein phylogenetic anal-
ysis was ineffective in the face of high saturation (Hernandez, 
Ryan, and Uyeda 2021). Our study presents a creative way of using 
the recoding method called Frequency Vector Recoding, which 
combines nucleotide base frequency into the recoding methods 
and considers the influence of transition–transversion bias. In 
practice, it was shown that Method 1 revealed the highest sim-
ilarity to the patristic distance calculated by the ML tree, with 
the Pearson correlation coefficient equal to 0.965 in Betacoronavirus
(Table 1). Compared with the uncoded genetic distance, recoded 
distance provides higher discriminative power for sequences with 
close patristic distances (Supplementay Figure S7). Furthermore, 
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Figure 4. Running time and the distance to ML tree of each software in Betacoronavirus, Alphacoronavirus, and Alphaherpesvirinae. (A, C, E) The running 
time of each software in Betacoronavirus, Alphacoronavirus, and Alpha- herpesvirinae. The blue scatter represents the running time of each 
examination of the software. The running time of Bd-RPC was compared with that of other software using the one-sided paired Student’s t-test. ‘*’ 
represents P-value <0.05, and ‘**’ represents P-value <0.01. (B, D, F) The Split and Robinson-Foulds distances were used to quantify the variation 
between the placement results and the ML tree. The orange scatter represents the results of each examination of the software. The statistical analysis 
among each result of the software was performed using the one-sided paired Student’s t-test. ’*’ represents P-value <0.05, and ’**’ represents P-value 
<0.01. Here, the result of EPA-ng v.0.3.8 is not suitable for TOPD/FMTS to calculate Split Distance. (A, B) Statistics in Betacoronavirus. (C, D) Statistics in 
Alphacoronavirus. (E, F) Statistics in Alphaherpesvirinae.

the recoded distance metrics demonstrated superior performance 
over the uncoded genetic distance metrics in the Alphacoronavirus
and Betacoronavirus datasets, as evidenced by the higher-quality 
clustering ratio and new sample placement ratio (Supplementary 
Figure S8). In practice, the distance calculation using the recoding 
methods was quite rapid, making it ideal for the initial location 
(not for estimating the final distances). Here, Bd-RPC provided 
a flexible framework allowing users to choose from six recoding 
methods used in this study or provided new recoding methods. 
In total, different from the previous research (Sridhar et al. 2007; 
Konishi et al. 2019; Phillips and Penny 2003; Hernandez, Ryan, 
and Uyeda 2021; Vera-Ruiz et al. 2014), the recoding methods 
were selected for approximating the phylogenetic distance rapidly, 
and the distance calculated by recoded sequences was used to 
estimate the analysis precision by matching the background infor-
mation (taxonomy information or phylogenetic tree).

The Phylogenetic Simulated Annealing Search algorithm was 
employed to enhance the number of high-quality clusters in 

the database constructed using the phylogenetic tree. The Simu-
lated Annealing algorithm is a probabilistic technique frequently 
employed in prior research to approximate the global optimum of 
a given function in Machine Learning (Zhan et al. 2016), travel-
ing salesman problem (Zhang et al. 2020), (Aarts, Korst, and van 
Laarhoven 1988), and protein structure prediction (Rere, Fanany, 
and Arymurthy 2015; Chou and Carlacci 1991), but was never 
used in phylogenetic analysis. By accepting suboptimal solutions, 
this algorithm allows for a more thorough search for the global 
optimal solution (Kirkpatrick, Gelatt, and Vecchi 1983). Similarly, 
in this study, the Phylogenetic Simulated Annealing Search algo-
rithm was developed to find the optimal global match of the 
list of sequence id between recoded sequence distance matrix 
and the phylogenetic tree of existing sequences. Through the 
evaluation, it can be found that the database utilizing the Phy-
logenetic Simulated Annealing Search algorithm exhibited a sig-
nificant increase in the proportion of high-quality clusters from 
87.5 per cent to 93.4 per cent (Supplementary Figure S4D). It can 
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be inferred that the Phylogenetic Simulated Annealing Search 
algorithm effectively reduced incorrect convergence and obtained 
more high-quality clusters.

The previous study showed that the indel variation models 
yielded biologically unrealistic estimations in constructing the 
phylogenetic tree (Saurabh et al. 2012). The indel was employed to 
recognize foreign sequences by counting the median fold-change 
of sequences’ indel after adding new samples, but not estimate 
the phylogenetic tree in this study. As a result of the assess-
ments, Bd-RPC can clearly distinguish foreign sequences through 
the Indel Recognition while maintaining high robustness with the 
default cutoff value (±10 per cent) (Supplementary Figure S5B
and C). For the current method in foreign sequence recognition, 
PhyClip identifies outlier sequences using the patristic distance, 
and the sequences scaled away from the cluster’s median patris-
tic distance are recognized as foreign sequences (Han et al. 2019). 
Therefore, the phylogenetic tree construction is necessary for run-
ning PhyClip, and implanting PhyClip is unsuitable for Bd-RPC 
to place new sequences since the phylogenetic tree is output for 
Bd-RPC. In this study, Bd-RPC employs the Indel Recognition to 
distinguish the foreign sequences, and it need not construct the 
phylogenetic tree beforehand.

For the database created using taxonomy information, Bd-RPC 
classified the new samples into the cluster through the minimum 
distance, which can identify new samples at the species level. 
Here, the performance of Bd-RPC was evaluated on two datasets. 
It can be found that the Bd-RPC accurately identified unclassi-
fied sequences in each dataset, and the placement accuracy was 
improved from 99.3 per cent to 100 per cent as the sizes of the 
database grew (Fig. 3A and Supplementary Figure S6). Notably, the 
unclassified sequences (before 2020) such as SARS-CoV-2, BtRs-
BetaCoV, and Pangolin coronavirus, which were classified into the 
SARS-CoV nowadays, have been correctly classified by Bd-RPC 
with the sequences obtained before 2015 (of 2020; Lam et al. 2020; 
Zhou et al. 2020).

To assess the performance of Bd-RPC in generating the phy-
logenetic tree, the running time and accuracy of the current 
state-of-the-art placement software (PAGAN2, EPA-ng, TreeBeST) 
were collected and compared with those of Bd-RPC in multiple 
genera (Alphacoronavirus, Alphaherpesvirinae, and Betacoronavirus) 
(Loytynoja, Vilella, and Goldman 2012; Barbera et al. 2019; Ruan 
et al. 2008; De Maio et al. 2023). Here, Bd-RPC maintained the high-
est precision with great efficiency and showed stable performance 
on all three virus genera (Fig. 4). It can be concluded that Bd-
RPC provides a flexible framework that can be used in a variety of 
viruses, and its performance has been demonstrated in Alphacoro-
navirus, Alphaherpesvirinae, and Betacoronavirus. In addition, among 
these methods, only UShER and Bd-RPC of these phylogenetic 
placement tools built user-friendly websites (https://genome.ucsc.
edu/cgi-bin/hgPhyloPlace and https://www.bd-rpc.xyz), which is 
convenient for researchers. Nowadays, the databases of Alphacoro-
navirus (ORF1ab), Alphaherpesvirinae (Concatenation of UL5, UL8, 
UL9, UL29, UL30, UL42, UL52), and Betacoronavirus (Spike) have 
been posted to the website for phylogenetic placement. In the 
future, the efficiency of Bd-RPC could be further improved by 
combining other tree construction software, such as fastTree and 
MAPLE, to replace IQ-TREE2 used in version 1.0 Bd-RPC for subtree 
construction (Minh et al. 2020; De Maio et al. 2023; Price, Dehal, 
and Arkin 2010). Meanwhile, more and more databases of other 
species would be updated on the website.

Bd-RPC provides a brand new way to place new samples, and 
a user-friendly website was built to offer convenient and real-
time service for users. For the first time, this study integrates 

the recoding methods to save the computing time of tree con-
struction and sheds new light on using indels in foreign sequence 
recognition. Furthermore, the Phylogenetic Simulated Annealing 
Search algorithm serve to find the optimal global match of the 
list of sequence id between recoded sequence distance matrix and 
the phylogenetic tree of existing sequences, which achieved good 
performance in the proportion of high-quality clusters. Bd-RPC 
provides a novel, automated, flexible, and efficient framework that 
can be generalized to place new samples and monitor pathogen 
dynamics.

Data availability
All data used in this work are available at https://github.com/
Bin-Ma/bd-rpc/tree/master/example, collected from NCBI (http://
ncbi.nlm.nih.gov) and GISAID (https://www.gisaid.org/). Bd-RPC 
online toolkit is available to users at http://www.bd-rpc.xyz. The 
source code and user manual are available at https://github.com/
Bin-Ma/bd-rpc.

Supplementary data
Supplementary data is available at VEVOLU Journal online.
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