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Abstract
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisti-

cated both in providing estimates of dose and in representing dosimetry uncertainty. For

example, a computer program was used by the Hanford Thyroid Disease Study to provide

100 realizations of possible dose to study participants. The variation in realizations re-

flected the range of possible dose for each cohort member consistent with the data on dose

determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013

which estimates both external and internal exposures and provides multiple realizations of

"possible" dose history to workers given dose determinants. This paper takes up the prob-

lem of dealing with complex dosimetry systems that provide multiple realizations of dose in

an epidemiologic analysis. In this paper we derive expected scores and the information ma-

trix for a model used widely in radiation epidemiology, namely the linear excess relative risk

(ERR) model that allows for a linear dose response (risk in relation to radiation) and distin-

guishes between modifiers of background rates and of the excess risk due to exposure.

We show that treating the mean dose for each individual (calculated by averaging over the

realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors)

gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid

tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the

information matrix (and hence the standard errors of the estimate of β) is biased for β 6¼0

when ignoring errors in dose estimates, and we show how to adjust the information matrix

to remove this bias, using the multiple realizations of dose. The use of these methods in the

context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veter-

ans Study, is discussed.
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Introduction
Assessment of radiation exposure in many epidemiologic studies of disease is subject to consid-
erable uncertainties. When estimation of radiation exposure is based on historical reconstruc-
tions many determinates of dose may be uncertain and affect a large number of study
participants simultaneously. An important example is the Hanford Thyroid Disease study
[1,2,3] which utilized the CIDER (Calculation of Individual Doses from Environmental Radio-
nuclides) dosimetry system to estimate, approximately four decades after exposures began, in-
dividual thyroid doses due to 131I releases for members of the population living proximal and
downwind of the Hanford site in the late 1940s and early 1950s. Uncertainties in a number of
parameters including source term, atmospheric transport and deposition, biological parame-
ters of iodine transfer into cows and goats milk, and parameters of milk production and distri-
bution are propagated in such a way as to affect potential doses for many or all study
participants simultaneously. The CIDER system was designed to represent uncertainty (both
shared and unshared) by means of repeated realizations of dose based on a Monte Carlo calcu-
lation in which uncertain parameters were given uncertainty distributions and draws from
those distributions were used to develop dose estimates for the entire cohort simultaneously.

In a more recent example the Improved Thyroid Dose Reconstruction System, TD-10 [4]
provides thyroid doses for use in a cohort of children and adolescents in the Ukraine [5] ex-
posed to Chernobyl radiation. The dosimetry system incorporates direct measurements of thy-
roid activity, and local 131I deposition and also the influence of dietary and lifestyle habits
collected by interview as well as estimated thyroid volume and mass according to age and other
factors. Similarly with the CIDER system for Hanford, the TD-10 system represents uncertain-
ty in thyroid dose by providing multiple realizations of potential dose, in this case 1,000 cohort
realizations. Little et al. [6] have described possible approaches to statistical analysis of these
data including regression calibration and Monte Carlo techniques. Other examples include the
methods of Puncher and Birchall [7], using the IMBA program (Public Health England) for in-
ternal dose and uncertainty estimation.

A natural question arises about how to take into account shared uncertainties either repre-
sented in this way (as many realizations) or in summary form (e.g. as a covariance matrix de-
scribed below) into epidemiological analysis. In this paper we explore this question specifically
in relation to two different cohorts: the Atomic Veterans Study (AVS) [8] and the Mayak
Worker Cohort (MWC) [9], generalizing previous work [10] on this problem which was fo-
cused on the Hanford Thyroid Disease Study. We develop some novel mathematical expres-
sions for the influence of shared and unshared dosimetry errors on dose-response parameter
estimation that are very useful in the analysis of important special cases. Using these expres-
sions we carry out some formal calculations for a study design question (the modification of
power calculations to allow for shared dosimetry error) based on the AVS. Finally we indicate
how to approach the problem of shared dosimetric uncertainty when, as in the MWC expo-
sures (1) are prolonged over extended time periods and (2) analysis of cancer risk is based on
linear excess relative risk (ERR) models.

Effects of Measurement Error
The term measurement error is extremely broad and can refer to a huge range of issues which
vary in importance and degree of difficulty, with some problems being relatively simple and
straight forward, with the errors having predictable effects which are easy to correct for while
other problems are nearly or completely intractable. The discussion below focuses on the ef-
fects of measurement error on parameter estimation and on correction techniques that can
be applied in many epidemiologic analyses to mitigate these effects. Both independent
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random and non-independent, i.e. shared, errors are considered and a basic statistical frame-
work that can be used to address uncertainty information that is embodied in complex do-
simetry systems is discussed.

Errors in measurement can have many effects upon the results of epidemiologic or statistical
analyses. For example Thomas et al. [11] in a review for the Annals of Public Health described
effects on

(1) The power of statistical analyses to detect significant associations between an outcome Y
and an exposure X, when true X is not available, but only a measured or imputed expo-
sure, Z

(2) the shape of the dose response relationship E(Y|Z) compared to E(Y|X) where Y is the
outcome of interest, X is the true exposure of interest, and Z is the measured exposure,
often, but not always, E(Y|Z) will be attenuated compared to E(Y|X) so that slope parame-
ters β in E(Y|X) that govern the true dose response relationship will be underestimated;

(3) the variance structure V(Y|Z) compared to V(Y|X), which can distort inferences about
dose response parameters β even if the estimates of β using Z are unbiased

(4) the covariance structure, Cov(Y1, Y2|X) between two dose-dependent outcomes condi-
tional on true dose X. For example Y1, and Y2 may be independent given X but have posi-
tive covariance Cov(Y1, Y2|Z) given measured dose. The phenomenon is known as
residual confounding [12] and has been extensively discussed in the LSS [13–16].

Much of the exposure measurement error literature distinguishes (a) differential vs. non-
differential, (b) random vs. systematic, (c) Berkson vs. classical, and (d) shared vs. unshared
errors. Approaches to assessing and correcting for measurement error effects on statistical
analyses can be classified into two broad groups as either based on a functional or structural in-
terpretation of the error problem [17]. The distinction between the two is that functional
(sometimes called non-parametric) methods make no assumptions about the form of the dis-
tribution of true dose X while structural methods include the modeling of this distribution as
part of the measurement error correction problem. While the functional approach is by design
robust to modeling mistakes concerning the distribution of X in a study, this robustness can
come at a price, e.g. less power and flexibility than achieved by the structural approach when
the distributional form of X is reasonably well known or can be inferred [18]. This review fo-
cuses upon non-differential errors and the structural approach to assessing and correcting for
the effects of measurement error. Here non-differential means that the error in the exposure of
interest is independent of the outcome, Y, if X is known, or equivalently that f(Y|X, Z) = f(Y|X)
where f(Y|•) refers to the conditional probability distribution of Y given the information • on
the RHS of the |. This is also expressed by saying that Z is a surrogate for X. Generally correct-
ing for the effects of differential error is a less tractable problem in that all the standard ap-
proaches based on assuming non-differential errors, will tend to fail.

Classical and Berkson Error
The terms Classical and Berkson error [19] refer to random error models that have different at-
tributes, in a classical error model it is assumed that the estimate is independently distributed
around X in such a way that E(Z|X) = X, whereas a Berkson error model assumes that X is dis-
tributed around Z with E(X|Z) = 0. We see (in the section on regression substitution below)
that under a Berkson error measurement error model if we are fitting a linear response model
to Y and substitute Z for unknown X the resulting parameter estimates will give an unbiased
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estimate of the linear dose response. The classical error model on the other hand produces at-
tenuated estimates of the slope parameter. (Both types of error result in loss of study power).

Classical error models are often used as a representation of how an idealized (but error
prone) exposure or dose meter should perform, i.e. the estimates Z should be distributed
around true dose X with independent errors. Such an idealized exposure meter would be appli-
cable to any study with any distribution of X, and the estimate Z for one individual would not
depend in any way upon the distribution of other study members Z.

Berkson error models on the other hand are often used as an idealized model for averaging
error. For example consider a series of inhabited islands contaminated after a nuclear accident,
suppose that true X is measured at enough points and times on each island so that the exposure
average is well understood. Individual doses however depend on the actual location and/or be-
havior of an exposed person so that the individual doses may ideally be considered to cluster
around the island means. If the island means are used in the analysis then the errors in apply-
ing these to the individual inhabitants yield Berkson errors which will be independent of each
other if the island means are known perfectly.

Correcting for Exposure Measurement Error using Regression
Substitution
Regression substitution [17,20,21] remains the most widely used approach to measurement
error adjustment of risk estimates in epidemiologic analysis. In simplest form the method re-
places a single unknown true dose X with E(X|Z) for each individual and treat these as equiva-
lent in the regression models. The rationale for this is fairly straight-forward. If we assume a
linear relationship between the expected value of outcome Y given true dose X, i.e.

EðY jXÞ ¼ aþ bX ð1Þ

then using the rule of conditional expectations the expected value of Y given measurement Z is
equal to

EðY jZÞ ¼ EXjZfEðY jX;ZÞg
¼ EXjZfEðY jXÞgðthis follows since Z is a surrogate for XÞ
¼ EXjZðaþ bXÞ
¼ aþ bEðXjZÞ

if we denote E(X|Z) as Z� then E(Y|Z�) has the same linear slope term as does E(Y|X). This im-
plies that we can fit the dose response model (1) by using Z� as the explanatory variable, and
also implies that the presence of unshared Berkson error does not by itself bias the dose re-
sponse parameter estimates. The regression substitution approach can be extended to include
other covariates (i.e. adjustment variables) and often works well even when mildly non-linear
models are being fit, such as logistic or Cox regressions when effect estimates are not extremely
strong [21]. We note that (1) can be generalized to include additional covariates and interac-
tions. Other methods for correcting for measurement error have been considered of course,
these include the SIMEX [22] method and structural equation modeling [11], among others.
We do not consider these further here since it seems difficult to extend these methods to deal
with, as described next, dosimetry systems that provide multiple realizations of dose.
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Shared Error and Complex Dosimetry Systems for Dose
Reconstruction

Exposure reconstruction
In many settings no actual "measurements" exist in the literal sense. Instead knowledge of the
physical processes that produced dose and that transfer radionuclides (in the case of radiation
exposure in the environment) from source points to populations is used to reconstruct expo-
sures to radiation that may have taken place many years ago. While such dose reconstruction is
not new, there recently has been an emphasis on explicitly including uncertainty estimation as
part of the best estimation of individual doses. Starting with thyroid and leukemia disease stud-
ies in Utah in the 1990s [23,24] and notably for 131I exposures originating from the Hanford fa-
cility [25–28] Monte Carlo calculations have formed the basis for both the calculations of
estimated dose as well as the representation of uncertainty in estimated dose. We first describe
the Hanford study and many of the points made by Stram and Kopecky [10] about the proper
incorporation of these Monte Carlo systems into dose response estimation.

Complex dosimetry systems
Using the terminology of Stram and Kopecky [10], a complex dosimetry system is one in
which multiple possible doses (dose realizations) are computed for all members of the cohort
with variability in the possible doses representing dosimetric uncertainty. In complex dosime-
try systems shared uncertainty is to be reflected in the way that dose realizations co-vary from
individual to individual. If two individuals share an important uncertainty about a factor deter-
mining dose then their dose estimates will tend to be highly correlated over the replications, if
they do not, then they will tend to be almost independent.

Underlying Stram and Kopecky's approach is the assumption that a complex dosimetry sys-
tem provides realizations that can be regarded as being sampled from the distribution of true
dose given all that is known,W, about the determinates of true dose.

To give a concrete example consider the effects of uncertainty in the size of the source term
(total 131I released) for the Hanford Study. The degree of uncertainty is finite, because much is
known about the history of the Hanford nuclear site, but is not zero either. Crudely speaking
the Monte-Carlo method generates, for each replication of cohort dose, a realization of source
term size from a prior distribution of possible values of this source term given all that is known
about this parameter, and then uses this value in all subsequent calculations for that replication;
thus error (the difference between true and simulated) in the source term affects all doses si-
multaneously. In other steps of the calculation for the same replication there may be sharing
that is not so extensive; for example drinkers of cow's milk will share certain additional uncer-
tainties in their total dose, not shared with non-milk drinkers.

In addition to these shared or partly shared sources of uncertainty there is the possibility
that input data (location during exposure times, milk drinking habits, etc.) that has been elic-
ited for each individual may be subject to independent—generally classical error. Note that
building the dosimetry system may require some statistical analysis of the input data before the
using the Monte Carlo methods all the way down to calculate individual dose. For example if
milk consumption for participants in the Hanford study is reported with independent classical
error, the selection of a random milk intake by the dosimetry system should be from the condi-
tional distribution of true intake given reported intake. Specifically, if R is the reported intake
and D is the true amount consumed a classical error model may be used to represent the
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relationship between R and D. Then the conditional distribution is

f ðDjRÞ ¼ f ðRjDÞf ðDÞZ
f ðRjDÞf ðDÞdD

and Monte Carlo sampling should be from f(D|R). This integration requires knowledge of f(D)
and f(R|D) which can be imperfect itself. Generally if one can specify f(R|D) then it is possible
to approximate f(D) from the observed distribution of R by using deconvolution methods such
as those described in Pierce and Kellerer [18] so that the key issue is knowledge of the form
and parameters of f(R|D); uncertainties about f(R|D) could also be incorporated into the
Monte Carlo calculations if an appropriate prior distribution can be agreed upon.

Incorporating multiple realizations of dose into dose-response analysis
If we accept the notion that the Monte Carlo-based complex dosimetry system provides sam-
ples of cohort doses given everything that is known about true dose, i.e. we treat each cohort
dose replication, Xr, as sampled from a probability distribution f(X|W) of true dose X for the
entire cohort given the state of knowledge,W, about determinants of true dose for each indi-
vidual, then we can consider several possible methods for estimating parameters in a risk or
hazard model for Y given X. Here X indicates the N-dimensional vector of true doses for all N
individuals, and Xr is the N-vector of realized dose for replication number r. We can turn the
entire problem into a Berkson error problem by obtaining enough realizations Xr so that the
sample average of these (averaged over r) is equal to the mean of true dose givenW. The first
step in the analysis of Stram and Kopecky [10] is to use this average dose as a replacement for
true dose in the dose response model f(Y|X) in order to provide initial estimates of the dose re-
sponse parameters β of primary interest. Note that these initial estimates may be unbiased or
close to unbiased (using the arguments above) but nevertheless the standard error estimates
may flawed either because the variance function, Var(Y|Z), changes compared to Var(Y|X) or
because of loss of independence between the individual outcomes due to shared error.

Stram and Kopecky then go on to propose some rather simple ad hoc methods for deter-
mining the impact of shared errors on the standard errors of the parameter estimates and on
testing for non-zero effects of exposure. In addition they make some general points about the
impact of shared errors.

1. Ignoring shared error in the dosimetry system does not affect the asymptotic size of the test
of the null hypothesis that there is no dose-response relationship between exposure and out-
come (i.e. the test that β = 0 remains valid)

2. However, sample sizes or the power of a test of the null hypothesis calculated under a specif-
ic alternative hypothesis (β 6¼ 0) will be incorrect if they ignore shared errors; i.e. for a given
sample size power will be over-estimated.

3. Confidence intervals will also be affected. Ignoring shared dosimetry error while construct-
ing confidence intervals will result in confidence intervals that are too narrow.

4. However, because of point 1, a naïve confidence interval for β ignoring dosimetry error that
does not overlap 0 will not overlap 0 once shared errors have been accounted for. In this
sense it is often the upper confidence bounds for (positive) β that are most affected by
shared dosimetry error.

The ad hoc correction techniques described in Stram and Kopecky [10] were based upon de-
compositions of the covariance matrix of true dose X givenW into a single shared additive,
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single shared multiplicative, unshared additive and unshared multiplicative components. In
the following we also base our analysis upon the covariance matrix of true dose X givenW but
we take a more rigorous approach (allowing for a more general covariance structure).

Note that since the dosimetry system gives a large number of dose replications we can ap-
proximate Var(X|W) as

1

L

XL

r¼1

ðXr � ZÞðXr � ZÞ0

where L is the number of replications drawn from f(X|W) and Z is the sample mean of X1, . . .,
XL.

We now consider simple linear models basically evaluating a "plug in" version of the score
equation. We assume initially that the outcome data Y = (Y1, Y2, . . . YN) conditional on true
value of exposure X = (X1, X2, . . ., XN) is a vector of independent Poisson random variables
with mean E(Yi) = α0+β Xi, or else a vector of independent Gaussian random variables also
with mean E(Yi) = α 0+β Xi, and known residual variance σ2. Let θ denote the vector of parame-
ters to be estimated, e.g. here θ equals(α 0,β)ʹ. Using the average dose, Z, over the replications
we fit the model E(Yi) = α 0+β Zi, (in matrix notationE(Y) = Zθwhere the bolded Z denotes a
Nx2 matrix with the first column equal to a vector of 1s and the second column equal to the av-
erage dose Z)

The second step is to adjust the variance of the estimate of θ, denoted ŷ, by using the Fisher's
scoring approximation[29]

ŷ � y � Iw
�1Sw ð2Þ

where Iwis the expected information matrix (i.e. minus the expected value of the second deriva-
tive of the log likelihood), here a 2 x 2 symmetric matrix with diagonal and off diagonal terms

being the sums
XN
i¼1

1

Var � ðYijZiÞ
,
XN
i¼1

Zi
2

Var � ðYijZiÞ
and

XN
i¼1

Zi

Var � ðYijZiÞ
respectively, and

where Sw is the naïve score vector (first derivative of the log likelihood), with termsX 1

Var � ðYijZiÞ
½Yi � ða0 þ bZiÞ� and

X 1

Var � ðYijZiÞ
½Yi � ða0 þ bZiÞ�Zi. Here Var �

(Yi | Z)is the naïve variance of Yi ignoring the errors in using Z to estimate X. Specifically for
the Poisson model Var � (Yi | Zi)equals the mean, here α0 +β Zi, and for the Gaussian equals
the true residual error σ2 (we relax this below).

If there are no dosimetry errors then from basic likelihood theory we have that Var(Sw) = Iw
so that from (2),VarðŷÞ ¼ I�1

w VarðSwÞI�1
w ¼ I�1

w . If there are dosimetry errors but E(Y) = a0 +
βX and E(X |W) = Z then we see immediately that the plug in score equation is unbiased so
that solving the score equation (finding the parameter estimates that zero the scores) should

give asymptotically valid parameter estimates. The naïve variance estimate of ŷ (i.e.Iw
�1) how-

ever is biased. The true variance is VarðŷÞ ¼ Iw
�1VarðSwÞI�1

w , andVar(Sw)can be evaluated as

EXjWfVarðSW jXÞg þ VarXjWfEðSwjXÞg ð3Þ

We note for the Poisson model a little algebra shows that since Var(Yi) = α0 + βXiEX\W{Var
(Sw | X)} turns out to be just Iw. Further E(Sw | X) is just a linear function of X and so we can
easily calculate it in repeated draws from the complex dosimetry system. Specifically E(Sw | X)
can be written as c + βMʹX where c is constant vector (not a function of X) andM is a N x 2
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matrix with each row equal to ( 1
a0þbZi

, Zi
a0þbZi

) so that the total variance of ŷ will be equal to

I�1
w þ b2I�1

w M0VarðXjWÞMI�1
w ð4Þ

From this we can correct the standard errors of ŷ from the "naïve" regression using this func-
tion taking account of all sources of shared and unshared of uncertainty. For the Gaussian line-
ar model a similar calculation shows that Var(Sw) is equal to

1

s2
Z0Zþ b2

s4
Z0VarðXjWÞZ

where Z is (again) a matrix with a vector of 1's as its first column and (Z1,Z2, . . ., Zn)ʹas its
second column.

Therefore the total variance of ŷ will be equal to

s2ðZ0ZÞ�1 1

s2
Z0Zþ b2

s4
Z0VarðXjWÞZ

� �
s2ðZ0ZÞ�1

which simplifies to

s2ðZ0ZÞ�1 þ b2ðZ0ZÞ�1
Z0VarðXjWÞZðZ0ZÞ�1 ð5Þ

which is of form (4) above withM = Z / σ2.
Note that many of the properties 1–4 above (from Stram and Kopecky) can be seen to apply

to equation (6) and equation (7). For example if we are interested in testing the null hypothesis
that β = 0 then we can drop the second term (since it is 0 under the null) in (4) and therefore
rely on the "usual" score test ignoring errors in dosimetry altogether. It is only in evaluating the

variance of ŷ away from the null hypothesis that the second term "kicks in" and eventually
dominates the calculations as β 2 increases.

We can extend this to include (non-dose-dependent) covariates U readily. If necessary we
can include X2 in the model, i.e. if fitting a linear quadratic dose response is important, this can
be readily accomplished although we will then need to calculate each of Var(X|W), Var(X2|W)
and Cov(X,X2|W) (each of these is a N x N matrix) in order to calculate standard errors that
take into account shared dosimetry error

Examining covariances at study design; an example using the Atomic
Veterans Study
Implications of the above analyses are that the effect of shared Berkson error on inference de-
pends on both the likely strength of the dose response and the extent of sharing. Preliminary
studies may indicate that efforts to develop a full-fledged complex dosimetry system will only
provide marginally useful information for a particular study, if sharing is deemed to be relative-
ly small. For example if the structure of the problem is that most of the matrix Var(X|W) is
equal to zero, i.e. most pairs of individuals do not share dosimetry errors, then the effect on
standard errors of dose-response estimates is likely to be very small, and a full Monte Carlo-
based complex dosimetry system may be only marginally more useful than a calculation simply
aimed at providing simply a single "best" approximation to E(X|W). More importantly perhaps
is that significant resources can be expended without improving the results of the analysis.

We use as an illustrative example the military personnel participating in nuclear weapons
testing at the Nevada Test Site and the Pacific Proving Grounds from 1946 through 1962 [8].
For the testing of nuclear devices at the Bikini Atolls most of the veterans at the Pacific tests
were onboard ships or on islands where there was some exposure information collected to
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estimate dose. If the average dose onboard each ship and on each island is well known then
purely Berkson unshared error would result meaning that standard statistical methods (per-
haps with a correction for over dispersion of counted data) could be utilized with little fear that
epidemiological analysis will be adversely affected. Even if average doses onboard ships or on
islands were poorly estimated exposure errors were generally only shared between individuals
on the same ship or same island during a given test, with no sharing between ships or between
tests, implying that "most" of the off diagonal terms of Var(X|W) are zero. In this case the effect
of dose errors on dose response inference and estimation may also be quite limited.

In order to give some sense of what is likely for the Atomic Veterans Study, we consider the
following experiment using example doses drawn from members of the AVS cohort [8]. Be-
cause doses in the AVS project are still being estimated and are not final, in this example we
use doses to the 1,782 atomic veterans that were developed for compensation purposes and
were known to be “high sided” (i.e. taking upper bounds when uncertain) as required by law.
About 8% of the 1,782 doses are estimated to have non-zero (positive) correlations between in-
dividual’s dose, primarily because of being shipmates, participating in the same military ma-
neuver, observing the same test, or being exposed to fallout from the same test on the same
Pacific island. Also for illustrative purposes we make two additional assumptions (also "high
sided" in terms of its effect on estimation): first that each dose estimate has a coefficient of vari-
ation of 50 percent so that the variance of the dose estimate is equal to 0.25 times the square of
the dose estimate, and also that all non-zero correlations are in fact equal to 1. The data used in
this example are available in the supplementary material provided (S1 Dataset and S2 Dataset).

Under these assumptions we consider the effect on confidence limits of an analysis of a con-
tinuous outcome (1) assuming no errors in doses, and (2) accounting for the error structure,
i.e. Var(X|Z), of the dosimetry as described above. In particular if Z is the "high-sided" dose

and C is the correlation matrix described immediately above then Var(X|W) is equal toC �
1
4
ZZ0

� �
where •is element-wise matrix multiplication.

Fig. 1 shows the effect of measurement error on the noncentrality parameter (NCP), defined

as b2=Varðb̂Þ, for the test of the null hypothesis, and on the power to detect a nonzero effect of
exposure assuming models

Yi ¼ a0 þ Xibþ eiwith VarðeiÞ ¼ s2

and

X ¼ Z þw

with w having mean 0 and variance equal to Var(X|Z) described above. In each plot three lines
are shown. The lowest dashed line gives the noncentrality parameter and power for testing for
a nonzero slope parameter β in these data assuming the shared Berkson error model above,
here the effect size β is scaled in units ofσ. The NCP is equal to the square of slope β divided by
the variance of the estimate of β i.e. from equation(5). The middle solid line gives the NCP and
power assuming only a Berkson error model without sharing, i.e. the off diagonal values of Var
(X|Z) have been set to zero but the diagonal values kept the same. For comparison purposes
the upper dotted line depicts the NCP and power which would be available if there were no do-
simetry errors at all, i.e. if X were equal to Z. Notice that in Fig. 1b that in this example much of
the lost power due to dosimetry error has nothing to do with sharing of errors, i.e. the solid line
(unshared Berkson errors) is closer to the lower dashed line (shared Berkson errors) than the
upper dotted line (no dosimetry errors).
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Effects of shared errors on confidence interval coverage
In the unshared Berkson model the usual ordinary least squares (OLS) estimate of linear regres-
sion parameters α and β are unbiased although power and accuracy of the estimates is reduced
(as shown above) relative to there being no dosimetry errors. Because the model above includes
inhomogeneous errors (larger doses have larger errors) the OLS estimates while remaining un-
biased, have a variance that is not fully captured by the usual OLS standard errors when β 2 is
greater than zero even if there is no sharing, and sharing of error further compounds this prob-
lem. In order to directly address the simultaneous effect of inhomogeneous and shared errors
on confidence interval coverage in the current example, we have to continue the analysis.

For notational convenience below we write Var(X |W) as equal to s2
XjWK with the con-

straint that tr(K) = N in order to uniquely specify s2
XjW . (Here the trace, tr (K), is the sum of the

diagonal elements of K and N is the number of study subjects, i.e. N = 1782). Now consider
what happens when the matrix K (which specifies the dose error sharing) is ignored and OLS

regression is performed. The (now inappropriate) estimate of the variance of ŷOLS is

ŝ2
OLSðZ0ZÞ�1, where ŝ2

OLS is the usual estimate (sum of squares of the residuals divided by n-2).
Since we can write the estimate of ŝ2

OLS as
1

n�2
Y 0ðI�PÞY with P = Z(ZʹZ)-1Zʹwe can calculate

the expected value of ŝ2
OLS in the presence of shared Berkson errors as

Eðŝ2
OLSÞ ¼ Ef 1

n� 2
Y 0ðI�PÞYg ¼ 1

n� 2
trfðI�PÞEðYY0Þg ¼

¼ 1

n� 2
trfðI�PÞ½VarðYÞ þ EðYÞEðY 0Þ�g

Fig 1. Noncentrality and Power. Points indicate effects assuming no sharing of errors, dashes include the shared error effects. For reference the dotted
lines show noncentrality parameters and power assuming that true dose rather than estimated dose was available for the study. Results are particular to the
AVS data described herein.

doi:10.1371/journal.pone.0119418.g001
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(here we use the result that tr(AB) = tr(BA) for conformable matrices A and B). Note that

ðI�PÞEðYÞEðY 0Þ ¼ Zyy0Z0 � Zyy0Z0ZðZ0ZÞ�1
Z ¼ 0

so that the above is

1

n� 2
trfðI�PÞ½s2Iþ b2s2

XjWK�g ¼ s2

n� 2
trfðI�PÞg þ b2s2

XjW
n� 2

trfðI�PÞKg

¼ s2 þ b2s2
XjW

n� 2
trfðK�PKÞg ¼ s2 þ b2s2

XjW
n� 2

trfðK� ZðZ0ZÞ�1
Z0KÞg

¼ s2 þ b2s2
XjW

n� 2
½trfKg � tr fðZ0ZÞ�1

Z0KZg�

From all this we have that the expected value of the estimator of VarOLSðŷÞ (i.e. ŝ2
OLS(ZʹZ)

-1) is

s2ðZ0ZÞ�1 þ b2s2
XjW

n� 2
ðZ0ZÞ�1½trfKg � tr fðZ0ZÞ�1

Z0KZg� ð6Þ

Finally subtracting (6) from (5) we get the difference between the true variance of ŷOLS(ac-
counting for dependent outcomes Y) compared to the expected value of its estimated variance
calculated assuming independence when independence doesn't hold. This difference is

b2s2
XjWðZ0ZÞ�1

Z0KZðZ0ZÞ�1þ trfðZ0ZÞ�1
Z0KZg

n� 2
� tr K

n� 2

� �
:

Now we are only really interested in the (2,2) element of this 2x2 matrix, i.e. the component

that describes the difference between true and estimated variance of b̂ i.e. the slope estimate
only (we can term this the inflation in the variance of the slope estimate due to inhomogeneous
or shared dosimetry errors). A little more straightforward but tedious algebra shows that the
(2,2) element is equal to

b2s2
XjW

Z�0Z�
Z�0KZ�

Z�0Z� 1þ 1

n� 2

� �
� trðKÞ

n� 2
þ 10K1

nðn� 2Þ
� �

ð7Þ

where the vector Z� is equal to Z � �Z so that Z� has arithmetic mean 0. Notice that this vari-
ance inflation is zero if either β2 or s2

XjW is zero or if K is the identity matrix. This last point cor-

responds to the well-known observation that OLS regression is unbiased and gives appropriate
standard errors [30] if measurement errors are homogeneous, independent, and Berkson. As
shown above power however is reduced by homogeneous Berkson measurement errors since

in this case ŝ2
OLS from above has expectation s2 þ b2s2

XjW and since the variance of estimated

dose Z is on average smaller than is the variance of unmeasured true dose X.
Now consider the formation of confidence intervals in the presence of shared errors as in

the AVS example. We use Wald test-based 95 percent confidence intervals of the form

b̂ � 1:96ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂Þ

q
Þ: ð8Þ

If we take proper account of both shared and unshared errors then the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂Þ

q
that we use in

(8) will be equal to the square root of the (2,2) element of the matrix shown in (5). However if
we ignore all dosimetry errors we will in effect (at least on average) be using instead the (2,2) el-
ement of (6). Fig. 2 compares the lengths of the confidence intervals so created as a function of
the true value of slope β in this study (again in units σ). Fig. 2 shows that the effect of either
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inhomogeneous errors or inhomogeneous error plus shared error on the ability to make infer-
ence about the slope parameter is quite modest, and is only really discernible for very strong
dose response relationships (where the lower confidence intervals using all methods are very
far from the null zero line).

Complex dosimetry system for the MayakWorker Cohort
The Mayak Worker Cohort (MWC) includes almost 26,000 men and women who first worked
in one of the main plants (reactor complex, radiochemical, or plutonium production) or select-
ed auxiliary plants (water treatment and mechanical repair) of the Mayak Production Associa-
tion between 1948 and 1982. All cohort members had some potential for external gamma
exposures while the 17,000 radiochemical and plutonium production workers could also be ex-
posed to plutonium, primarily as a consequence of inhaled plutonium aerosols. Film badges
were used to monitor gamma exposures. Individual film badge readings were available for
more than 80% of the years worked by cohort members and in all years worked for 72% of the
cohort members, about 20% of the cohort members have no badge dose data. Estimates of an
individual’s annual external doses were reconstructed based on work history for years in which
a badge dose record was not available.

Plutonium exposure resulted in chronic long term exposure to the lung, liver, and bone sur-
face with very small exposures to other organs. Plutonium intakes and annual doses have been

Fig 2. Effect of accounting for shared dosimetry errors on the length of standard errors in the high-
sided calculations performed for the AVS study. The two dashed lines are based on ordinary least
squares calculations and show the upper and lower bounds of a "naïve" confidence interval for slope
parameter b (normalized by residual standard deviation, σ) ignoring inhomogeneous or shared errors. The
solid lines show the effect of accounting for both inhomogeneous and shared error in expanding the
confidence limits. The dot-dash lines between the dashed and solid lines shows the effect of adjusting for
inhomogeneous errors but where there are no shared errors (off diagonals of matrix K are zero).

doi:10.1371/journal.pone.0119418.g002
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estimated for all of the radiochemical and plutonium plant workers for whom urine bioassay
data were available (about 8,000 workers). These estimates are based on limited data on work-
place- and time-dependent Pu aerosol concentrations together with complex and highly uncer-
tain models for plutonium absorption and metabolism. Shared errors are a major component of
the Pu dose uncertainties. No efforts have (yet) been made to reconstruct Pu dose estimates for
workers without bioassay data (“unmonitored” workers) and, for the purpose of the estimation
of Pu dose effects, follow-up for monitored workers begins two years after the initial monitoring.

The most recent dosimetry system for the MWC, the Mayak Workers Dosimetry System
2013 (MWDS 2013) provides Monte-Carlo realizations of dose histories for both external
gamma dose and internal (alpha-particle) dose from plutonium ingestion, these are specifically
designed to be interpretable as samples from the distribution of possible true dose given what
is known about dose determinants. While use of these dose realizations in epidemiologic analy-
sis has just begun it is clear that the many shared uncertainties regarding internal dose estima-
tion are reflected in much larger variability of individual dose estimates for internal than
external dose, and in much higher correlations between cohort members dose histories for in-
ternal than external dose. Therefore it seems especially important to formally incorporate the
uncertainties in internal dose estimation into the epidemiological analysis of this cohort.

There are two main extensions needed in order to adapt the measurement error correction
of the information matrix to the types of hazard function regression used to analyze the MWC
data. The first is to an extended ERR model for Poisson regression, and the second is to the
prolonged exposures and follow-up times relevant to the MWC.

Linear excess relative risk model
Here we consider measurement error correction of a linear ERR model often used to model
event time data, including cancer mortality in the MWC. Specifically we have

EðYiÞ ¼ expða0 þ a1AiÞð1þ bXiexpða2CiÞÞ:

Here covariates Ai modify background rates of disease not related to dose (such as age sex, etc.)
the linear term in dose (β the ERR per unit dose) multiplies the baseline risk, and dose modifi-
ers Ci alter the slope of the regression depending on various covariates; for example age at ex-
posure or time since exposure can act as a modifier of excess risk but not of baseline rates. For

this model we have θ = (α0,α1,α2,β)ʹ and the variance of ŷ is of form (4) with

Iw ¼

XN
i¼1

expða0 þ a1AiÞð1þ bZiexpða2CiÞÞ

1

Ai

Ci

bZiexpða2CiÞ
1þ bZiexpða2CiÞ
Ziexpða2CiÞ

1þ bZiexpða2CiÞ

2
666666666664

3
777777777775

1 Ai Ci

bZiexpða2CiÞ
1þ bZiexpða2CiÞ

;
Ziexpða2CiÞ

1þ bZiexpða2CiÞ
� �

andM equal to a N x 4 matrix with ith row equal to

expða0 þ a1Ai þ a2CiÞ 1; Ai; Ci

bZiexpða2CiÞ
1þ bZiexpða2CiÞ

;
Zi

1þ bZexpða2CiÞ
� �

:

Shared Dosimetry Error

PLOS ONE | DOI:10.1371/journal.pone.0119418 March 23, 2015 13 / 18



The remaining extension that is required of the above methods is to deal with prolonged ex-
posure taking place during follow-up so that each individual accumulates exposure over an ex-
tended period while being followed for the outcome of interest, this is especially critical for
doses due to internal deposition of plutonium to the lung, liver, and bones, which continue
long past the end of employment. Poisson regression using ERR models forms a fundamental
starting point for survival analysis for many cohort studies including the LSS [31] and MWC
[9,32]. This is because of the very strong link between the likelihood analysis of censored sur-
vival data (time to event data) using a piecewise exponential model baseline hazards model,
and the likelihood for Poisson regression, e.g. [33–35]. Here we model risk using model (9) but
with Xi replaced by Xi(t) which represents cumulative exposure to the ith cohort member up to
age t (or to age t—l with l representing a lag time).

While Poisson regression for event time data is usually described in terms of a highly stratified
table of event counts and person years, individual contributions to each cell of the table can be
disaggregated and modeled directly as Poisson sub-counts [33,34]. For example for a Mayak
worker with 20 years of follow-up and accumulating dose over each year (e.g. due to internal plu-
tonium exposure) that individual's record could be divided into 20 records each with an accumu-
lated dose and at most one event for analysis using Poisson regression. Since the dosimetry
system generates realizations of potential dose for all person-years, and since in the disaggregated
data the event count for each person-year is assumed to be independent given true cumulative
exposure, we can apply the correction described above at the person-year level (by computing a
covariance matrix for all person-year accumulated dose from the replications provided).

Our analysis of continuous follow-up and accumulating dose contains one simplification
worth noting, although its impact is likely to be vanishingly small in most real studies including
the MWC and the AVS. Following the logic of Prentice 1982 [36] the expected value of true
dose needed for each cell of the table (or each sub-count as above) actually depends upon the
slope parameter β, and the amount of follow-up time that has passed. This reflects the fact that
if the relationship between risk and exposure is positive (i.e. β> 0) that individuals with higher
true dose will be removed from follow-up by the occurrence of disease at a faster rate than
those individuals with the same estimated dose but lower true dose, so that the distribution of
true dose givenW changes with follow-up time. Since this dilution process depends on the true
value of the risk parameter being estimated it is impossible to "build" this feature into the do-
simetry system. However, in practical terms, only if events due to exposure are very common
compared to the total cohort size (requiring that both exposures and risk parameter β be very
large) will this phenomenon rise to the level of concern.

Discussion
This paper starts very differently than most discussions of the correction of risk estimates, by
assuming that the distribution of true dose X given dose determinatesW has been adequately
characterized by means of a Monte Carlo system from which a large number of samples can be
taken. By “adequately characterized”, we mean that the MC dose estimates can be realistically
viewed as drawn from the distribution of true dose given all relevant knowledge, i.e., from
f(X|W). Getting to this point may involve (as described briefly above) the solution of one or
more measurement error problems applied to input data pertaining to individual behavior. We
are treating the dosimetry system here as a “black box” that provides as many samples as need-
ed from the appropriate posterior distribution, with our interest focused on how to incorporate
the variability of these samples into the epidemiological analyses, we recognize however that
developing a Monte Carlo system that adequately characterizes the uncertainties and does not
introduce unintended biases is challenging.
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Once a Monte Carlo dosimetry system is in place it is not always clear what an epidemiolog-
ical analysis should consist of. Some authors (e.g. [37]) have advocated fitting separate models
to each realization from the dosimetry system and then summarizing the results to form overall
dose-response estimates and estimates of their uncertainty. For linear models Stram and
Kopecky [10] show that that this approach is subject to biases towards the null that the method
described here does not suffer from.

Our approach focuses implicitly on the problem when there are considerable shared errors
involved. If errors are independent then other methods including numerical quadrature or 2nd

order approximations to the likelihood and error functions become highly tractable and this
has been exploited for example in Fearn et al. [38] in a measurement error-corrected analysis
of lung cancer and radon dose. Direct integration of the full likelihood when the independence
assumption does not hold (as in the case of shared errors) is a much more difficult problem as
partly described by Stram and Kopecky [10].

The approach of this paper is fundamentally a mixture between a completely Bayesian ap-
proach to estimation and inference applied to parameters in the distribution of X|W and a fre-
quentist inference applied to the parameters governing dose response. This hybridization is
already implicit in the structural approach to measurement error, where unknown doses are
treated as random quantities unlike the model parameters which are regarded as fixed, and in
other well-accepted statistical approaches including empirical Bayes random effects modeling
[39]. We believe that a fully Bayesian analysis or a full likelihood analysis based on multiple re-
alizations from f(X|W) when errors are shared is intractable for the reasons that were described
in Stram and Kopecky [10], see also [40].

We are also are interested in the problem of judging at the design stage whether all the work
required to develop a working complex dosimetry system is well-justified from a cost-benefit
perspective. Our preliminary analysis of the AVS would tend to indicate that it is not, since a
purposefully "high sided" calculation would indicate that the degree of sharing of dose errors in
that study has negligible impact on the variance of a linear slope estimate obtained using ordi-
nary least squares; in Fig. 2 the corrected and uncorrected confidence intervals only seem to
begin to notably depart when the naive lower confidence intervals are as far from zero as they

are from the true value, i.e. for b̂/σ equal to about 0.80, this would (for these data) correspond
to a naive p-value of 6.3x10-5 and a corrected p-value of around 6.7x10-5. Since we believe that
the study as designed can only reject (with good power) the null hypothesis of no radiation ef-
fect at around the. 05 level, it seems to us immaterial that much stricter significance levels are
slightly off target. While focusing on linear regression our discussion should remain highly rel-
evant to the case control and case cohort analyses using logistic regression for reasons partly
discussed below.

The situation for the MWCmay be quite different essentially because of much greater shar-
ing of errors in common dose determinants. This is especially true in the case of internal dose
to lung, liver, and bone, due to plutonium exposure where dose reconstruction involves impre-
cisely known biological parameters governing such factors as the solubility of specific com-
pounds and particle transport within the human body. An especially complex issue for Mayak
is the protraction of dose over long periods of time (with dose continuing to accumulate be-
yond termination of Mayak employment for internal exposure)

The primary calculations for Gaussian or Poisson models (with linear link functions) in-
volve the covariance matrix of doses, or histories of doses, over the set of possible replications.
In a complex dosimetry system supplying lengthy dose histories for a large number of study
subjects this correlation matrix may be extremely large. One of the virtues of the approach de-
scribed here is that it is not necessary to compute the entire matrix in one calculation. For
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example for the linear Poisson regression this covariance matrix is used only in the calculation
of the p x p matrixMVar(X |W)MTwhere p is the number of model parameters which remains
far less than the number of individuals, or of individual person-years. This calculation can be
broken into many sub-calculations. Specifically ifMi (i = 1 . . .m) is a ni x 2 sub-matrix ofM
and Vij is a corresponding ni x nj sub-matrix of Var(X) thenMTVar(X |W)M

=
Xm
i¼1

Xm
j¼1

MT
i VijMj. This calculation requires that each sub-matrix, Vij, of Var(X|W) to be com-

puted only once and once used does not have to be retained. This simplification of the calcula-
tions make it possible to consider applying this correction to models fit to the Mayak data
given the extremely protracted nature of dose.

There are limitations to the information adjustment for dose uncertainty utilized here, the
most important of these has to do with the requirement that the Monte Carlo dosimetry system
adequately characterizes the true doses, as defined above. This does appear to be a goal of these
systems, but building them to really reflect current knowledge of complex unknown parame-
ters can be daunting. Moreover there can be concerns that errors in individual input data are
being overlooked as a source of independent "classical" error when the dosimetry system is ac-
tually being used. As noted above it may be important to "pre-convert" classical to Berkson
error if input data is known only with individual independent errors.

The other obvious limitation is when non-linear dose response relationships are to be esti-
mated. For binary data the extremely widely used logistic regression model is not directly ame-
nable to the methods described above for two reasons, one is the non-linearity of the mean as a
function of covariates, and the second is the non-linearity of the variance as a function of the
mean, which complicates the variance calculation compared to the form in equation (6) for the
Poisson model. If however, disease is rare then there is very little practical difference between
the Poisson and binary models when applied to cohort data. Furthermore only if dose re-
sponses are quite strong will it be possible to distinguish between a linear and a logistic link
function in terms of the fit of the model.
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