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Abstract

Mammalian organogenesis is an astonishing process. Within a short window of time, the cells of 

the three germ layers transform into an embryo that includes most major internal and external 

organs. Here we set out to investigate the transcriptional dynamics of mouse organogenesis at 

single cell resolution. With sci-RNA-seq3, we profiled ~2 million cells, derived from 61 embryos 

staged between 9.5 and 13.5 days of gestation, in a single experiment. The resulting ‘mouse 

organogenesis cell atlas’ (MOCA) provides a global view of developmental processes during this 

critical window. We identify hundreds of cell types and 56 trajectories, many of which are detected 

only because of the depth of cellular coverage, and collectively define thousands of corresponding 

marker genes. With Monocle 3, we explore the dynamics of gene expression within cell types and 
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trajectories over time, including focused analyses of the apical ectodermal ridge, limb 

mesenchyme and skeletal muscle.

Main

Most studies of mammalian organogenesis rely on model organisms, and in particular, the 

mouse. Mice develop quickly, with just 21 days between fertilization and birth. The 

implantation of the blastocyst (E4.0) is followed by gastrulation and the formation of germ 

layers (E6.5-E7.5)1,2. At the early-somite stages, the embryo transits from gastrulation to 

early organogenesis, forming the neural plate and heart tube (E8.0–E8.5). In the ensuing 

days (E9.5-E13.5), the embryo expands from hundreds-of-thousands to over ten million 

cells, and concurrently develops nearly all major organ systems. Unsurprisingly, these four 

days have been intensively studied. Indeed, most genes underlying major developmental 

defects can be studied in this window3,4.

The transcriptional profiling of single cells (scRNA-seq) represents a promising avenue for 

obtaining a global view of developmental processes5–7. For example, scRNA-seq recently 

revealed remarkable heterogeneity in neurons and myocardiocytes during mouse 

development8,9. However, although two scRNA-seq atlases of mouse were recently 

released10,11, they are mostly restricted to adult organs, and do not attempt to characterize 

the emergence and dynamics of cell types during development.

Single cell RNA-seq of 2 million cells

Single cell combinatorial indexing (‘sci-’) is a methodological framework involving split-

pool barcoding of cells or nuclei12–19. We previously developed sci-RNA-seq and applied it 

to generate 50-fold shotgun coverage of the cellular content of L2 stage Caenorhabditis 
elegans17. A conceptually identical method was recently termed Split-Seq20. To increase the 

throughput, we explored >1,000 experimental conditions (Extended Data Fig. 1ab; 

Methods). The major improvements of the resulting method, sci-RNA-seq3, include: (i) 

Nuclei are extracted directly from fresh tissues without enzymatic treatment, then fixed and 

stored. (ii) For the third level of indexing17, we switched from Tn5 tagmentation to hairpin 

ligation. (iii) Individual enzymatic reactions were optimized. (iv) FACS sorting was replaced 

by dilution, and sonication and filtration steps added to minimize aggregation. Even without 

automation, sci-RNA-seq3 library preparation can be completed through the intensive effort 

of a single individual in one week at a cost of less than $0.01 per cell.

We collected 61 C57BL/6 mouse embryos at E9.5, E10.5, E11.5, E12.5 or E13.5, and snap 

froze them in liquid nitrogen. Nuclei from each embryo were isolated and deposited to 

different wells, such that the first index identified the originating embryo of any given cell. 

As a control, we spiked a mixture of human HEK293T and mouse NIH/3T3 nuclei into two 

wells. The resulting sci-RNA-seq3 library was sequenced in a single Illumina NovaSeq run, 

yielding 11 billion reads (Fig. 1a; Extended Data Fig. 1cd).

From one experiment, we recovered 2,058,652 cells from mouse embryos and 13,359 cells 

from HEK293T or NIH/3T3 cells (UMI (unique molecular identifier) count ≥ 200). 
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Transcriptomes from human/mouse control wells were overwhelmingly species-coherent 

(3% collisions), with performance similar to previous experiments17 (Extended Data Fig. 

1e–i). A limitation is that only ~7% of cells entering the experiment were ultimately 

profiled, with losses largely consequent to filtration steps intended to remove aggregates of 

nuclei.

We profiled a median of 35,272 cells per embryo (Fig. 1b; Extended Data Fig. 1j). Despite 

shallow sequencing (~5,000 raw reads per cell; 46% duplicate rate), we recovered a median 

of 671 UMIs (519 genes) per cell (Extended Data Fig. 1k). 3.7-fold deeper sequencing of a 

subset of wells nearly doubled complexity (to a median of 1,142 UMIs per cell; 87% 

duplicate rate). As we are profiling RNA in nuclei, 59% of UMIs per cell strand-specifically 

mapped to introns, and 25% to exons. Our profiles may thus primarily reflect nascent 

transcription, temporally offset but also predictive21 of the cellular transcriptome. Later 

stage embryos exhibited somewhat reduced UMI counts, possibly reflecting decreasing 

nuclear mRNA content (Extended Data Fig. 1l). We used Scrublet22 to detect 4.3% likely 

doublet cells, corresponding to a doublet estimate of 10.3% including both within- and 

between-cluster doublets (Extended Data Fig. 1mn).

Based on our rough estimates of the number of cells per embryo at each timepoint 

(Methods), our ‘shotgun cellular coverage’ of the mouse embryo is 0.8× at E9.5 (200K cells/

embryo; 152K profiled across all replicates), 0.3× at E10.5 (1.1M cells/embryo; 378K 

profiled), 0.2× at E11.5 (2.6M cells/embryo; 616K profiled), 0.08× at E12.5 (6M cells/

embryo; 475K profiled), and 0.03× at E13.5 (13M cells/embryo; 437K profiled). Thus, 

although we are not yet oversampling17, our depth of profiling is equivalent to 3–80% of the 

cellular content of an individual mouse embryo.

Embryos were readily identified as male (n = 31) or female (n = 30) (Extended Data Fig. 

1op). Applying t-stochastic neighbor embedding (t-SNE) to “pseudo-bulk” profiles 

(aggregating the transcriptomes of each embryo’s cells) resulted in five tightly clustered 

groups corresponding to developmental stages (Extended Data Fig. 1q). We also ordered the 

mouse embryos along a pseudotime trajectory23 (Fig. 1c). Two prominent gaps (E9.5-E10.5 

and E11.5-E12.5) suggest particularly dramatic changes during these windows (Extended 

Data Fig. 1rs). In these pseudo-bulk profiles, 12,236 genes were differentially expressed 

across developmental stages (Supplementary Table 1).

Identification of cell types and subtypes

We subjected the 2,058,652 single cell transcriptomes to Louvain clustering and t-SNE 

visualization (Fig. 2a). Reassuringly, cells from replicate embryos of the same 

developmental stage were similarly distributed, whereas cells from different stages were not 

(Extended Data Figs. 2a–f). Based on genes specific to each of 40 clusters, we manually 

annotated cell types (Supplementary Table 2). Merging two clusters both corresponding to 

the definitive erythroid lineage and discarding a putative doublet cluster (detected doublet 

rate of 52%) yielded 38 major cell types (Fig. 2b; Extended Data Fig. 2g).
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In general, highly specific marker genes made the annotation of these major cell types 

straightforward (Fig. 2b; Supplementary Table 3). For example, cluster 6 (epithelial cells) 

specifically expressed Epcam and Trp6324, 25, while cluster 29 (hepatocytes) specifically 

expressed Afp and Alb10. Smaller clusters were readily annotated as well. For example, 

cluster 36 (melanocytes) specifically expressed Tyr and Trpm126,27, while cluster 37 (lens) 

specifically expressed Cryba2. Some markers, although observed in a substantial proportion 

of cells in many clusters, were much more highly expressed in one cluster (e.g. Hbb-bh1 in 

primitive erythroid cells). For clusters corresponding to the embryonic mesenchyme and 

connective tissue, annotation was more challenging because fewer markers are known (e.g. 
Fndc3c1 in early mesenchyme; Extended Data Fig. 2h)

17,789 of 26,183 genes (68%) were differentially expressed across the major cell types (5% 

FDR; Supplementary Table 4). Amongst these, we identified 2,863 cell type-specific marker 

genes (mean 75; those with >2-fold expression difference between first and second ranked 

cell type; a cutoff of >5-fold yielded 932 marker genes; Extended Data Fig. 2i). The vast 

majority of these markers are novel. For example, we detect the highest expression of sonic 

hedgehog (Shh)28 in the notochord (cluster 30), together with Ntn1, Slit1, and Spon1, all 

known to be expressed in the cells of the notochord and floor plate during development29–31. 

However, Tox2, Stxbp6, Schip1, Frmd4b, not previously been described as markers of the 

notochord, were also markers of cluster 30. Whole-mount in situ hybridization (WISH) of 

Shh (known) and Tox2 (novel) confirmed both genes are expressed in notochord at E10.5 

(Extended Data Fig. 2j).

We observed marked changes in the proportions of cell types during organogenesis. While 

most major cell types proliferated exponentially, a few were transient and disappeared by 

E13.5 (Extended Data Fig. 2kl). For example, at E9.5, we detect cells corresponding to the 

primitive erythroid lineage, originating from the yolk sack (cluster 26; marked by Hbb−bh1). 

However, the definitive erythroid lineage, originating from the fetal liver (cluster 22; marked 

by Hbb−bs), progressively displaces it to become the exclusive red cell lineage by E13.5 

(Fig. 2a; Extended Data Fig. 2m).

The 38 major cell types are represented by a median of 47,073 cells, the largest containing 

144,648 cells (connective tissue progenitors), and the smallest only 1,000 cells (neutrophils). 

As additional heterogeneity was readily apparent, we adopted an iterative strategy, repeating 

Louvain clustering on each major cell type. After subclusters dominated by a few embryos 

were removed and highly similar subclusters merged (Methods), 655 subclusters were 

identified (Extended Data Fig. 3). As an operational definition specific to this manuscript, 

we refer to the 38 major clusters as cell types, and the 655 subclusters as subtypes. Notably, 

our sensitivity to detect cell types and subtypes in this study was dependent on the large 

number of cells profiled (Extended Data Fig. 4a–d). The 655 subtypes consist of a median of 

1,869 cells, and range from 51 (a subtype of notochord) to 65,894 (a subtype of connective 

tissue progenitors) cells (Extended Data Fig. 4e–g).

We annotated 13% of subtypes as likely artifacts (>10% of cells in these subtypes are 

predicted doublets; Extended Data Fig. 4h). For the remaining 572 subtypes, we identified a 

median of 20 subtype-specific markers (>2-fold expression difference between first and 
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second ranked cell subtypes of the corresponding major cell type; Extended Data Fig. 4ij). 

Furthermore, most subtypes can be distinguished from all 571 other non-doublet subtypes 

based on marker gene sets and >4-fold expression differences (63% with 2 markers, 95% 

with 4 markers; Methods; Extended Data Fig. 4k; Supplementary Table 5).

As there are presently no comparable single cell atlases of E9.5-E13.5, we compared MOCA 

subtypes to 130 fetal cell types (E14.5) of a recent mouse cell atlas (MCA)10. With a new 

inter-study cross-matching method, we matched 96 MCA cell types to 58 MOCA subtypes 

(Methods; Extended Data Fig. 5a–c; Supplementary Table 5). As expected, MOCA subtypes 

that failed to match MCA cell types tended to derive from earlier stages (e.g. neural tube) or 

were rare (e.g. lens), while MCA cell types that failed MOCA subtypes were mostly tissue-

specific immune or epithelial cells, potentially because they emerge after E13.5. 

Nonetheless, the atlases unquestionably inform one another, as the MCA’s anatomical 

resolution is useful for localizing MOCA subtypes, while MOCA’s developmental focus 

informs the embryonic origin of MCA cell types (Extended Data Fig. 5b). As an example of 

the former, a subcluster of endocrine epithelial cells in MOCA mapped to both the acinar 

and endocrine cells of the fetal stomach in the MCA. As an example of the latter, “cells in 

cell cycle” in the MCA’s fetal kidney mapped to a subtype of intermediate mesoderm in 

MOCA, plausibly corresponding to progenitors of the kidney. A similar analysis matched 48 

cell types annotated in a recent mouse brain atlas (BCA)32 to 68 MOCA subtypes with high 

specificity (Extended Data Fig. 5d).

Characterization of the apical ectodermal ridge

We annotated all subtypes of epithelium and endothelium (clusters 6 and 20, respectively; 

Fig. 3a; Extended Data Fig. 6a–c; Supplementary Table 2). For example, epithelial subtype 

6.8 was marked by Oc90, exclusively expressed in the epithelium of the otic vesicle33; 

epithelial subtype 6.23 by Fgf8, Msx2. and Rspo2, known markers of the apical ectodermal 

ridge (AER)34; and endothelial subtype 20.12 by Tbx20 and Tmem108, specific to 

endocardial cells and cardiac valve endothelium35,36.

To investigate a subtype in more detail, we focused on the AER, a highly specialized 

epithelium involved in digit development37. In addition to known markers for AER, subtype 

6.23 (1,237 cells; 0.06% of MOCA) was distinguished by expression of Fndc3a, Adamts3, 
Slc16a10, Snap91, and Pou6f2. WISH of Fgf8 (known), Fndc3a, Adamts3, and Snap91 (all 

novel) confirmed expression specific to the most distal tip of the limb bud representing the 

AER at E10.5 or E11.5 (Fig. 3b–e).

We next examined the dynamics of AER proliferation and gene expression. Although 

detected at all timepoints and nearly all embryos, the estimated number of AER cells per 

embryo peaks between E10.5 and E11.5 (Fig. 3f), consistent with a previous report38 and 

our validations (Fig. 3c). We performed pseudotemporal ordering of AER cells, yielding a 

simple early-to-late trajectory and 710 differentially expressed genes (5% FDR; Fig. 3gh; 

Extended Data Fig. 6d; Supplementary Table 6). For example, Fgf8, Fgf939 and Rspo234 are 

preceded in their activation dynamics by Fndc3a. Genes whose expression significantly 

decreased include Mki67 and Igf2, which have roles in promoting cellular proliferation40,41. 
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Pathway-level analyses also showed the downregulation of proliferative programs in this 

window (Extended Data Fig. 6ef).

Reconstructing developmental trajectories

We next sought to investigate the developmental trajectories that cell types traverse during 

mammalian organogenesis. Most contemporary algorithms for trajectory reconstruction 

assume a continuous manifold (whereas our data begin at E9.5, and therefore are missing at 

least some ancestral states) and do not allow for convergence of cell fates (whereas some cell 

types are known to derive from multiple transcriptionally distinct lineages). To overcome 

these limitations while also enabling scaling to millions of cells, we developed a new version 

of Monocle42. Monocle 3 first projects cells onto a low-dimensional space encoding 

transcriptional state using UMAP43. It then groups mutually similar cells using the Louvain 

community detection algorithm, and merges adjacent groups into ‘supergroups’44. Finally, it 

resolves the paths or trajectories that individual cells can take during development, 

identifying the locations of branches and convergences within each supergroup.

Subsequent to a focused application of Monocle 3 to cells corresponding to the limb bud 

mesenchyme (Supplementary Note 1; Extended Data Fig. 7; Supplementary Tables 7–9), we 

applied it to identify major developmental trajectories across the entire dataset. Monocle 3 

organized 1,524,792 high-quality cells (UMI > 400) into twelve groups. We merged two 

groups corresponding to sensory neurons, and another two corresponding to blood cells. 

Nearly all of the 38 major cell types fall almost exclusively in one of the ten resulting 

trajectories (Fig. 4a–b; Extended Data Fig. 8ab). The two most complex structures are the 

neural tube/notochord trajectory, which includes the notochord, neural tube, progenitor and 

developing neuronal and glial cell types, and the mesenchymal trajectory, which includes all 

mesenchymal and muscle cell types. There are three neural crest trajectories, corresponding 

to sensory neurons, Schwann cell precursors and melanocytes. The hematopoietic trajectory 
includes megakaryocytes, erythrocytes and white blood cells, while the remaining four 

trajectories (endothelial, epithelial, hepatic, lens) each correspond to a single major cell type 

(Fig. 4b). The discontinuity between these ten major trajectories likely reflects the lack of 

representation of some intermediate or ancestral states, consequent to our study beginning at 

E9.5. Although the estimated number of cells per embryo in each trajectory increases 

exponentially, their proportions remain relatively stable, with the exception of hepatocytes, 

which markedly increase their contribution from 0.3% at E9.5 to 2.8% at E13.5 (Extended 

Data Fig. 8c).

Unlike t-SNE, UMAP places related cell types near one another. For example, cell types 

found at later developmental timepoints such as inhibitory neurons are connected to early 

CNS precursors (radial glia) by a ‘bridge’ of neural progenitor cells; however, the same 

radial glial cells project in a different direction towards increasingly mature 

oligodendrocytes (Fig. 4a, left). Similarly, early mesenchymal cells radiate from a defined 

region into myocytes, limb mesenchyme, chondrocytes/osteoblasts and connective tissues 

(Fig. 4a, right).
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After removing 12% of cells corresponding to doublet-annotated cells and/or subclusters, we 

iteratively reanalyzed the ten major trajectories (Fig. 5; Extended Data Fig. 9). For example, 

the epithelial trajectory breaks into several discontinuous subtrajectories, each emanating 

from a focal concentration of E9.5-derived cells and projecting in one or more directions, 

through cells corresponding to progressively later timepoints (Fig. 4c; Extended Data Fig. 

8d). Notably, the AER subtrajectory projects out of surface ectoderm and then back into 

epidermis, consistent with its transitory nature.

We mapped the 572 subtypes defined by t-SNE and Louvain clustering to the developmental 

subtrajectories defined by Monocle 3 (Extended Data Fig. 9). The vast majority of subtypes 

mapped to a single subtrajectory, often as temporally restricted subsets (Supplementary 

Table 5). We annotated the subtrajectories on the basis of marker genes of subtypes mapping 

to them. The resulting 56 developmental subtrajectories span all major systems including the 

CNS, PNS, respiratory, digestive, cardiovascular, immune, lymphatic, urinary, endocrine, 

integumentary, skeletal, muscular and reproductive systems (Fig. 5; Extended Data Fig. 10).

In some cases, we observe a single, simple linear trajectory. However, we also observe many 

examples of branching trajectories, as well as of cell types that appear to be generated via 

multiple parallel paths. As an example of the latter, both CNS excitatory and inhibitory 

neurons appear to develop through multiple, convergent trajectories, possibly due to the 

maturation in multiple anatomical locations. Other subtrajectories exhibited even more 

complex features, including multiple starting and ending points within a continuous 

structure (e.g. intermediate mesoderm trajectory).

Although Monocle 3 did not have access to these labels, the subtrajectories are highly 

consistent with developmental time (i.e. cells ordered from E9.5 to E13.5, Extended Data 

Fig. 9–10). To orient subtrajectories, we identified one or several starting points as focal 

concentrations of E9.5 cells, and then computed developmental pseudotime for cells present 

along various paths (Extended Data Fig. 11; Methods). We also annotated each subtype 

according to the subtrajectory to which it maps, as well as its relative temporal position 

within that subtrajectory (e.g. subtype 6.14 = “auditory epithelial trajectory.1-of-3”) 

(Supplementary Table 5). These representations provide a starting point for more detailed 

explorations of the 572 subtypes and 56 subtrajectories.

Reconstructing skeletal myogenesis

To investigate a developmental process in greater detail, we focused on developing muscle, 

which is comprised of distinct mesodermal lineages that form prior to E9.545. We 

hypothesized that the myogenic trajectory would feature multiple entry points that feed cells 

into a common path corresponding to activation of the core gene expression program shared 

by myotubes.

To test this, we in silico isolated myocytes and their putative ‘ancestral’ cells from the 

mesenchyme trajectory (Fig. 6a; Methods). Next, we used Monocle 3 to construct a 

myogenesis-specific trajectory, which featured multiple focal concentrations of E9.5 cells, 

with cells from later stages distributed over several paths radiating outward (Fig. 6a). Pax3 
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and Pax7, which mark skeletal muscle progenitors, were expressed over a broad swath of the 

principal graph (Fig. 6b). Cells expressing Myf5 co-localized with a subset of Pax7+ cells, 

consistent with the role of Myf5 in embryonic myogenesis46. From this region of the 

trajectory, two parallel linear segments emanated, on which cells expressed either Myf5 or 

Myod. Both paths terminate with cells expressing Myog or Myh3, markers of myocytes and 

myotubes, respectively. The cells on the Myf5+ path, largely from early time points, also 

expressed higher levels of genes in the Robo/Slit signaling pathway, which has been 

implicated in driving “pioneer myoblasts” to form embryonic myofibers47 (Extended Data 

Fig. 12). An additional path traversed by cells from E9.5, which expressed Lhx2, Tbx1, and 

Pitx2 but very low levels of Pax3, feeds into the trajectory just upstream of the Myf5 and 

Myod1 segments, and possibly corresponds to pharyngeal mesoderm45. Overall, the 

trajectory is consistent with the view that different mesodermal lineages use distinct factors 

to converge on a core program of muscle genes (Fig. 6c). Globally, we detected 2,908 genes 

expressed in a trajectory-dependent manner (FDR < 0.05 and Moran’s I > 0.01) that grouped 

into 14 distinct patterns (Extended Data Fig. 12; Supplementary Table 10).

Discussion

Here, to obtain a global view of mammalian organogenesis, we profiled the transcriptomes 

of ~2 million cells from mouse embryos spanning E9.5 to E13.5. In the resulting atlas 

(MOCA), we identify over 500 subtypes of cells and 56 developmental subtrajectories, each 

distinguished by multiple marker genes and collectively spanning essentially every organ 

system. With sci-RNA-seq3, we introduce a technical framework for individual labs to 

generate datasets corresponding to millions of single cells. With Monocle 3, we introduce a 

computational framework for trajectory inference that operates at this same scale. These data 

constitute a potentially foundational resource for the mammalian developmental biology 

field. MOCA and the underlying data are made freely available, together with a website to 

facilitate their further exploration (http://atlas.gs.washington.edu/mouse-rna/).

MOCA has limitations. First, although not sequenced to saturation, the cell-by-gene matrix 

is sparse. Nonetheless, our results support the view that cell types are readily distinguishable 

despite hundreds rather than thousands of UMIs per cell48. Of course, the tradeoff between 

breadth and depth depends on one’s goals. As an example supporting the ‘many cells, few 

UMIs per cell’ approach, consider primordial germ cells, which were readily identifiable 

despite their rarity (subtypes 16.13 and 6.27, which sum to 269/2,058,652 cells or 0.01% of 

MOCA). Nonetheless, despite its unprecedented depth, our study does not exceed 1-fold 

coverage of the mouse embryo at any timepoint, and it is possible that we are missing 

extremely rare cell types.

Second, although we are reasonably confident in our annotations, they should be regarded as 

preliminary. Mid-gestational mouse development has not previously been extensively 

studied at single cell resolution, and many published markers have limited specificity. 

Furthermore, because we studied disaggregated whole embryos, the assignment of 

anatomical specificity is challenging. We anticipate that the comprehensive annotation of 

MOCA will benefit from community input and domain expertise, and to that end created an 

interactive wiki (http://atlas.gs.washington.edu/mouse-rna/). Inevitably, however, additional 
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experiments (e.g. in situ analyses of marker genes) will be necessary to resolve ambiguities. 

Importantly for future atlasing efforts, we found the annotation of temporally-resolved 

developmental trajectories to be much more straightforward than that of cell types.

A long-standing dream, perhaps at last within sight from a technical perspective, is a 

comprehensive, spatiotemporally-resolved molecular atlas of mammalian development at 

single cell resolution. To this end, the mouse has several advantages, including its small size, 

the accessibility of early developmental timepoints, an inbred genetic background, and 

genetic manipulability. It also seems likely that ‘whole organism’ profiling of small 

mammals will be essential for identifying the inevitable gaps in any efforts to generate a 

comprehensive atlas of human cell types.

Single cell atlases of the development of wild-type mice may also represent an important 

step towards understanding pleiotropic developmental disorders at the organismal scale, and 

for detailed investigations of subtle roles for genes and regulatory sequences in development. 

For example, many knockouts of both coding and conserved regulatory sequences do not 

show any abnormalities with conventional phenotyping49. We anticipate that ‘whole 

organism’ sc-RNA-seq will empower reverse genetics, e.g. potentially enabling the 

discovery of subtle defects in the molecular programs or the relative proportions of specific 

cell types50.

METHODS

Data reporting

No statistical methods were used to predetermine sample size. Embryos used in experiment 

were randomized before sample preparation. Investigators were blinded to group allocation 

during data collection and analysis: embryo collection and sci-RNA-seq3 analysis were 

performed by two different researchers.

Embryo dissection

The C57BL/6 mice were obtained from The Jackson Laboratory (Bar Harbor, ME) and plug 

matings were set up. Noon on the day of the vaginal plug was considered as embryonic day 

(E) 0.5. Dissections were done as previously described52 and all embryos were immediately 

snap frozen in liquid nitrogen. Embryos were collected from at least three independent litters 

per development stage. All animal procedures were in accordance with institutional, state, 

and government regulations and approved by the Office of Animal Welfare (OAW) under the 

IACUC protocol 4378–01.

Whole-mount in situ hybridization

The mRNA expression in E9.5-E13.5 mouse embryos was assessed by whole mount in situ 
hybridisation (WISH) using a digoxigenin-labeled antisense riboprobe transcribed from a 

cloned gene specific probes (PCR DIG Probe Synthesis Kit, Roche). Whole embryos were 

fixed overnight in 4% PFA/PBS. The embryos were washed in PBST (0.1% Tween), and 

dehydrated stepwise in 25%, 50% and 75% methanol/PBST and finally stored at −20°C in 

100% methanol. The WISH protocol was as follows: Day 1) Embryos were rehydrated on 
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ice in reverse methanol/PBST steps, washed in PBST, bleached in 6% H2O2/PBST for 1 

hour and washed in PBST. Embryos were then treated in 10 μg/ml Proteinase K/PBST for 3 

minutes, incubated in glycine/PBST, washed in PBST and finally re-fixed for 20 minutes 

with 4% PFA/PBS, 0.2% glutaraldehyde and 0.1% Tween 20. After further washing steps 

with PBST, embryos were incubated at 68°C in L1 buffer (50% deionised formamide, 5× 

SSC, 1% SDS, 0.1% Tween 20 in DEPC; pH 4.5) for 10 minutes. Next, embryos were 

incubated for 2 hours at 68°C in hybridisation buffer 1 (L1 with 0.1% tRNA and 0.05% 

heparin). Afterwards, embryos were incubated o.n. at 68°C in hybridisation buffer 2 

(hybridisation buffer 1 with 0.1% tRNA and 0.05% heparin and 1:500 DIG probe). Day 2) 

Removal of unbound probe was done through a series of washing steps 3×30 minutes each at 

68°C: L1, L2 (50% deionised formamide, 2× SSC pH 4.5, 0.1% Tween 20 in DEPC; pH 4.5) 

and L3 (2× SSC pH 4.5, 0.1% Tween 20 in DEPC; pH 4.5). Subsequently, embryos were 

treated for 1 hour with RNase solution (0.1 M NaCl, 0.01 M Tris pH 7.5, 0.2% Tween 20, 

100 μg/ml RNase A in H2O), followed by washing in TBST 1 (140mM NaCl, 2.7mM KCl, 

25mM Tris-HCl, 1% Tween 20; pH 7.5). Next, embryos were blocked for 2 hours at RT in 

blocking solution (TBST 1 with 2% calf-serum and 0.2% BSA), followed by incubation at 

4°C o.n. in blocking solution containing 1:5000 Anti-Digoxigenin-AP (catalog number: 

Roche-11093274910). Day 3) Removal of unbound antibody was done through a series of 

washing steps 8× 30 min at RT with TBST 2 (TBST with 0.1% Tween 20, and 0.05% 

levamisole/tetramisole) and left o.n. at 4°C. Day 4) Staining of the embryos was initiated by 

washing at RT with alkaline phosphatate buffer (0.02 M NaCl, 0.05 M MgCl2, 0.1% Tween 

20, 0.1 M Tris-HCl, and 0.05% levamisole/tetramisole in H2O) 3× 20 minutes, followed by 

staining with BM Purple AP Substrate (Roche). The stained embryos were imaged using a 

Zeiss Discovery V.12 microscope and Leica DFC420 digital camera.

Mammalian cell culture

All mammalian cells were cultured at 37°C with 5% CO2, and were maintained in high 

glucose DMEM (Gibco cat. no. 11965) for HEK293T (from ATCC) and NIH/3T3 (a gift 

from T. Reh’s lab at the University of Washington) cells, both supplemented with 10% FBS 

and 1× Pen/Strep (Gibco cat. no. 15140122; 100U/ml penicillin, 100 μg/ml streptomycin). 

Cells were trypsinized with 0.25% typsin-EDTA (Gibco cat. no. 25200–056) and split 1:10 

three times a week.

Mouse embryo nuclei extraction and fixation

Mouse embryos from different development stages were processed together to reduce batch 

effects. Each mouse embryo was minced into small pieces by blade in 1 mL ice-cold cell 

lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL 

CA-630 from53, modified to also include 1% SUPERase In and 1% BSA) and transferred to 

the top of a 40 μm cell strainer (Falcon). Tissues were homogenized with the rubber tip of a 

syringe plunger (5 ml, BD) in 4 ml cell lysis buffer. The filtered nuclei were then transferred 

to a new 15 ml tube (Falcon) and pelleted by centrifuge at 500×g for 5 min and washed once 

with 1 ml cell lysis buffer. The nuclei were fixed in 4 ml ice cold 4% paraformaldehyde 

(EMS) for 15 min on ice. After fixation, the nuclei were washed twice in 1 ml nuclei wash 

buffer (cell lysis buffer without IGEPAL), and re-suspended in 500 μl nuclei wash buffer. 

The samples were split to two tubes with 250 μl in each tube and flash frozen in liquid 
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nitrogen. We estimated the nuclei extraction efficiency based on the extracted nuclei number 

vs. expected total nuclei number in each embryo. The estimated nuclei extraction efficiency 

ranged from 60% to 85%.

As a quality control, HEK293T and NIH/3T3 cells were trypsinized, spun down at 300×g for 

5 min (4°C) and washed once in 1× PBS. Equal numbers of HEK293T and NIH/3T3 cells 

were combined and lysed using 1 mL ice-cold cell lysis buffer followed by the same fixation 

and storage conditions as used for the mouse embryos.

Mouse embryo cell counts

3–5 embryos per developmental stage were microdissected in PBS at room temperature. 

Each mouse embryo was minced into small pieces by blade and a single cell suspension was 

obtained by incubating the tissue in 4 ml Trypsin-EDTA 0.05% (Gibco) at 37°C for 10 min 

vortexing every other minute. The cells of each embryo were diluted in 4 ml medium and 

transferred to the top of a 40μ m cell strainer (Falcon). Cell numbers was then determined by 

counting cells using a hemocytometer.

sci-RNA-seq3 library preparation and sequencing

Thawed nuclei were permeabilized with 0.2% TritonX-100 (in nuclei wash buffer) for 3 min 

on ice, and briefly sonicated (Diagenode, 12 sec on low power mode) to reduce nuclei 

clumping. The nuclei were then washed once with nuclei wash buffer and filtered through 1 

ml Flowmi cell strainer (Flowmi). Filtered nuclei were spun down at 500×g for 5 min and 

resuspended in nuclei wash buffer.

Nuclei from each mouse embryo were then distributed into several individual wells in four 

96-well plates. The links between well id and mouse embryo were recorded for downstream 

data processing. For each well, 80,000 nuclei (16 μL) were mixed with 8 μl of 25 μM 

anchored oligo-dT primer (5′-/5Phos/CAGAGCNNNNNNNN[10bp 

barcode]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3′, where “N” is any base; IDT) and 

2 μL 10 mM dNTP mix (Thermo), denatured at 55°C for 5 min and immediately placed on 

ice. 14 μL of first-strand reaction mix, containing 8 μL 5× Superscript IV First-Strand Buffer 

(Invitrogen), 2 μl 100 mM DTT (Invitrogen), 2 μl SuperScript IV reverse transcriptase (200 

U/μl, Invitrogen), 2 μL RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen), was 

then added to each well. Reverse transcription was carried out by incubating plates by 

gradient temperature (4°C 2 minutes, 10°C 2 minutes, 20°C 2 minutes, 30°C 2 minutes, 

40°C 2 minutes, 50°C 2 minutes and 55°C 10 minutes).

After ligation reaction, 60 μL nuclei dilution buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 

3 mM MgCl2 and 1% BSA) was added into each well. Nuclei from all wells were pooled 

together and spun down at 500×g for 10 min. Nuclei were then resuspended in nuclei wash 

buffer and redistributed into another four 96-well plates with each well including 4 μL T4 

ligation buffer (NEB), 2 μL T4 DNA ligase (NEB), 4 μL Betaine solution (5M, Sigma-

Aldrich), 6 μL nuclei in nuclei wash buffer, 8μL barcoded ligation adaptor (100 uM, 5’-

GCTCTG[9 bp or 10 bp barcode A]/dideoxyU/ACGACGCTCTTCCGATCT[reverse 
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complement of barcode A]-3’) and 16 μL 40% PEG 8000 (Sigma-Aldrich). The ligation 

reaction was done at 16°C for 3 hours.

After RT reaction, 60 μL nuclei dilution buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 

mM MgCl2 and 1% BSA) was added into each well. Nuclei from all wells were pooled 

together and spun down at 600×g for 10min. Nuclei were washed once with nuclei wash 

buffer and filtered with 1 ml Flowmi cell strainer (Flowmi) twice, counted and redistributed 

into eight 96-well plates with each well including 2,500 nuclei in 5 μL nuclei wash buffer 

and 5 μL elution buffer (Qiagen). 1.33 μl mRNA Second Strand Synthesis buffer (NEB) and 

0.66 μl mRNA Second Strand Synthesis enzyme (NEB) were then added to each well, and 

second strand synthesis was carried out at 16°C for 180 min.

For tagmentation, each well was mixed with 11 μL Nextera TD buffer (Illumina) and 1 μL i7 

only TDE1 enyzme (62.5 nM, Illumina), and then incubated at 55°C for 5 min to carry out 

tagmentation. The reaction was then stopped by adding 24 μL DNA binding buffer (Zymo) 

per well and incubating at room temperature for 5 min. Each well was then purified using 

1.5× AMPure XP beads (Beckman Coulter). In the elution step, each well was added with 8 

μL nuclease free water, 1 μL 10× USER buffer (NEB), 1 μL USER enzyme (NEB) and 

incubated at 37°C for 15 min. Another 6.5 μL elution buffer was added into each well. The 

AMPure XP beads were removed by magnetic stand and the elution product was transferred 

into a new 96-well plate.

For PCR amplification, each well (16 μL product) was mixed with 2 μL of 10 μM indexed 

P5 primer (5′-

AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCT

TCCGATCT-3′; IDT), 2 μL of 10 μM P7 primer (5′-

CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3′, IDT), and 20 μL 

NEBNext High-Fidelity 2× PCR Master Mix (NEB). Amplification was carried out using 

the following program: 72°C for 5 min, 98°C for 30 sec, 12–14 cycles of (98°C for 10 sec, 

66°C for 30 sec, 72°C for 1 min) and a final 72°C for 5 min.

Of note, for a single experiment, we have 384 barcodes introduced at the reverse 

transcription step, 384 barcodes introduced by hairpin ligation and 768 barcodes introduced 

by PCR. This corresponds to 384 * 384 * 768 = ~113 million possible combinations.

After PCR, samples were pooled and purified using 0.8 volumes of AMPure XP beads. 

Library concentrations were determined by Qubit (Invitrogen) and the libraries were 

visualized by electrophoresis on a 6% TBE-PAGE gel. All libraries were sequenced on one 

NovaSeq platform (Illumina) (Read 1: 34 cycles, Read 2: 52 cycles, Index 1: 10 cycles, 

Index 2: 10 cycles).

Processing of sequencing reads

Base calls were converted to fastq format using Illumina’s bcl2fastq/v2.16 and 

demultiplexed based on PCR i5 and i7 barcodes using maximum likelihood demultiplexing 

package deML54 with default settings. Downstream sequence processing and single cell 

digital expression matrix generation were similar to sci-RNA-seq17 except that RT index was 
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combined with hairpin adaptor index, and thus the mapped reads were split into constituent 

cellular indices by demultiplexing reads using both the RT index and ligation index (ED < 2, 

including insertions and deletions). Briefly, demultiplexed reads were filtered based on RT 

index and ligation index (ED < 2, including insertions and deletions) and adaptor clipped 

using trim_galore/v0.4.1 with default settings. Trimmed reads were mapped to the mouse 

reference genome (mm10) for mouse embryo nuclei, or a chimeric reference genome of 

human hg19 and mouse mm10 for HEK293T and NIH/3T3 mixed nuclei, using STAR/v 

2.5.2b55 with default settings and gene annotations (GENCODE V19 for human; 

GENCODE VM11 for mouse). Uniquely mapping reads were extracted, and duplicates were 

removed using the unique molecular identifier (UMI) sequence, reverse transcription (RT) 

index, hairpin ligation adaptor index and read 2 end-coordinate (i.e. reads with identical 

UMI, RT index, ligation adaptor index and tagmentation site were considered duplicates). 

Finally, mapped reads were split into constituent cellular indices by further demultiplexing 

reads using the RT index and ligation hairpin (ED < 2, including insertions and deletions). 

For mixed-species experiment, the percentage of uniquely mapping reads for genomes of 

each species was calculated. Cells with over 85% of UMIs assigned to one species were 

regarded as species-specific cells, with the remaining cells classified as mixed cells or 

“collisions”. To generate digital expression matrices, we calculated the number of strand-

specific UMIs for each cell mapping to the exonic and intronic regions of each gene with 

python/v2.7.13 HTseq package56. For multi-mapped reads, reads were assigned to the 

closest gene, except in cases where another intersected gene fell within 100 bp to the end of 

the closest gene, in which case the read was discarded. For most analyses we included both 

expected-strand intronic and exonic UMIs in per-gene single-cell expression matrices.

Because of the marked increase in processing time that it would entail, we note that we did 

not perform a UMI error correction step. However, to confirm that our failure to do so would 

not inflate UMI counts, we compared results with vs. without UMI error correction (edit 

distance of 1) for a subset of wells. Compared with skipping UMI error correction, 99.4% of 

reads remain after UMI error correction, which indicated to us that the error correction step 

only has minor impact on the estimated UMI counts per cell (less than 1%). This is likely 

due to the high quality of sequencing data that we obtained on the NovaSeq, the low number 

of PCR amplification steps, and the low duplication rate. We emphasize that groups 

implementing sci-RNA-seq3 should either perform UMI error correction or a similar data 

quality check.

Whole mouse embryo analysis

After the single cell gene count matrix was generated, each cell was assigned to its original 

mouse embryo based on the RT barcode. Reads mapping to each embryo were aggregated to 

generate “bulk RNA-seq” for each embryo. For sex separation of embryos, we counted reads 

mapping to a female-specific non-coding RNA (Xist) or chrY genes (except Erdr1 which is 

in both chrX and chrY). Embryos were readily separated into females (more reads mapping 

to Xist than chrY genes) and males (more reads mapping to chrY genes than Xist).

Pseudotemporal ordering of whole mouse embryos was done by Monocle 257. Briefly, an 

aggregated gene expression matrix was constructed as described above. Differentially 
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expressed genes across different development conditions were identified with 

differentialGeneTest function of Monocle 257. The top 2,000 genes with the lowest q value 

were used to construct the pseudotime trajectory using Monocle 257. Each embryo was 

assigned a pseudotime value based on its position along the trajectory.

Cell clustering, t-SNE visualization and marker gene identification

A digital gene expression matrix was constructed from the raw sequencing data as described 

above. Cells with fewer than 200 UMIs or over 3,172 UMIs (two standard deviation above 

the mean UMI count) were discarded. Downstream analysis were performed with Monocle2/

v2.6.057 and python package scanpy/v1.058. Briefly, gene count mapping to sex 

chromosomes were removed before clustering and dimensionality reduction. Preprocessing 

steps were similar to the approach used by ref59. Briefly, genes with no count were filtered 

out and each cell was normalized by the total UMI count per cell. The top 2,000 genes with 

the highest variance were selected and the digital gene expression matrix was renormalized 

after gene filtering. The data was log transformed after adding a pseudocount, and scaled to 

unit variance and zero mean. The dimensionality of the data was reduced by PCA (30 

components) first and then with t-SNE, followed by Louvain clustering performed on the 30 

principal components (resolution=1.5). For Louvain clustering, we first fitted the top 30 PCs 

to compute a neighborhood graph of observations with local neighborhood number of 15 by 

scanpy.api.pp.neighbors function in scanpy/v1.060. We then cluster the cells into sub-groups 

using the Louvain algorithm implemented as scanpy.api.tl.louvain function60. For tSNE 

visualization, we directly fit the PCA matrix into scanpy.api.tl.tsne function60 with 

perplexity of 30. 40 clusters were identified. We then sampled 1,000 cells from each cluster 

and differentially expressed genes across different clusters were identified with 

differentialGeneTest function of Monocle 2/v2.6.057. Genes specific to each cluster were 

identified similar as previously described61. Clusters were assigned to known cell types 

based on cluster-specific markers (Supplementary Table 3). One cluster had abnormally high 

UMI counts but no strongly cluster-specific genes, suggesting that it may be a technical 

artifact of cell doublets and therefore was removed. This was confirmed upon analysis for 

doublets with Scrublet (see next paragraph). Another two clusters both appeared to 

correspond to the definitive erythroid lineage and were merged. Consensus expression 

profiles for each cell type were constructed as previously described61. Differentially 

expressed genes across cell types were identified with the differentialGeneTest() function of 

Monocle 2/v2.6.062. To identify cell type-specific gene markers, we selected genes that were 

differentially expressed across different cell types (FDR of 5%, likelihood ratio test) and also 

with a >2-fold expression difference between first and second ranked cell types.

For the detection of potential doublet cells, we first split the dataset of ~2 million cells into 

four equally sized subsets, and then applied the scrublet/v0.1 pipeline63 to each subset with 

parameters (min_count = 3, min_cells = 3, vscore_percentile = 85, n_pc = 30, 

expected_doublet_rate = 0.06, sim_doublet_ratio = 2, n_neighbors = 30, scaling_method = 

‘log’) for doublet score calculation. Cells with doublet score over 0.25 are annotated as 

detected doublets. We detected 4.3% potential doublet cells in the whole data set, which 

corresponds to an overall estimated doublet rate of 10.3% (including both within- and 

between-cluster doublets). The aforementioned major cluster with abnormally high UMI 
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counts but no strongly cluster-specific genes (see last paragraph) had a high detected doublet 

proportion (52%), confirming it as a doublet-related artifact. For detection of doublet derived 

subclusters, we redid the above analysis on the whole dataset after removing the doublet-

derived main cluster. Subclusters with detected doublet proportion of >10% were annotated 

as doublet derived subclusters.

For subcluster identification, we selected high quality cells (UMI > 400) in each major cell 

type and applied PCA, t-SNE, Louvain clustering similarly to the major cluster analysis. 

Subclusters were filtered out if most cells (>50%) of the cluster derived from a single 

embryo. Highly similar subclusters were merged if their aggregated transcriptomes were 

highly correlated (Pearson correlation coefficient > 0.95) and the two clusters were close 

with each other in t-SNE space. Genes differentially expressed across subclusters were 

identified for each major cell type as described above. Subclusters with a detected doublet 

ratio (by Scrublet) over 10% are annotated as doublet-derived subclusters.

To identify a distinguishing set of gene markers for each of the 572 subclusters (those of the 

655 with detected doublet cell ratio <= 10%), we used the following algorithm: 1) We 

selected genes detected in at least 5% of cells in the target subcluster; 2) From these, we 

identified genes with a >4-fold greater expression in the target cluster than all 571 other 

subclusters; 3) If there was no such gene, the algorithm tried to identify a gene (“marker A”) 

such that subclusters with low expression of marker A (less than 25% of its expression in the 

target cluster) are readily distinguished from the target cluster based on this difference, and 

are therefore removed from the comparison set. Gene marker A is selected to maximize the 

number of subclusters removed from the comparison set. 4) To identify markers that 

separate the target cluster from the remaining subclusters, we repeat steps 2–3 until a marker 

with a >4-fold expression difference between the target cluster and all remaining subclusters 

is identified. The set of markers identified through this heuristic is sufficient to distinguish 

the target subcluster from all 571 other non-doublet subclusters on the basis of >4-fold 

expression differences.

For identifying correlated cell types between two cell atlas datasets, we first aggregate the 

cell type specific UMI counts, normalized by the total count, multiplied by 100,000, and log 

transformed after adding a pseudo-count. We then applied non-negative least squares 

(NNLS) regression to predict the gene expression of target cell type (Ta) in dataset A with 

the gene expression of all cell types (Mb) in dataset B:

Ta = β0a + β1aMb

where Ta and Mb represent filtered gene expression for target cell type from data set A and 

all cell types from data set B, respectively. To improve accuracy and specificity, we selected 

cell type-specific genes for each target cell type by: 1) ranking genes based on the 

expression fold-change between the target cell type vs. the median expression across all cell 

types, and then selecting the top 200 genes. 2) ranking genes based on the expression fold-

change between the target cell type vs. the cell type with maximum expression among all 
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other cell types, and then selecting the top 200 genes. 3) Merge the gene lists from step (1) 

and (2). β1a is the correlation coefficient computed by NNLS regression.

Similarly, we then switch the order of datasets A and B, and predict the gene expression of 

target cell type (Tb) in dataset B with the gene expression of all cell types (Ma) in dataset A:

Tb = β0b + β1bMa

Thus, each cell type a in dataset A and each cell type b in dataset B are linked by two 

correlation coefficients from the above analysis: βab for predicting cell type a using b, and 

βba for predicting cell type b using a. We combine the two values by:

β = 2 * βab + 0.01 * βba + 0.01

and find β reflects the matching of cell types between two data sets with high specificity 

(Extended Data Fig. 5a). For each cell type in dataset A, all cell types in dataset B are 

ranked by β and the top cell type (with β > 0.01) is identified as the matched cell type. For 

validation, we first applied cell type correlation analysis to independently generated and 

annotated analyses of the adult mouse kidney (sci-RNA-seq component of sci-CAR19 vs. 

Microwell-seq10). We subsequently compared cell subclusters from this study (with detected 

doublet cell ratio <= 10%) to fetus-related cell types (those with annotations including the 

term “fetus”) from the Microwell-seq-based Mouse Cell Atlas (MCA)10. A similar 

comparison was performed against cell types annotated in a recent mouse brain atlas 

(BCA)32.

For estimation of the number of cells of each cell type (or cell subtype), we first calculated 

the proportion of each cell type in individual embryos, and then multiplied the proportion by 

the estimated total cell number for each embryo (E9.5: 200,000, E10.5: 1,100,000; E11.5: 

2,600,000; E12.5: 6,100,000; E13.5: 13,000,000).

Assuming that ~100 cells are required to detect a cell type and that the cell type in question 

is only present at one timepoint, we note that the power of this study would be limited to 

detecting cell types whose ‘population size’ per embryo is >125 cells at E9.5, >333 cells at 

E10.5, >500 cells at E11.5, >1,250 cells at E12.5, or >3,400 cells at E13.5. However, our 

power may be greater than that for cell types that are present across timepoints. For example, 

the primordial germ cell subcluster 16.13, which includes just 88 of 2,058,652 cells in the 

dataset, is contributed to by cells from all five timepoints.

AER and limb mesenchyme pseudo-time analysis

Pseudotemporal ordering of AER cells, forelimb or hindlimb was done with Monocle 257. 

Briefly, differentially expressed genes across five development stages were identified with 

the differentialGeneTest function of Monocle 257. The top 500 genes with the lowest q value 

were used to construct the pseudotime trajectory using Monocle 257, with UMI count per 

cell as a covariate in the tree construction. Each cell was assigned a pseudotime value based 

on its position along the trajectory. Smoothed gene marker expression change along 
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pseudotime were generated by plot_genes_in_pseudotim function in Monocle 257. Cells in 

the trajectory were grouped in the same method as a previous study64. Briefly, cells were 

grouped first at similar positions in pseudotime by k-means clustering along the pseudotime 

axis (k = 10). These clusters were subdivided into groups containing at least 50 and no more 

than 100 cells. We then aggregated the transcriptome profiles of cells within each group. The 

gene expression along pseudotime was calculated in the same approach as a previous 

study64. Briefly, genes passing significant test (FDR of 5%) across different treatment 

conditions were selected and a natural spline was used to fit the gene expression along 

pseudotime, with mean_number_genes included as a covariate. The gene expression for each 

gene was subtracted by the lowest expression and then divided by the highest expression. 

Genes with max expression within the early 20% of pseudotime were labeled as repressed 

genes. Genes with max expression in the last 20% of pseudotime were labeled as activated 

genes. Other genes were labeled as transient genes. Enriched reactome terms 

(Reactome_2016) and transcription factors (ChEA_2016) were identified using EnrichR/

v1.0 package65.

Trajectory inference with Monocle 3

The Monocle 3 workflow consists of 3 core steps to organize cells into potentially 

discontinuous trajectories, followed by optional statistical tests to find genes that vary in 

expression over those trajectories. Monocle 3 also includes visualization tools to help 

explore trajectories in three dimensions.

Dimensionality reduction with Uniform Manifold Approximation and Projection 
(UMAP)—Monocle 3 first projects the data into a low-dimensional space, which facilitates 

learning a principal graph that describes how cells transit between transcriptomic states. 

Monocle 3 does so with UMAP/v0.3.2, a recently proposed algorithm based on Riemannian 

geometry and algebraic topology to perform dimension reduction and data visualization66. 

Its visualization quality is competitive with the popular t-SNE (t-stochastic neighbor 

embedding) method used widely in single-cell transcriptomics. However, where t-SNE 

mainly aims to place highly similar cells in the same regions of a low-dimensional space, 

UMAP also preserves longer-range distance relationships. The UMAP algorithm itself is 

also more efficient (the algorithm complexity of UMAP is O(N) vs. O(Nlog(N)) for t-SNE). 

Briefly, UMAP first constructs a topological representation of the high dimensional data 

with local manifold approximations and patches together their local fuzzy simplicial set 

representations. UMAP then optimizes the lower dimension embedding, minimizing the 

cross-entropy between the low dimensional representation and the high dimensional one.

The computational efficiency of UMAP dramatically accelerated the analysis of the mouse 

embryo data. We found that UMAP finished processing two million cells dataset in around 3 

CPU hours while t-SNE took more than 64 CPU hours. A few implementation details lead to 

the effectiveness of UMAP. Two major steps are involved in both the UMAP and t-SNE 

algorithms: first, the preprocessing step before UMAP is similar to Monocle 2. Briefly, 

genes expressed in fewer than 10 cells (or fewer than 5 cells in datasets with fewer than 

1,000 cells) were filtered out. The digital gene count matrix was first normalized by cell 

specific size factor estimated by “estimateSizeFactors” function in Monocle 3, log 
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transformed after adding a pseudocount, and then scaled to unit variance and zero mean. The 

top 5,000 most highly dispersed genes (2,000 genes for datasets with fewer than 5,000 cells, 

300 genes for datasets with fewer than 1,000 cells) were selected. The matrix was then 

projected into 50 top PCs (30 top PCs for trajectory analysis of the ten supergroups, 10 top 

PCs for data sets with fewer than 5,000 cells, 5 top PCs for data sets with fewer than 1,000 

cells) by partial SVD. Thus an intermediate structure from the high dimension space (here, 

we used the top 50 principal components constructed from the 5,000 most highly dispersed 

genes) is built and then a low dimensional embedding is found to represent the intermediate 

structure. For the second step, both methods used stochastic grid descent approach with 

differing loss functions to embed the data into low dimension space. While t-SNE needs a 

loss function for global normalization, UMAP uses a different objective function that avoids 

that need. This step essentially enables UMAP to scale linearly with the number of data 

samples.

Dimensionality reduction was implemented with the reduceDimension() function in 

Monocle 3. This function calls the UMAP/v0.3.2 python implementation (https://

github.com/lmcinnes/umap) from Leland McInnes and John Healy through the reticulate/
v1.10 package (https://cran.r-project.org/web/packages/reticulate/index.html). To process all 

the cells together, we set UMAP parameters as follows: (n_neighbors = 50, min_dist = 0.01, 

cosine distance metric). To more finely resolve subtrajectories, we adjusted these as such: 

(n_neighbors = 15, min_dist = 0.1, cosine distance metric).

Partitioning cells into discontinuous trajectories—Recently, Wolf and colleagues 

proposed the idea to organize single-cell transcriptome data into a “partitioned approximate 

graph abstraction” (PAGA) that relates clusters of cells that might be developmentally 

related to one another. Briefly, their algorithm constructs a k-nearest neighbor graph on cells 

and then identifies “communities” of cell via the Louvain method, similar to previous 

methods for analyzing CyTOF or single-cell RNA-seq data67. PAGA then constructs a graph 

in which the vertices are Louvain communities. Two vertices are linked with an edge in the 

PAGA graph when the cells in the respective communities are neighbors in the kNN graph 

more frequently than would be expected under a simple binomial model68. Similar methods 

were also recently developed and applied in analyzing zebrafish and xenopus cell atlas 

datasets5,6.

Monocle 3 draws from these ideas, first constructing a kNN graph (k=20) on cells in the 

UMAP space, then grouping them into Louvain communities, and testing each pair of 

communities for a significant number of links between their respective cells. Those 

communities that have more links than expected under the null hypothesis of spurious 

linkage (FDR < 1%) remain connected in the PAGA graph, and those links that fail this test 

are severed. The resulting PAGA graph will have one or more components, each of which is 

passed to the next step (learning the principal graph) as a separate group of cells that will be 

organized in a trajectory. The PAGA algorithm essentially stops at this stage, presenting the 

PAGA graph as a kind of coarse-grained trajectory in each community reflects a different 

state cells can adopt as they develop. In contrast, as described in the next section, Monocle 3 

uses the PAGA graph to constrain the space of principal graphs that can form the final 
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trajectory. That is, Monocle 3 uses the coarse-grained PAGA graph to learn a fine-grained 

trajectory.

Monocle 3’s implementation of the above procedures (in the partitionCells() function) scales 

to millions of cells. Briefly, it uses the clustering_louvain function from the igraph package 

to perform community detection. Next, the core PAGA calculations from Wolf et al. are 

computed via a series of sparse matrix operations. Let X be a (sparse) matrix representing 

the community membership of the cells. Each column of X represents a Louvain community 

and each row of X corresponds to a particular cell. Xij = 1 if cell i belongs to Louvain 

community j, otherwise 0. We can further obtain the adjacency matrix A of the kNN graph 

used to perform the louvain clustering where Aij = 1 if cell i connects to j in the kNN graph. 

Then the connection matrix M between each cluster is calculated as,

M = XTAX

Once M is constructed, we can then follow Supplemental Note 3.1 from ref.68 to calculate 

the significance of the connection between each louvain clustering and consider any clusters 

with p-value larger than 0.05 by default as not disconnected.

Learning the principal graph—Monocle 3 learns a principal graph (via the learnGraph() 

function) that resides in the same low-dimensional space as the data to represent the possible 

paths cells can take as they develop. Monocle uses a principal graph embedding procedure 

that is based on the SimplePPT algorithm69,70, with several key enhancements that 

accelerate graph embedding, support large datasets, allow for loops, and smooth the graph to 

eliminate noisy branches.

The first enhancement is that Monocle 3 learns the principal graph in the (by default, 3 

dimensional) UMAP space using a fast reduced-representation approach to avoid dealing 

directly with many thousands of cells. It first selects a set of “landmark” cells using by first 

running the kmeans() clustering algorithm in R with k equal to the value of the “ncenter” 

argument, which can be passed to learnGraph() by the user. The landmark cells are then 

selected by first mapping each cell to its nearest kmeans point, and then selecting the cell for 

each kmeans point with the highest local density. By default, Monocle 3 uses a data-

dependent policy for adjusting ncenter automatically62. Here, unless otherwise specified, we 

override the default policy and use ncenter = 2000 in the analyses of the embryo data. 

Monocle 3 will then learn a principal graph within these landmarks cells rather than the full 

dataset to accelerate the optimization. Running time and fine detail in the trajectory will 

depend on the number principal graph nodes; more nodes generally results in a more 

accurate tree but at increased running time.

The second enhancement is a procedure to smooth and refine the principal graph to exclude 

small branches. In order to capture smaller fine details of a trajectory such as complex 

branching architecture, SimplePPT requires that the principal graph contain hundreds or 

even thousands of principal graph nodes. Consequently, the principal tree reported by 

SimplePPT often contains very small branches to which a very small percentage of cells 

project. Although SimplePPT does provide tuning parameters that control graph smoothness 
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to a certain extent, we have found that a simple heuristic pruning procedure is effective and 

easier for users to understand how to control. The procedure operates via a depth-first 

visitation of the graph nodes in the principal tree. At nodes with degree ≤ 2, no action is 

taken. For nodes with degree > 2, the diameter path for each subtree rooted at a neighbor not 

yet visited in the search is computed. If the path is less than a user-specified length (by 

default, 10 principal tree nodes), the whole subtree is pruned.

The third major enhancement is that Monocle 3 can learn principal graphs with loops instead 

of requiring that the trajectory be a tree. This is achieved by augmenting the principal tree 

reported by SimplePPT with additional edges meant to close loops in the trajectory. The 

algorithm considers adding an edge between two leaf nodes a and b in the principal graph if 

the pair meet several criteria. The first criteria is that the geodesic distance between a and b 
along the principal tree should be at least a certain minimum distance (by default, ⅓ of the 

tree’s diameter path). That is, when the nodes are close in (euclidean) UMAP space, but 

distant in the graph, they ought to be linked. The second criteria is that they shouldn’t be 

linked if doing so would create an especially long edge. By default, a and b cannot not be 

farther apart in UMAP space than the longest edge in the principal tree. The third criteria is 

based on the same test of connectivity used when partitioning the cells: consider leaf nodes a 
and b, which serve as proxies between two clusters of cells (those for which a and b are their 

nearest k-medioid). If cells near a have an unexpectedly high number of cells near b amongst 

their k nearest neighbors (p < 0.05 by default), then learnGraph() will link a and b in the 

principal graph, provided the other two criteria discussed above are also met.

For analysis of the ten major trajectories, we used ncenter = 5,000 for neural tube/notochord 

trajectory, and ncenter = 2,000 for epithelial and mesenchymal trajectories. For the other 

supergroups, we used ncenter = (number of cells) / 25 and minimal_branch_len = 20. For 

analysis of the 56 subtrajectories, we mostly used ncenter = (number of cells in the 

trajectory) / 30 [2,000 maximum], and minimal_branch_len = 20. Each subtrajectory was 

manually checked and the parameters (ncenter and minimal_branch_len) for about a quarter 

of these were adjusted, mostly to further prune branches such that the principal graph 

follows cell transition path from early to late development stages.

The principal graph offers users a means of selecting subsets of cells that lead to particular 

lineages for further analysis. For example, to isolate cells leading to the myocyte fate, we 

first quantified the fraction of cells at each principal graph node that were classified as 

myocytes (cluster 13). From all ‘majority myocyte’ nodes, we then used the principal 

graph’s edges to expand this set of nodes into wider ‘neighborhood’ of cells.

Computing pseudotimes—In order to calculate cell-wise pseudotime, we developed a 

projection strategy which is applicable to datasets with millions of cells. This strategy works 

by constructing a graph ψ on all cells using the principal graph as a guide, and then 

computing each cell’s pseudotime as its geodesic distance back to one or more user-selected 

“root” nodes in the trajectory. In more detail, we first map each cell to its nearest principal 

point based on euclidean distance in the UMAP space. Then, for each principal graph edge, 

retrieve all the cells that map to its endpoints a and b. Next, orthogonally project each cells 

to the nearest point on the principal graph edge as previously described71, so that each cell ci 
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can be ordered along the edge according to its projection p(ci). Without loss of generality, 

suppose this order is a < p(ci) < p(cj) < b. We then add edges (a, ci) and (cj, b) to ψ. If ci and 

cj are in the same louvain component or connected louvain components (as determined 

during partitionCells), we also add (ci, cj) to ψ. Given ψ and a set of user-specified principal 

graph nodes, we can then assign pseudotime values to all cells. Monocle provides several 

ways to specify these nodes, either by name (i.e. programmatically) or interactively. Each 

cell’s pseudotime is taken as the geodesic distance along ψ to the closest of these root 

nodes.

For root node selection of the mesenchymal and neural tube/notochord trajectories, we first 

assigned each principal point to a subcluster with the maximum cell proportion. We then 

selected the subcluster with the earliest average developmental stage, and use the earliest 

principal point assigned to this sub-cluster as the root state for pseudotime computation. For 

the other major trajectories, we assigned root nodes to the earliest principal point in each 

subtrajectory (except in neural crest trajectory 2, where we assigned the root node to the 

earliest principal points in PNS glia precursor cell trajectory and Pdgfra-positive glia 

trajectory). Some cells from complex trajectories (mesenchymal trajectory, neural tube/

notochord trajectory, epithelial trajectory and endothelial trajectory) show outlier 

pseudotime values (more than 3 standard deviation higher than the mean values). These 

extreme values are clipped to the max value after excluding the outliers. For root node 

selection of the 56 cell type specific trajectories, we first computed the average development 

stage for each principal point. As the root state features the earliest development stage, we 

compared the average development stage of each node and its k-nearest neighbors (k = 10). 

We then manually checked each trajectory and selected root nodes from principal points 

with earlier development stage than all its nearby neighbours.

Identifying genes with complex trajectory-dependent expression—In order to 

identify genes that vary in expression over a developmental trajectory, we borrow a 

statistical test commonly used in analyzing spatial data. Moran’s I statistic is a measure of 

multi-directional and multi-dimensional spatial autocorrelation. The statistic encodes spatial 

relationships between data-points via a nearest neighbor graph, making it particularly well 

suited for analyzing large single-cell RNA-seq datasets.

Moran’s I test72 is defined as:

I = N
W

∑i ∑ jwi j xi − x x j − x

∑i xi − x 2

where N is the number of cells indexed by i and j; x is the expression value of gene of 

interest; xi (x j) is the mean of the gene expression for cell i’s (or j’s) nearest neighbors; wij is 

a matrix of weights defined by a nearest neighbor graph with zero on the diagonal (i.e., wii = 

0) and wij = 1/ki where ki is the number of nearest neighbors; and W is the sum of all wij.

To identify the nearest neighbors used for creating the weight matrix W, we first build a k 

(default to be 25) nearest neighbor graph (kNN) for all cells in the UMAP space. We also 
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project each cell to its nearest node in the principal graph. Then we remove all edges from 

the kNN graph that connect cells that project onto principal graph nodes do not share an 

edge.

In Monocle 3, we implemented the principalGraphTest() function to identify correlated 

genes on the complex trajectory embedded in the manifold which relies on modified 

versions of routines from spdep package for performing the Moran’s I test.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.

Code Availability

Scripts for processing sci-RNA-seq3 sequencing were written in python and R with code 

available at https://github.com/JunyueC/sci-RNA-seq3_pipeline. Trajectory analysis was 

done with Monocle 3 with setup instructions and tutorial available at http://cole-trapnell-

lab.github.io/monocle-release/monocle3/.

Data Availability

sci-RNA-seq3 protocol and all data are made freely available, including through a cell type 

wiki to facilitate their ongoing annotation by the research community (http://

atlas.gs.washington.edu/mouse-rna/). The data generated by this study can be downloaded in 

raw and processed forms from the NCBI Gene Expression Omnibus (GSE119945).
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Extended Data

Extended Data Fig. 1. Performance and QC-related analyses for sci-RNA-seq3.
(a) Comparison of fixation conditions in human HEK293T cells. Paraformaldehyde (PFA) 

fixed nuclei yielded the highest numbers of UMIs. Cell number n = 21 for fresh nuclei, 17 

for frozen nuclei, 32 for PFA fixed cell, 31 for PFA fixed nuclei. (b) Tn5 transposomes 

loaded only with N7 adaptor (cell number n = 13) increased UMI counts by over 50%, 

relative to the standard Nextera Tn5 (cell number n = 11), in human HEK293T cells. (c) Bar 

plot showing the number of RT wells used for each of 61 mouse embryos. (d) Histogram 

showing the distribution of raw sequencing reads from each PCR well in sci-RNA-seq3. (e) 

Scatter plot of mouse (NIH/3T3) vs. human (HEK293T) UMI counts per cell. (f-g) Box plot 

showing the number of UMIs and purity (proportion of reads mapping to the expected 

species) per cell from HEK293T (cell number n = 7,943) and NIH/3T3 cells (cell number n 

= 10,914). At a sequencing depth of 23,207 reads per cell, we observed a median of 5,461 
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UMIs per HEK293T cell and 5,087 UMIs per NIH/3T3 cell, with 3.9% and 2.9% of reads 

per cell mapping to incorrect species, respectively. (h) Box plot comparing the number of 

UMIs per cell (downsampled to 20,000 raw reads per cell) for sci-RNA-seq3 (cell number n 

= 689 for HEK293T and 997 for NIH/3T3) vs. sci-RNA-seq (cell number n = 47 for 

HEK293T and 120 for NIH/3T3). (i) Correlation (Spearman’s correlation) between gene 

expression measurements in aggregated profiles of HEK293T from sci-RNA-seq3 nuclei vs. 

sci-RNA-seq cells. (j) Scatter plot showing correlation between number of RT wells used 

and number of cells recovered per embryo. (k) Box plot showing the number of genes and 

UMIs detected per cell. (l) Box plot showing the number of UMIs detected per cell from 

embryos across five developmental stages. Cell number n = 152,120 for E9.5; 378,427 for 

E10.5; 615,908 for E11.5; 475,047 for E12.5; 437,150 for E13.5. (m) Histogram showing 

the distribution of the cell doublet score for the actual mouse embryo data vs. doublets 

stimulated by Scrublet. (n) Scatter plot of the number of cells profiled per RT well and the 

detected doublet cell ratio. Blue line showing the linear regression line. The detected doublet 

cell rate was modestly correlated with number of cells profiled per well during reverse 

transcription (Spearman’s rho: 0.35). (o) Scatter plot of unique reads aligning to Xist 
(female-specific) vs. chrY transcripts (male-specific) per mouse embryo. Sex assignments of 

individual embryos inferred from these data. (p) Bar plot showing the number of male and 

female embryos profiled at each developmental stage. (q) t-SNE of the aggregated 

transcriptomes of single cells derived from each of 61 mouse embryos results in five tightly 

clustered groups perfectly matching their developmental stages (embryo number n = 61). (r) 

Pseudotime trajectory of pseudobulk RNA-seq profiles of mouse embryos (embryo number 

n = 61); identical to Fig. 1f, but colored by pseudotime. (s) The 61 profiled embryos were 

ordered by pseudotime. The three earliest vs. three latest (in pseudotime) E10.5 embryos are 

shown in photos, and appear to potentially be morphologically distinct. Notably, the distinct 

coloring of E10.5 embryos positioned earlier vs. later in developmental pseudotime is 

potentially due to different levels of hemoglobin. For all box plots: thick horizontal lines, 

medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 

times the interquartile range; circles, outliers.
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Extended Data Fig. 2. Identifying the major cell types and cell composition dynamics during 
mouse organogenesis.
(a-e) t-SNE visualization of mouse embryo cells from different developmental stages, as 

shown in lower portion of Fig. 2a, but sampling 10,000 cells per stage and coloring by 

embryo ID: E9.5 (a), E10.5 (b), E11.5 (c), E12.5 (d), E13.5 (e). We consistently observe that 

cells derived from independent embryos at the same timepoint are similarly distributed. (f) 
The same t-SNE as Fig. 2a is shown, with subsets of cells highlighted. The first panel only 

shows cells from E9.5 embryos, and cells from subsequent developmental stages are 

progressively added. (g) Box plot showing the number of UMIs detected per cell for major 

cell types (cell number n for each cell type is listed in Supplementary Table 3). Thick 

horizontal lines, medians; upper and lower box edges, first and third quartiles, respectively; 

whiskers, 1.5 times the interquartile range; circles, outliers. (h) t-SNE visualization of a 

randomly sampled 100,000 cells colored by expression level of Hbb-bh1 (top) or Fndc3c1 
(bottom). “High” indicates cells with UMI count for Hbb-bh1 > 3, Fndc3c1 > 1. (i) Bar plot 
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showing the number of marker genes in each major cell type, defined as differentially 

expressed genes (5% FDR) with a >2-fold (green) or >5-fold (red) expression difference 

between first and second ranked cell types. (j) Left: t-SNE visualization of a randomly 

sampled 100,000 cells colored by expression level of Shh (top) or Tox2 (bottom). Right: 

whole mount in situ hybridization images of Shh (top) or Tox2 (bottom) in embryos. n = 5 

“High” indicates cells with UMI count for Shh > 0, Tox2 > 1. Arrow: site of gene 

expression. (k) Bar plot showing the number of cells profiled for each cell type, split out by 

development stage. (l) Heatmap showing the estimated relative number of each cell type 

(rows) in 61 mouse embryos (columns). An estimate of the absolute cell number per cell 

type per embryo was calculated by multiplying the proportion that cell type contributed to a 

given embryo by the estimated total number of cells at that development stage. For 

presentation, these estimates are normalized in each row by the maximum estimated cell 

count for that cell type across all 61 embryos. Embryos are sorted left-to-right by 

developmental pseudotime. (m) Line plot showing the estimated relative cell numbers for 

primitive erythroid and definitive erythroid lineages, calculated as in panel b. Dashed lines 

show relative expression of marker genes for primitive erythroid (Hbb-bh1) and definitive 

erythroid (Hbb-bs) major cell types. Data points for individual embryos were ordered by 

development pseudotime and smoothed by the loess method.

Extended Data Fig. 3. Louvain clustering and t-SNE visualization of subclusters of the each of 38 
major cell types.
As cell type heterogeneity was readily apparent within many of the 38 clusters shown in Fig. 

2a, we adopted an iterative strategy, repeating Louvain clustering on each main cell type to 

identify subclusters. After subclusters dominated by one or two embryos were removed and 
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highly similar subclusters merged, a total of 655 subclusters (also termed ‘subtypes’ to 

distinguish them from the 38 major cell types identified by the initial clustering). Cell 

number n for each cell type is listed in Supplementary Table 3.

Extended Data Fig. 4. Analysis of cell subtypes during mouse organogenesis.
(a) t-SNE visualization of all cells (top plot, n = 2,026,641) and downsampled subset of 

high-quality cells (bottom plot, n = 50,000, UMI > 400), colored by Louvain cluster IDs 

from Fig. 2a. (b) t-SNE visualization of all endothelial cells (top plot, n = 35,878) and those 

from the downsampled subset (bottom plot, n = 1,173), colored by Louvain cluster ID 

computed based on the 35,878 endothelial cells. (c-d) t-SNE visualization of the 

downsampled subset of 50,000 cells (c), and 1,173 endothelial cells (d), colored by Louvain 

cluster ID computed based on sampled cells only. The number of clusters and subclusters 

identified with the same parameters drops from 38 (a, bottom plot) to 27 (c) and 16 (b, 

bottom plot) to 12 (c), respectively. (e) Histogram showing the distribution of subclusters 

with respect to cell number (median 1,869; range 51–65,894). (f) Histogram showing the 

distribution of subclusters with respect to the number of contributing embryos (>5 cells to 

qualify as a contributor). (g) Histogram showing the distribution of subclusters with respect 

to the ratio of cells derived from the most highly contributing embryo. (h) Histogram 

showing the distribution of subclusters with respect to the ratio of doublet cells detected by 

Scrublet. (i) Histogram showing the distribution of subclusters with respect to the number of 
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marker genes (at least 2-fold (blue) or 5-fold (red) higher expression when compared with 

the second highest expressing cell subtype within the same main cluster; 5% FDR). 644 of 

655 sub-clusters (98%) have at least one such gene marker with a 2-fold difference, and 441 

of 655 (67%) have at least one such marker with a 5-fold difference. (j) t-SNE visualization 

of subcluster specific marker expression (as example, cell number n = 74,651): Calb1 (left), 

Nox3 (middle) and Tex14 (right) are gene markers for three endothelial subclusters. “High” 

indicates cells with UMI count for Calb1 > 0, Nox3 > 0, Tex14 >1. (k) Cumulative 

histogram showing how many subtypes (out of a total of 572 non-doublet-artifact subtypes) 

can be distinguished from all other subtypes on the basis of one or several markers and >4-

fold expression differences (see also Methods, Supplementary Table 5).

Extended Data Fig. 5. Cell type correlation analysis between single cell mouse atlases.
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(a) Cell type correlation analysis (Methods) matched cell types between independently 

generated and annotated analyses of the adult mouse kidney (sci-RNA-seq component of 

sci-CAR19 (rows) vs. Microwell-seq10 (columns)). All cell types identified by sci-RNA-seq 

are shown, but we only show Microwell-seq cell types that are top matches for 1+ sci-RNA-

seq cell types. Colors correspond to beta values, normalized by the maximum beta value per 

row. (b) Left: We compared our subtypes against 130 fetal cell types annotated in the 

MCA10 with cell type correlation analysis, matching 96 MCA-defined cell types (rows) to 

58 subtypes in our mouse embryo atlas (columns). Colors correspond to beta values, 

normalized by the maximum beta value per row. All MCA cell types with maximum beta of 

matched cell type > 0.01 are shown (rows; n = 96), as are mouse embryo atlas cell types that 

are top matches for 1+ displayed MCA cell types (columns; n = 58). Right: zoom-in to a 

subset of matches shown on the left. Cell types annotations are from MCA (rows) or our 

study (columns; major cell type annotation and sub-cluster id). (c) Box plot showing the 

ratio of cells from E13.5 for subclusters with (sub-cluster number n = 58) vs. without (sub-

cluster number n = 514) a matched cell type in the MCA. Thick horizontal lines, medians; 

upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the 

interquartile range; circles, outliers. (d) Left: We compared our subtypes against 265 cell 

types annotated by a recent mouse brain cell atlas (BCA)32 with cell type correlation 

analysis, matching 48 BCA-defined cell types (rows) to 68 subtypes in our data (columns). 

Colors correspond to beta values, normalized by the maximum beta value per row. All 

mouse embryo cell types with maximum beta of matched cell type > 0.01 are shown 

(column; n = 68), as are BCA cell types that are top matches for 1+ displayed mouse embryo 

cell types (rows; n = 48). Right: zoom-in to a subset of matches shown on the left. Cell types 

annotations are from BCA (rows) or our study (columns; major cell cluster and sub-cluster 

id).
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Extended Data Fig. 6. Analysis of mouse epithelium, endothelium and limb apical ectodermal 
ridge cells.
(a-b) Dot plot showing expression of one selected marker gene per epithelial (a) or 

endothelial (b) subtype. Doublet-derived subclusters (2/29 epithelial subtypes and 5/16 

endothelial subtypes) are excluded from these plots, but are still shown in Fig. 3a and panel 

c, respectively. The size of the dot encodes the percentage of cells within a cell type, and its 

color encodes the average expression level. (c) t-SNE visualization and marker-based 

annotation of endothelial cell subtypes (n = 35,878). (d) Heatmap showing smoothed 

pseudotime-dependent differential gene expression (169 genes at FDR of 1%) in AER cells, 

generated by a spline fitting with generalized linear model (assuming gene expression 

following the negative binomial distribution) and scaled as a percent of maximum gene 

expression. Each row indicates a different gene, and these are split into subsets that are 

activated (top), repressed (middle) or exhibit transient dynamics (bottom) between E9.5 and 

E13.5. (e-f) Plots showing the −log10 transformed q value and Enrichr based combined 

score of enriched Reactome terms (e) and transcription factors (f) for genes whose 

expression significantly decreases in AER development. The top enriched pathway terms 

(Reactome2016) for significantly decreasing genes include cell cycle progression (Mitotic 

Cell Cycle, qval = 0.0002, one-sided Fisher exact test with multiple comparisons adjusted) 

and glucose metabolism (Metabolism of carbohydrates, qval = 0.0002, one-sided Fisher 

exact test with multiple comparisons adjusted). The top enriched TFs with targets from 

decreasing genes include pluripotent factors such as Isl1 (qval < 1e-5), Pou5f1 (qval = 0.002, 

one-sided Fisher exact test with multiple comparisons adjusted) and Nanog (qval = 0.003, 

one-sided Fisher exact test with multiple comparisons adjusted).
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Extended Data Fig. 7. Characterizing cellular trajectories during limb mesenchyme 
differentiation.
(a) UMAP 3D visualization of limb mesenchymal cells colored by development stage (cell 

number n = 26,559, left and right represent views from two directions). (b) Heatmap 

showing top differentially expressed genes between different developmental stages for limb 

mesenchyme cells. (c) Bar plot showing the −log10 transformed adjusted p value (one-sided 

Fisher exact test with multiple comparisons adjusted) of enriched transcription factors for 

significantly up-regulated genes during limb mesenchyme development. (d) t-SNE 

visualization of limb mesenchyme cells colored by forelimb (Tbx5 +, cell number n = 2,085) 

and hindlimb (Pitx1+, cell number n = 1,885). Cells with no expression or both expression 

in Tbx5 and Pitx1 are not shown. (e, h, i, k) Each panel illustrates a different marker gene. 

Colors indicate UMI counts that have been scaled for library size, log-transformed, and then 

mapped to Z-scores to enable comparison between genes. Cells with no expression of a 

given marker are excluded to prevent overplotting. (e) Hindlimb marker Pitx1 and forelimb 

Cao et al. Page 31

Nature. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



marker Tbx5. (f) Scatter plot showing the normalized expression of Pitx1 and Tbx5 in limb 

mesenchyme cells. Only cells in which Pitx1 and/or Tbx5 detected were shown. (g) Volcano 

plot showing the differentially expressed genes (FDR of 5%, one-sided likelihood ratio test 

with multiple comparisons adjusted, colored by red) between forelimb (cell number n = 

2,085) and hindlimb (cell number n = 1,885). Top differentially expressed genes are labeled. 

X axis: log2 transformed fold change between forelimb and hindlimb for each gene. Y axis: 

−log10 transformed qval from differential gene expression test. (h) Same visualization as 

panel e, colored by normalized gene expression of proximal/chondrocyte (Sox6, Sox9), 

distal (Hoxd13, Tfap2b), anterior (Pax9, Alx4), or posterior (Hand2, Shh) markers. Only 

cells with the gene marker expressed are plotted. (i) Same visualization as panel e. First row: 

proximal limb markers Sox6 (which also marks chondrocytes) and Sox9. Second row: distal 

limb markers Hoxd13 and Tfap2b. Third row: Anterior limb markers51 Pax9 and Alx4. 

Fourth row: posterior limb markers Shh and Hand2. (j) In situ hybridization images of 

Hoxd13 in E9.5 to E13.5 embryos, n = 5. (k) Same visualization as panels e, colored by 

normalized gene expression of Cpa2. Only cells with positive UMI counts are shown. Values 

are log10-transformed, standardized UMI counts. Its expression pattern within this trajectory 

led us to predict that Cpa2 is a distal marker of the developing limb mesenchyme, like 

Hoxd13. (l) In situ hybridization images of Cpa2 in E10.5 and E11.5 embryos, n = 5. Arrow: 

site of gene expression. (m) Modules of spatially restricted genes in the limbs. A total of 

1,783 genes were clustered via hierarchical clustering. The dendrogram was cut into 8 

modules using the cutree function in R, and the aggregate expression of genes in each 

module was computed. Colors indicate aggregate UMI counts for each module that have 

been scaled for library size, log-transformed, and then mapped to Z-scores to enable 

comparison between modules. Cells with no expression of a given module are excluded to 

prevent overplotting.

Cao et al. Page 32

Nature. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8. Characterization of ten major developmental trajectories present during 
mouse organogenesis.
(a) Heatmap showing the proportion of cells from each of the 38 major cell types assigned to 

each of the twelve PAGA algorithm-identified groups. We merged two groups corresponding 

to sensory neurons (12 & 3), and another two groups corresponding to blood cells (6 & 7), 

as each pair was closely located in UMAP space upon visual inspection, yielding the ten 

supergroups shown in a similar heatmap in Fig. 4b. (b) Same as Fig. 4a, but with colors 

corresponding to the 38 major cell clusters. (c) Area plot showing the estimated proportion 

(top) and estimated absolute number (bottom) of cells per embryo derived from each of the 

ten major cell trajectories from E9.5 to E13.5. Although the estimated number of cells per 

embryo in each of these supergroups increases exponentially, their proportions remain 

relatively stable, with the exception of hepatocytes which expand their contribution by 

nearly ten-fold during this developmental window (from 0.3% at E9.5 to 2.8% at E13.5). (d) 
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UMAP 3D visualization of epithelial subtrajectories (as in Fig. 4c), colored as per the 

epithelial subtypes shown in Fig. 3a.

Extended Data Fig. 9. UMAP visualization of the ten major cell trajectories.
We iteratively reanalyzed each of the ten major trajectories, nearly all of which further 

resolved into multiple subtrajectories. The ten major cell trajectories are visualized with 

UMAP (as in Fig. 5) but colored: as per the 38 major cell clusters (top left), sub-cluster id 

(top right), developmental stage (bottom left) and pseudotime (bottom right). The lines 

correspond to the principal graph learned by Monocle 3. These images are also available at 

http://atlas.gs.washington.edu/mouse-rna/3dplot/ as manipulatable 3D renderings.
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Extended Data Fig. 10. UMAP visualization of the 56 subtrajectories, colored by development 
stage.
We further iteratively reanalyzed and visualized with UMAP each of the 56 subtrajectories. 

Although Monocle 3 did not have access to these labels, the subtrajectories are highly 

consistent with developmental time (i.e. cells ordered from E9.5 to E13.5). The lines 

correspond to the principal graph learned by Monocle 3.
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Extended Data Fig. 11. UMAP visualization of the 56 subtrajectories, colored by inferred 
pseudotime.
To orient each subtrajectory (same projections as Extended Data Fig. 10), we identified one 

or several starting points as focal concentrations of E9.5 cells, and then computed 

developmental pseudotime for cells present along various paths. The lines correspond to the 

principal graph learned by Monocle 3.
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Extended Data Fig. 12. Gene dynamics in the myogenic trajectory.
(a) Genes that are differentially expressed between the Myf5 path and the Myod path 

highlighted in Fig. 6. Cells along each path were compared via Monocle’s 

differentialGeneTest function. Pseudotimes along each path were scaled from 0 to 100 

independently. The “full model” formula was “~path * sm.ns(Pseudotime, df=3)”, while the 

“reduced model” was “~sm.ns(Pseudotime, df=3)”. Differentially expressed genes (FDR < 

1%, one-sided likelihood ratio test with multiple comparisons adjusted) were clustered via 

Ward’s method and visualized as a heatmap via the pheatmap package. (b) Pseudotemporal 

kinetics for selected genes involved in Robo/Slit signaling. Red indicates cells on the Myod 

path, while blue corresponds to the Myf5 path. Next to the expression curves for each are 

shown the standardized expression scores for each gene on the original myogenic trajectory. 

Only cells with detectable expression are rendered to prevent overplotting. (c) Modules of 

genes differentially expressed over the myogenic trajectory. A total of 2,908 genes were 
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clustered via hierarchical clustering. The dendrogram was cut into 14 modules using the 

cutree function in R, and the aggregate expression of genes in each module was computed. 

Colors indicate aggregate UMI counts for each module that have been scaled for library size, 

log-transformed, and then mapped to Z-scores to enable comparison between modules. Cells 

with no expression of a given module are excluded to prevent overplotting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. sci-RNA-seq3 enables profiling of 2,072,011 cells from 61 mouse embryos across 5 
developmental stages in a single experiment.
(a) sci-RNA-seq3 workflow and experimental scheme. (b) Bar plot showing number of cells 

profiled from each of 61 mouse embryos. (c) Pseudotime trajectory of pseudobulk RNA-seq 

profiles of mouse embryos.
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Fig. 2. Identifying the major cell types of mouse organogenesis.
(a) t-SNE visualization of 2,026,641 mouse embryo cells, colored by cluster id from 

Louvain clustering (in Fig. 2b), and annotated based on marker genes. The same t-SNE is 

plotted below, showing only cells from each stage (cell numbers from left to right: n = 

151,000 for E9.5; 370,279 for E10.5; 602,784 for E11.5; 468,088 for E12.5; 434,490 for 

E13.5). Primitive erythroid (transient) and definitive erythroid (expanding) clusters are 

boxed. (b) Dot plot showing expression of one selected marker gene per cell type. The size 

of the dot encodes the % of cells within a cell type in which that marker was detected, and 

its color encodes the average expression level.
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Fig. 3. Identification and characterization of epithelial cell subtypes and the limb apical 
ectodermal ridge (AER).
(a) t-SNE visualization and marker-based annotation of epithelial cell subtypes (74,651 

cells). (b) t-SNE visualization of all epithelial cells colored by expression level of Fgf8. 

“High” indicates cells with UMI count for Fgf8 > 1. (c) In situ hybridization images of Fgf8 
in embryos from E9.5 to E13.5. Arrow: site of gene expression. n = 5 (d, e) t-SNE 

visualization of all epithelial cells colored by expression level (d) and whole in situ 
hybridization images (e) of Fndc3a (top), Adamts3 (middle) and Snap91 (bottom). n = 5 

“High” indicates cells with UMI count for Fndc3a > 3, Adamts3 > 1, Snap91 > 1. Arrow: 

site of gene expression. (f) Line plot showing the estimated relative cell numbers for 

epithelial cells and AER cells, calculated as in Extended Data Fig. 2m. Data points for 

individual embryos were ordered by development pseudotime and smoothed by loess 

method. (g) Pseudotime trajectory of AER single cell transcriptomes (cell number n = 
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1,237), colored by development stage. (h) Kinetics plot showing relative expression of AER 

marker genes across developmental pseudotime.

Cao et al. Page 45

Nature. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Characterization of ten major developmental trajectories present during mouse 
organogenesis.
(a) UMAP 3D visualization of our overall dataset; left: views from one direction; bottom: 

zoomed view of neural tube/notochord (top) and mesenchymal (bottom) trajectories, colored 

by development stage. PNS: peripheral nervous system. (b) Heatmap showing the proportion 

of cells from each of the 38 major cell types (rows) assigned to each of the 10 major 

trajectories (columns; color key in left panel of a). (c) UMAP 3D visualization of epithelial 

subtrajectories colored by development stage (color key in right panel of a).
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Fig. 5. UMAP visualization of individual major trajectories.
After removing doublet-annotated cells and subclusters, we iteratively reanalyzed each of 

the ten major trajectories. Colored by subtrajectory name (main plots) or developmental 

stage (insets; colors as in Fig. 4c). Edges in the principal graphs that define trajectories 

reported by Monocle 3 are shown as light blue line segments.
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Fig. 6. Resolving cellular trajectories in myogenesis.
Edges in the principal graphs that define trajectories reported by Monocle 3 are shown as 

light blue line segments. (a) Cells putatively involved in myogenesis were isolated from the 

mesenchymal cell trajectory in silico and then used to construct a myocyte subtrajectory. 

Principal graph nodes with more than 50% occupied by cells from cluster 13 were taken as 

“seed nodes” and then cells on any nodes within 20 edges of these seed nodes were selected 

for subtrajectory analysis. Cells in the myocyte subtrajectory (left) colored by developmental 

stage (right). (b) Cells in the myocyte trajectory, colored by their expression of selected 

transcriptional regulators of myogenesis. Cells with no detectable expression for a given 

gene are omitted from its plot. Values are log10-transformed, standardized UMI counts. (c) 

Cells classified by developmental stage according to the markers shown in panel c 

(Dermomyotome: Pax3+, Pax7-; Muscle progenitors: Pax7+; Myoblasts: Myf5+ or Myod+ 

and Myog-; Myocytes: Myog+; Myotubes: Myh3+).
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