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Abstract

phylogenetic networks.

Background: The advent of molecular biology techniques and constant increase in availability of genetic material
have triggered the development of many phylogenetic tree inference methods. However, several reticulate
evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species
evolutionary history by causing discordance among phylogenies inferred from different genes.

Methods: To tackle this problem, we hereby describe a new method for inferring and representing alternative
(reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed
from a collection of gene trees with or without prior knowledge of the species phylogeny.

Results: We provide a way of building a weighted phylogenetic network for each of the following reticulation
mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We
successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary
events which may have influenced the evolution of many species.

Conclusions: Our weighted consensus network inference method allows one to infer, visualize and validate
statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the
new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret

Keywords: Consensus network, Consensus tree, Phylogenetic network, Phylogenetic tree, Reticulate evolution

Background

Molecular data have played an instrumental, and usually
indispensable, role in many phylogenetic and evolutionary
studies in the recent decades. Their increasing availability
is due to outstanding advances in the development of
fast, efficient and affordable sequencing technologies
[1]. Although this growth has triggered the advancements
of theoretical informatics aspects of phylogenetics and
evolutionary biology via the development of new algorithms,
statistical models and software, fast and effective analytical
methods have yet to be designed to take advantage of this
huge surplus of data. For instance, the field of phylogenetics
still faces some key analytical challenges stemming from
reticulate evolution. They include: 1) horizontal gene
transfer (e.g., in bacterial or viral evolution); 2) hybridization
among species (e.g, allopolyploidy in plants); 3) genetic
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differentiation of allopatric populations and gene exchange
through migration; 4) homoplasy (i.e., parallel evolution
and reversals); 5) incomplete lineage sorting; and 6)
recombination between genes [2-5]. All these processes
may lead to the incongruity among gene trees [6-10]
inferred from the data affected by reticulate evolutionary
mechanisms. Implicit or explicit phylogenetic networks
should be used to represent these complex phenomena
when the gene tree incongruity is observed [5,11]. Implicit
networks are better suited for a general representation
of conflicting evolutionary signals present in the data,
whereas explicit networks are used for depicting the
precise reticulation events, including their directionality
and the species involved. The inference and validation of
explicit phylogenetic networks is the main goal of the
current study.

Another key factor that contributes to the incompatibility
among gene trees is stochastic errors resulting from
analytical features such as choice of optimality criterion,
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taxon sampling and sequence evolution model [12-14].
These complications not only makes it difficult for
researchers to find reliable estimates of the true species
phylogenies, but also obstruct such fields as comparative
biology and community phylogenetics which rely on
phylogenetic trees in their analyses [15-17].

Evidence from many studies conducted on different
groups of species, from fruit flies to hominids [10,18-25],
have shown that gene tree discordance is a widespread
phenomenon. These studies mostly concluded that rarely a
predominate or consistent single-gene-based phylogeny
could be perceived or reconstructed for a moderate to large
set of species, regardless of the type of phylogenetic
data at hand. Among the traditional tree-like tech-
niques developed to solve the gene tree incongruence
problem there are two widely used approaches of
gene concatenation and consensus tree reconstruction,
both of which result in the inference of a single
phylogenetic tree as the most probable representation
of the evolutionary history of species.

Although there have been successful cases of using the
concatenation approach to elucidate the ancestral re-
lationships among certain groups of species [26-29],
multi-gene datasets very rarely converge to the same
phylogeny, more often providing results which are
contradictory or inconsistent with well-known and
highly reliable species trees [7,30-32]. These statistical
inconsistencies in estimating phylogenetic trees using
concatenated datasets have been confirmed by simulation
studies [33,34].

The main idea behind traditional comnsensus tree
reconstruction methods is that each of the phylogenetic
trees from a given collection of trees should contribute to
a consensus tree according to the presence of its clusters.
Among the most known and widely used consensus tree
reconstruction methods are the majority rule consensus
[35] and Nelson (often called Nelson-Page) consensus
approaches [36,37]. The traditional strict majority rule
consensus tree includes all the clusters that occur in more
than 50 % of the considered trees. The major pitfall of this
method is that for a set of trees with a poor overall
bootstrap support, the 50 % cluster occurrence constraint
leads to a very weakly resolved phylogeny. On the other
hand, in the extended majority rule consensus tree
approach, a strict consensus tree is first constructed and
then the remaining compatible clusters are added to it
following their overall frequency in the considered tree
collection. For the collections of trees with a poor overall
bootstrap support, the constraint of 50 % used when
inferring the majority rule and extended majority rule
consensus trees can be often inconvenient. Many
existing software allow for clusters that are present in
less than 50% of the trees. They work downwards in
the frequency of the cluster occurrences as long as
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the new clusters aid to resolve the consensus tree.
The extended majority rule consensus method often pro-
vides solutions similar to those of the Nelson consensus
method, although not necessarily identical to them [36,37].
The Nelson consensus method, first described in [36] and
then generalized in [37], relies on the graph theory tech-
niques to find maximum cliques of mutually compatible
clusters. Its major drawback is that these cliques do
not always contain enough compatible clusters to consti-
tute a fully resolved phylogenetic tree [38]. Moreover, the
problem of finding a maximum clique of compatible clus-
ters has been shown to be NP-hard [39].

Phylogenetic networks should be used instead of consen-
sus species trees or species trees inferred from concatenated
sequences whenever reticulate evolutionary processes
are studied [3,5,11]. Here, we recall some of the existing
phylogenetic network building methods and software
based on the cluster support. In an early attempt to
build consensus phylogenetic networks, Holland et al.
[40] developed an implicit consensus network model
based on the median network method [41] to visualize
incompatibilities encompassed in the given collection of
trees. This method proceeds first by ranking all the splits
according to their frequency and then builds a system of
compatible splits by adding those splits to the network,
one at a time, following their frequency ranking. Holland
and colleagues [42] further optimized their original greedy
consensus network method to incorporate weights from
individual trees into the network inference process.
Having the length of each split (i.e., branch length of the
split branches) in different trees as well as the weights
associated with those trees, this method computes an
average length for each split and finally selects compa-
tible splits based on their weights to build a consensus
network.

In another attempt, Huson [43] and then Huson and
Bryant [4] have developed a computer program called
SplitsTree which reconstructs an unrooted splits graph
from a collection of phylogenetic trees through selecting
all the splits that are present in more than a fixed
percentage of all the trees [40]. However this program
provides as result only implicit network structures, the
inferred extra links do not usually directly correspond to
the tree lineages and the number of nodes and edges of
the resulting network can grow exponentially with the
number of splits. To address these disadvantages, Huson
and Rupp [44] proposed the cluster network approach to
build a phylogenetic network from a collection of gene
trees using a modified tree popping algorithm which they
called network popping algorithm. To estimate the support
of any reticulation edge, the average support of that edge
(computed over all trees) is divided by the average support
of the alternative reticulation edges located at the same
position and weighted by the average support of all other
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tree edges [5,44]. The latter authors stated however that
no association between clusters and reticulation edges is
provided by this method. For instance, the obtained cluster
support was not shown in their network representations
[44]. On the other hand, Abby et al. [45] proposed a
horizontal gene transfer inference method called Prunier.
Prunier needs a species tree and a gene tree as a reference
and does not treat multiple gene trees. Prunier relies on a
ranking of branches that are common to the species and
gene trees based on the amount of conflicts that is reduced
when the branch is removed. This amount of conflicts
is a function that depends on the statistical support
of the internal branches of the gene tree. For a de-
tailed review of the existing phylogenetic network re-
construction methods the reader is referred to [5].
Mention that the results yielded by most of the exist-
ing consensus network building methods are implicit
and generally not easy to interpret.

In this study, we present a new algorithm for the
inference of explicit weighted consensus networks from
a collection of trees (e.g., multiple single-gene phylogenies),
with or without prior knowledge of the species phylogeny.
Such networks are capable of representing the main
historical pattern of the species evolution (ie., associated
with the clusters present in the species tree) as well as the
alternative evolutionary routes characterizing the species
and genes under consideration. The main advantage of
our method is that it allows for visualizing the species
evolutionary relationships in a very clear and easy-to-
interpret manner. Our algorithm takes advantage of
the weights (e.g., least-square scores, posterior probabilities,
maximum likelihood scores or p-values) assigned to the
gene trees as well as the weights associated with the
tree clusters (e.g., cluster's bootstrap score or poster-
ior probability) to infer the species dominant and al-
ternative evolutionary histories. If a species tree is
provided in addition to the collection of gene trees,
our algorithm considers it as the dominant evolution-
ary history (i.e., backbone structure) and uses the col-
lection of gene trees to infer the most significant
reticulation events. If only a collection of gene trees
is given, the new algorithm first builds a weighted
consensus tree as the main evolutionary pattern and
then infers the most significant alternative events.

The rest of the article is organized as follows. In
the Methods section, a description of the basic con-
cepts of phylogenetic networks and a detailed presen-
tation of our new algorithm are given, followed by
the description of the simulation protocol and the
three considered real datasets. In the Results section,
the results and performances of the new algorithm
obtained for both simulated and real data are re-
ported. They are then discussed in detail in the final
section of the article.
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Methods

Basic concepts

Graph

A graph G (V; E) consists of a collection of vertices (V)
which are connected by a collection of edges (E) in a
pairwise manner. A path in a graph is a sequence of
at least two vertices (vq, Vo, ..., V%) such that, for all i € {1,
2, ..., k-1}, there exists an edge {v; v;;1} in E. A cycle in a
graph is a path whose first and last vertices are the same,
while all other edges and vertices are pairwise distinct.

Phylogenetic tree

A phylogenetic tree (T) is an acyclic connected graph
whose leaves (i.e., vertices of degree one) are labelled
according to the given set of taxa (i.e., species).
Phylogenetic trees can be either bifurcating (ie., all
the internal nodes have an indegree of one and an
outdegree of two) or multifurcating (i.e., internal
nodes can have an outdegree of three and more).
Phylogenetic trees can be rooted or unrooted, where
the root is a node representing a common ancestor
of all the species involved in the analysis.

Phylogenetic network
A phylogenetic network is a connected graph used either
to visualize evolutionary relationships between species or
to display conflicting evolutionary signals without such
limitations as being acyclic or having a fixed indegree or
outdegree of its nodes. Phylogenetic networks can be
implicit or explicit: implicit networks such as split
graphs are used to represent conflicting and ambigu-
ous signals in a dataset using parallel sets of edges,
rather than single branches. These networks often
contain nodes that are not representing any ancestral
species, hence providing only an implicit representa-
tion of evolutionary histories [4]. In explicit networks,
in contrast, the internal nodes represent ancestral
species and nodes with more than two parents corres-
pond to reticulation events such as hybridization,
recombination or horizontal gene transfer. Such net-
works provide an explicit representation of evolution-
ary history of species (see [5] for more details).

Here, we will first define some basic principles of the
weighted consensus tree reconstruction prior to expanding
them to phylogenetic networks inferring.

Bootstrap-based majority rule consensus tree

The main idea of our approach is that each phylogenetic
tree from a given collection of trees should contribute to a
consensus tree not simply by the presence, but also by the
quality of its clusters (i.e., bipartitions or splits correspond-
ing to the internal tree branches). The quality of a cluster
within a given collection of trees can be defined as the sum
of bootstrap scores, taken over all the trees in this
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collection, of the internal branches associated with this clus-
ter. The traditional majority rule consensus tree includes
only the clusters that exist in more than 50% of the consid-
ered trees [35]. Note that any other percentage between
50% and 100% can also be specified in most of the existing
phylogenetic packages (e.g., in PHYLIP [46]). The boot-
strap-based majority rule consensus tree will include any
cluster whose average bootstrap support, i.e., total sum of
bootstrap scores, computed over all the trees in the collec-
tion, divided by the number of trees in this collection, is
greater than 50% (e.g., tree T, in Figure 1 is the bootstrap-
based majority rule consensus tree, as well as the strict ma-
jority rule consensus tree, of trees 77, T, and T3). It is easy
to prove that all the clusters satisfying such a rule will
be pairwise compatible. For this, it will be sufficient
to substitute each tree of the original tree collection
by the set of its bootstrap replicates (i.e., replicated
trees built when carrying out the bootstrap proced-
ure) and then apply the traditional strict majority rule

Page 4 of 25

method on this extended set of replicated trees. All
the clusters appearing in more than 50% of the repli-
cated trees will be mutually compatible.

Bootstrap-based extended majority rule consensus tree
Similar to the traditional extended majority rule method, as
implemented in the CONSENS program of the PHYLIP
package [46], the bootstrap-based extended majority rule
method is a two-stage procedure. First, any cluster whose
average bootstrap score is greater than 50% will be included
in the consensus tree. Then, the method will consider the
remaining clusters following the order of their total
sums of bootstrap scores, computed over all the trees
in the collection, and gradually add to the consensus
tree those that are compatible with the current con-
sensus tree until the tree is fully resolved or no more
compatible clusters remains. For instance, tree T,
in Figure 1 is the extended bootstrap-based majority
rule consensus tree of trees Ty, T, and Ts.

Bootstrap-based majority
rule (50%) consensus tree

All the trees have the same weight.

40% 100%
Tree T,
y w
u
X z
45% 100% Tree T,
y w
u
X z
90% 100%
Tree T,
u w
Y
X z X z
100% 30% 100%
Tree T, / \ Tree T,
u w u w
y y

Bootstrap-based weighted
phylogenetics network

Figure 1 Bootstrap-based consensus trees and networks. Bootstrap-based majority rule consensus tree T, bootstrap-based extended
majority rule consensus tree Ty, and weighted implicit phylogenetic network N3 for a collection of three binary phylogenetic trees T;, T, and
T3 whose leaves are labelled by the set of 5 taxa (x, ¥, z, w and u). The bootstrap scores of the internal branches of trees T;, T, and T5 are indicated.

Bootstrap-based extended
majority rule and Nelson
consensus tree
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Bootstrap-based Nelson consensus tree

We also consider the following extension of the trad-
itional Nelson method. To build the bootstrap-based
Nelson consensus tree each clique will be assigned a
score equal to the sum of scores of clusters included
in it. The score of each cluster is defined as a sum
of bootstrap scores associated with this cluster, com-
puted over the given collection of trees. Unlike the
method described by Page [37], where only the repli-
cated clusters can contribute to the clique scores,
our procedure also takes into account the scores of
all unreplicated clusters. If a single clique with the
highest total bootstrap score is found, the group of
compatible clusters included in this clique will define
the bootstrap-based Nelson consensus tree. If there
exist more than one such clique, then the bootstrap-based
Nelson consensus tree will contain only the clusters found
in all of the maximal replication cliques. In this case, clus-
ters found in some, but not all, of the maximal-replication
cliques can be classified as “ambiguous” (for more details
see [37,46,47]). In some cases, the bootstrap-based ex-
tended majority tree and Nelson consensus tree will be
identical (e.g., tree Tj,, in Figure 1 is also the Nelson con-
sensus tree of trees T}, T, and T3), but this equivalence
does not hold in general.

In Figure 1, a set of three trees is presented (77, T
and T3), each of them containing two internal bran-
ches with the associated bootstrap scores. The right-
hand internal branch (connecting leaves “z” and “w”
to the rest of the tree) has bootstrap support of 100%
in all three trees. Therefore, it should be included in
all consensus trees, or networks, regardless of the re-
construction method used. On the other hand, the
left-hand internal branch connecting leaves “x” and
“y” to the rest of the tree in 77 and T, has different
bootstrap scores in these trees (40 and 45% respect-
ively). In tree T3, the left-hand internal branch con-
nects leaves “x” and “u” to the rest of the tree. Its
bootstrap score, 90%, is higher than the sum of boot-
strap scores of the corresponding branch in 77 and
T,. When using the bootstrap-based majority rule
defined above, we obtain a consensus tree (7}, in
Figure 1) that does not include the left-hand internal
branch because neither the sum of scores of T and
T, nor the bootstrap score of T3 divided by the num-
ber of trees is greater than 50%. The application of
the bootstrap-based extended majority rule adds to the
consensus tree (tree Tp,, in Figure 1) the left-handed
branch of tree T3, since 90% / 3 =30% > (40% +45%) / 3 =
28.3%. Tree Tp,,, is also the bootstrap-based Nelson con-
sensus tree of T, T, and T3. Finally, the construction of
the bootstrap-based consensus network (Nj,3 in Figure 1)
relies on the same principle as the bootstrap-based ex-
tended majority rule, except that it encompasses both left-
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hand internal branches (that from 7; and 7T, and that
from T3) characterized by their bootstrap support. Net-
work N3 is an implicit consensus network. In this article
we will show how such an implicit network can be trans-
formed into explicit one depending on the evolutionary
mechanism being studied.

Method description: consensus tree

The method we present and apply here also takes
into consideration the weights associated with the
given phylogenetic trees in addition to bootstrap
scores of the tree clusters (i.e.,, internal branches).
Using one of the three equations presented in the
section “Inferring weights”, the method defines a
weight of each cluster based on the weights of the
trees containing this cluster and on the cluster’s boot-
strap scores in these trees. Then, after ranking all the
clusters based on their weights, it regroups the com-
patible clusters starting from the top of the list, until
a fully resolved consensus tree is built. This method
is called here weight-based extended wmajority rule
consensus tree inference.

Method description: consensus network

Our consensus network inference method accepts two
types of input: 1) a species phylogenetic tree and a
set of gene phylogenetic trees defined on the same
set of species, or 2) only a set of gene trees defined
on the same set of species. In phylogenetic studies,
gene trees are usually characterized by their weights
that reflect the quality of the reconstruction process.
Such weights could be an average of bootstrap scores
of the tree’s internal branches, a maximum parsimony
or maximum likelihood score or a Bayesian posterior
probability estimate. Thus, we assume that all the
phylogenies have bootstrap scores or posterior prob-
abilities (or any other measure of support) for their
internal branches. Our algorithm first breaks down all
the gene phylogenies into their relevant clusters and
calculates a weight for each cluster based on Equa-
tions 1, 2 or 3 presented in the following section.
Next, the algorithm ranks all the clusters based on
their weights. For this type of input, our algorithm
uses the species tree as the backbone of the network
and gradually adds to it the highly ranked clusters
(i.e., represented by reticulation branches) of the gene
phylogenies. For the first type of input, the species
tree is accepted as the dominant evolutionary history
and the clusters of the gene trees are used to infer
the reticulate (alternative) evolutionary events. For the
second type of input, our algorithm reconstructs a
consensus phylogenetic tree using the weight-based ex-
tended majority rule consensus tree method described
above and then adds to it the remaining highly ranked



Layeghifard et al. BMC Evolutionary Biology 2013, 13:274
http://www.biomedcentral.com/1471-2148/13/274

incompatible clusters which are presented as reticulation
branches. In the obtained consensus network, the
weight-based consensus tree and the reticulation
branches can be regarded as the main and alternative
evolutionary scenarios, respectively.

Regardless of the input type, the resulting representa-
tion is a weighted consensus phylogenetic network with
a backbone tree structure and reticulation branches be-
ing chosen based on their weights which reflect their
contribution to the clustering process. These two algo-
rithmic facets are schematically presented in Figure 2, in
which the steps depicted by letter a correspond to pro-
cessing the first type of input and those depicted by let-
ter b are related to the second type of input. Steps 2 to 4
are common for both types of input.

We present here three network building algorithms
(Algorithms 1, 2 and 3), each of them being opti-

Input type I:
1. Species tree
2. Multiple gene trees

Input type II:
1. Multiple gene trees

‘

L J
Inferring clusters of
each gene tree

A4

Computing the weights.
for all clusters using
Equations 1, 2 or 3

S —

®

Ranking all the clusters
based on their weights

f
Using weight-based
extended majority rule
consensus tree as the
backbone of the consensus
network

Using the provided species
tree as the backbone of
the consensus network

L 4 A 4

Adding the rest of the highly
ranked clusters to the
consensus tree to build the

implicit consensus network

Adding the highest ranked
clusters to the species tree
to build the implicit
consensus network

Figure 2 Flowchart of the new method for building weighted
consensus networks. Facet a of the method (indicated by
lowercase a next to step numbers) uses a species tree as well as a
set of gene trees to infer the consensus network. Facet b of the
method (indicated by lowercase b next to step numbers) uses only
a set of gene trees to build the consensus network. Step numbers
that do not contain any letter are common steps for the two facets.
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mized for detecting and representing a specific evolu-
tionary phenomenon. The first algorithm (Algorithm 1),
which accepts the input of type 2 (a collection of
gene trees inferred for various genes), is suitable for
inferring either diploid or polyploidy hybridization
events occurred among the observed species, or for
finding recombination events occurred at the chro-
mosome level. Algorithm 1 first proceeds by building
the weight-based extended majority rule consensus
tree followed by finding reticulation events and add-
ing them to the consensus tree with proper direction
in order to build the explicit weighted consensus net-
work. The time complexity of Algorithm 1 is O(m x
m* x (n+7r)), where n is the number of gene trees in
the considered gene tree collection 1, m is the num-
ber of leaves in each of these trees and r is the num-
ber of reticulation branches (i.e., reticulation events)
added to the consensus tree. Note that the cluster
inference procedure in Algorithm 1 (i.e., the first loop for
in this algorithm) has the time complexity of O(n x
m?) as we use an optimal algorithm for the tree
cluster inference, originally described by Makarenkov
and Leclerc [48], in which each tree cluster is pre-
sented as a binary bipartition vector. The weight
computation procedure for the clusters from the
gene tree collection t (i.e., the second loop for in Al-
gorithm 1) has the time complexity of O(n? x m?).
The time complexity of the second loop while in this
algorithm, where the reticulation branches are added
to the consensus tree, is O(rx n x m*). The function
find_direction in the same algorithm has the time
complexity of O(n x m?). A group of clusters (i.e., bi-
partition vectors) is called compatible if altogether
these clusters induce a unique phylogenetic tree. A
cluster ¢ has the first degree of incompatibility with
a phylogenetic tree T if there exists an SPR (Subtree
Prune and Regraft) move of the branches of T in-
duced by the cluster ¢ that transforms 7 into an-
other phylogenetic tree. For instance in Figure 1,
cluster (xy) has the first degree of incompatibility
with tree T5. In the same way, cluster (xyw) has the
second degree of incompatibility with tree T3, as it
requires two SPR moves (i.e., two reticulation
branches) to transform T3 into a tree where cluster
(xyw) is present. In the case of a directed phylogen-
etic network Nj, inferred in Algorithm 1, cluster ¢
will have the first degree of incompatibility with Nj,
if it has the first degree of incompatibility with the
tree T obtained from N, after carrying out all SPR
moves corresponding to the reticulation branches
included in Nj. Mention that in all the three pre-
sented algorithms we only need to know whether a
given cluster ¢ has the first degree of incompatibility
with a given network Nj, or not.
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Algorithm 1: Inference of hybridization events (Diploid or Polyploid hybridization) —
recombination at the chromosome level

Input: set of unrooted gene trees t defined on the same set of taxa X
Output: explicit weighted consensus network N; on X representing diploid or polyploid
hybridization events

begin

end

define p — cut-off level
define C - set of all clusters of 7 and C,, - weighted set of clusters of
define C; - set of clusters (splits or bipartitions) of backbone tree 7

for each T of ¢
infer all clusters of 7'
add clusters to the set C

for each cluster ¢ of C
compute weight #(c) of ¢ using Equations 1, 2 or 3
addcto C,,

sort C,, according to the weight magnitude

while (there exist clusters in C,, compatible with all clusters in Cj) do
consider cluster ¢ from C,, with the highest weight #(c)
if (W(c) = p)) && (c is compatible with all clusters in Cp)) then
add cto Cp
eliminate ¢ from C,,

Ny = T}, // network is first defined as backbone tree with the cluster set C),
among remaining clusters in C,, identify clusters with the 1st degree of incompatibility with N,

while (there exists a cluster ¢ from C,, such that:

((W(c) 2p)) && (c has the 1st degree of incompatibility with N;,)) do

find cluster ¢ from C,, with the highest weight #(c) such that:

((W(c) =2 p)) && (c has the 1st degree of incompatibility with Ny))

d = find_direction (reticulation branch 7., Ny, 7)
add r,, representing cluster ¢, to N, with direction d and weight W(c)
eliminate ¢ from C,,
among remaining clusters in C,,, identify clusters with the 1st degree of
incompatibility with N,

transform N, into an explicit weighted hybridization network (see Figure 3)

Function find direction (reticulation branch r., N, 7)

begin

define 7y - tree obtained from N, and induced by reticulation branch r, with
direction d, (a directed reticulation branch corresponds to an SPR move)
define 7, - tree obtained from N, and induced by reticulation branch r, with
direction d> (opposite to d;)

if (V, contains some other directed reticulation branches, apart from r..) then
obtain 7, and T by carrying out SPR moves corresponding to these reticulation
branches

if (T / RE(T3, Ta) < X(W(T) | RF(T;, T2))) then
return d,

else
return d,

// here RF denotes the Robinson and Foulds distance and W(T)) is the weight of tree T;
// the sums are taken over all trees in t that include cluster ¢

end find direction
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Algorithm 2, on the other hand, is designed to infer intragenic
recombination events or partial horizontal gene transfers which
lead to the creation of mosaic genes. This algorithm accepts
two types of input (a species tree and a multiple sequence align-
ment, or only a multiple sequence alignment). In cases where a
species tree is provided, Algorithm 2 uses it as a backbone of
the network. A sliding window procedure is then carried out
for finding the aforementioned reticulation events and adding
them to the backbone in order to build an explicit weighted
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consensus network. Otherwise, if only a multiple sequence
alignment is given, a weight-based extended majority rule con-
sensus tree will be built from it and used as the backbone of
the network. The time complexity of Algorithm 2 is O(|SW] x
(O(PhylInfMeth) + n x m* x (n + 1)), where |SW] is the cardinal-
ity of the set of MSA (multiple sequence alignment) fragments
examined by the sliding window procedure and O(Phyllnf-
Meth) is the running time of the phylogeny inference method
used to infer the tree T from the MSA fragment MSA.

Algorithm 2: Inference of intragenic recombination or partial horizontal gene transfer events
followed by intragenic recombination — two or more genes recombine to create a mosaic gene

Input: unrooted species phylogenetic tree T, and multiple sequence alignment MSA (or only
multiple sequence alignment MSA) defined on the same set of taxa X
Output: explicit weighted consensus network N, on X representing recombination or partial

HGT events

begin
define p - cut-off level

define C(7) - set of clusters of tree T and C,,(7) - weighted set of clusters of T’
define SW - set of MSA fragments examined by sliding window procedure

if 7, is not given then

infer weight-based consensus 7 from MSA4 (e.g., using PhyML, RaxML or BIONJ)

for each MSA fragment, MSAy, from SW

infer a phylogenetic tree 7 from MSA;
compute bootstrap scores of internal branches of T’
infer C(7), set of all clusters of T

for each cluster ¢ of C(7)
compute weight W(c) of ¢ using Equation 1 (based on bootstrap scores)
add c to C,(T)

sort C,(7T) according to the weight magnitude

NASW) = Ty // network is first defined as species tree

among remaining clusters in C,,(7), identify clusters with the 1st degree of
incompatibility with N(SW)

while (there exists a cluster ¢ from C,(T) such that:

((W(c) =2 p)) && (c has the 1st degree of incompatibility with N,(SW))) do

find cluster ¢ from C,,(7) with the highest weight #(c) such that:
(M) =2 p)) && (c has the Ist degree of incompatibility with N,(SW)))
d = find_direction (reticulation branch r., N(SW), T)
add r,, representing cluster ¢, to N,(SW) with direction d and weight #(c)
eliminate ¢ from C,(7)
among remaining clusters in C,,(7), identify clusters with the 1st degree of
incompatibility with N,(SW)

if (recombination network N,(SW) obtained for the MSA fragment MSA,is
identical to that obtained for the previous interval MSAy,) then
merge MSAy; and MSA as intervals providing the identical solutions

if (recombination is studied and both parents of recombinant species are identified) then

end

transform N, into an explicit weighted hybridization network (see Figure 3)
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Our third algorithm (Algorithm 3) is intended for finding
complete horizontal gene transfer events. It accepts as in-
put a species tree in addition to one or more gene trees (or
multiple sequence alignments). Algorithm 3 uses the spe-
cies tree as the backbone for the network and adds to it the
most significant clusters (ie., horizontal gene transfer
events) obtained after computing the weights of the gene
tree clusters in order to build the weighted consensus hori-
zontal gene transfer network. The time complexity of Algo-
rithm 3 is O(PhylInfMeth) + O(n x m* x (n + 1)).
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Inferring cluster weights

For each cluster from the set of the given gene trees,
we have first to compute its overall weight. Every
tree cluster can be associated with two types of ini-
tial weights, one being its proper bootstrap score or
posterior probability in its tree of origin and ano-
ther characterizing its entire tree of origin. In the
case when the input contains only the weights asso-
ciated with internal tree branches and lacks any
measure of support for entire trees, we use the

Algorithm 3: Inference of horizontal gene transfer events (the case of a complete gene
transfers when the whole gene is transferred from donor to host; Input data: Species tree +

gene tree or Species tree + MSA)

Input: unrooted species phylogenetic tree T, and unrooted gene phylogenetic tree Ty (or
multiple gene sequence alignment MSA) defined on the same set of taxa X
Output: explicit weighted consensus horizontal gene transfer network Njg on X

begin

define p - cut-off level

define C(7y) - set of clusters of tree 7 and C,(7,) - weighted set of clusters of tree 7,

if (T is not given) then

infer weight-based consensus 7, from MSA4 (e.g., using PhyML, RaxML or BIONJ)
compute bootstrap scores of internal branches (i.e. clusters) of 7,

for each cluster c of 7,

compute weight W(c) of ¢ using Equation 1 (based on bootstrap scores)

add c to C\(Ty)

sort C,,(7T,) according to the weight magnitude
Nig = T // network is first defined as backbone tree
among remaining clusters in C,(7g), identify clusters with the 1st degree of

incompatibility with Nj,g

while (there exists a cluster ¢ from C,,(7}) such that:
((W(c) 2 p)) && (c has the Ist degree of incompatibility with N,,)) do
find cluster ¢ from C,(T,) with the highest weight #(c) such that:
((W(c) 2 p)) && (c has the 1st degree of incompatibility with Nj))
d = find_direction (reticulation branch 7., Njg, Tg)
add r,, representing cluster ¢, to N,y with direction d and weight W(c)

eliminate ¢ from C,(7)

among remaining clusters in C,(7y), identify clusters with the 1st degree of

incompatibility with Njg,
end

The resulting phylogenetic network, regardless of the
algorithm used, will be an explicit (in the sense that it
represents exactly the assumed evolutionary mecha-
nism) weighted and directed consensus network as
shown in detail in Figure 3. The weight estimates of the
obtained backbone and reticulation branches provide
statistical support of the inferred speciation and reticu-
lation events.

following equation to calculate the overall cluster
weights:

Wi(C) = (Eaoy x W(Cy))/n )

where W;(C) is the overall weight of cluster i, W(Cj) is
the weight of cluster i in tree j and # is the total number
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Species (or backbone) tree

Explicit weighted hybridization
network (or recombination network
with two parent species detected)

y x h z

Gene tree (or concensus
tree of a set of gene trees)

AN AN =L

Figure 3 Building explicit weighted consensus phylogenetic networks. The explicit network is built from sets of clusters defined by a

Implicit phylogenetic
network

l

Explicit weighted horizontal gene transfer network
(or recombination network with one parent species
detected) - intermediate network for hybridization

species (i.e. backbone) phylogenetic tree and a gene tree (or a set of gene trees): An implicit weighted phylogenetic network is first constructed;
then, it is transformed into an explicit weighted horizontal gene transfer network, which can be transformed into an explicit hybridization
network. Traditional (i.e. complete) horizontal gene transfer, partial horizontal gene transfer and recombination events for which the recombinant
organism and only one of its parents can be identified give rise to a horizontal gene transfer network. Diploid and polyploid hybridization along
with recombination events for which the recombinant organism and both of its parents can be identified give rise to a hybridization network.
Straight lines indicate single tree or network branches, dashed lines - reticulation branches and wavy lines - paths including multiple branches.

of trees. If cluster i is absent in tree j, then o; equals 0,
otherwise it equals 1.

Conversely, when the entire tree support is provided
for each tree from the given set of trees but the input
lacks individual supports for internal branches, we
use the following equation to calculate the overall clus-
ter weights:

WA(T) = (Sa0y x W(T))) /n. @

where W(T) is the overall weight of cluster i calculated
from the tree supports only, W(T)) is the support of tree
j and # is the total number of trees.

Finally, when both cluster and tree initial supports are
provided in the input, we use the following equation
to infer the overall cluster weight, W;(C,T), for each
cluster i

‘j 1045 X W(CU) x

Wi(C,T) = (z w(T))/n,  (3)
where W(C;) is the weight of cluster i in tree j, W(T)) is
the support for tree j and 7 is the total number of trees.
These overall cluster weights will be used to build the
consensus tree or network as described above.

Assessing the efficiency of the new method

Real data

We examined three evolutionary datasets to test the effi-
ciency of our weighted consensus network inference
method. The first dataset consisted of 677 bp nucleotide
sequences of mitochondrial cytochrome c¢ oxidase sub-
unit II of six species of honeybees (subfamily Apinae).
The second one comprised eight chloroplast 16S rRNAs
(920 nucleotides) from plants, algae and cyanobacterium.
These two datasets are well-known and distributed with
the SplitsTree program [43] among the data encompassing
the events of reticulate evolution. The third considered
dataset consisted of amino acid sequences of ribosomal
protein rpL12e for 14 Archaeal species [49].

We applied four different tree inference methods on
both real and simulated (described in the next section)
data to produce collections of gene trees. One representative
from each of the four main tree reconstruction approaches
(i.e., distance-based [50], maximum parsimony [51],
maximum likelihood [52] and Bayesian [53] approaches)
was considered. The exact methods we used were the
following: BIONJ [54], DNAPARS from the PHYLIP
package [55], PhyML [56] and MrBayes [57].

We applied these tree inference methods on both
whole sequences and fragments of sequences (using a
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sliding window procedure) in order to search for alterna-
tive evolutionary events which might have affected either
entire gene sequences (e.g., hybridization events) or only
small sequence fragments (e.g., partial horizontal gene
transfer events). The latter events are usually ignored
when analyzing entire genetic sequences during tree or
network reconstruction. In the case of horizontal gene
transfer events in Archaebacteria, we also computed the
directions of complete and partial horizontal gene trans-
fers using a dedicated function based on the Robinson
and Foulds topological distance [58]; see the function
find_direction in the end of Algorithm 1. Assume that T
is the backbone phylogenetic tree and r is the newly
found horizontal gene transfer event between clusters C;
and C, (ie., groups of species related by r). Let T} be the
tree obtained by an SPR move induced by reticulation
branch r with direction d; (corresponding to the horizon-
tal gene transfer from cluster C; to cluster C,) and 7, be
the tree with r added to represent the gene transfer in the
opposite direction (i.e., from C, to C;). Then, the cumula-
tive Robinson and Foulds distance is calculated between
T1 and all the original gene trees containing cluster C = C;
u C,, on one hand, and T, and all the original gene trees
containing C, on the other hand. Finally, the obtained cu-
mulative Robinson and Foulds distances are weighted by
the support of the original gene trees containing C as it is
shown in Algorithm 1 (see the exact formula is in the
function find_direction) and the resulting inequality indi-
cates the direction of the horizontal gene transfer r.

Simulated data

We generated sets of trees encompassing multiple reticula-
tion features to test the efficiency of the proposed consensus
network inference method in the context of recombination.
First, random binary phylogenetic trees were generated
using the procedure originally described by Kuhner and
Felsenstein [59]. The branch lengths of these phylogenies
were computed using an exponential distribution. Following
the approach of Guindon and Gascuel [60], we added some
noise to the tree branches to create a deviation from the
molecular clock hypothesis. All branch lengths were multi-
plied by 1 + ax, where the variable x was obtained from an
exponential distribution (P(x > k) =exp (-k)), and the con-
stant @ was a tuning factor accounting for the deviation in-
tensity. The value of a was fixed to 0.8. The random trees
generated by this procedure had depth of O(log (1)), where
n was the number of species (i.e., number of leaves in a
binary phylogenetic tree).

Second, we ran the SeqGen program [61] to generate
DNA sequences along the branches of the phylogenies
constructed at the first step. SeqGen was used with the
HKY model of nucleotide substitution, model of rate
heterogeneity assigning different rates to different sites
according to a gamma distribution (with the shape
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parameter equal to 1.0) and (TS/TV) ratio equal to 2.0.
These settings were selected in order to render the
simulation parameters similar to those used when pro-
cessing the real datasets. The DNA sequences with 400
nucleotides were generated. Third, using the reticulation
events generation procedure described in [62], we incor-
porated the blocks of fragments induced by recombin-
ation into the generated multiple sequence alignments
(MSAs). The sliding window procedure was then em-
ployed to recover these recombined blocks of sequences.
Forth, for each generated MSA, the BION], DNAPARS,
PhyML and MrBayes methods were carried separately to
infer phylogenetic trees for the whole MSA and for each
MSA fragment corresponding to the fixed position of
the sliding window. Finally, we carried the proposed
weighted consensus network building method to infer
the consensus tree topology (ie., backbone evolutionary
structure representing the most significant speciation
events) as well as to recover the most significant (those
with the highest weights) recombination events. We re-
peated this procedure 100 times for each original tree, i.e.,
100 different MSAs were generated for the same original
tree. The sliding window sizes considered in our simula-
tions were 10, 20, 30, 40 and 50% of the total length of the
generated MSAs. The sliding window progress step of 5
nucleotides was adopted. Simulations were carried out
with the phylogenies having 16, 24, 32, 48 and 64 leaves
and encompassing 1 to 8 recombination events.

Results

First example: honeybee data

We applied the BIONJ, DNAPARS, PhyML and MrBayes
methods to infer the evolutionary history of the six hon-
eybee species. The inferred trees are shown in Figure 4.
The BIONJ and PhyML methods provided a single phyl-
ogeny (Figures 4A and 4B, respectively). In contrast, two
optimal phylogenies were obtained by each of the DNA-
PARS and MrBayes methods (Figures 4C and 4D repre-
sent maximum parsimony trees and Figures 4E and 4 F
represent Bayesian trees). For the sake of simplicity, we
assigned a total weight of 1 to each of the considered
methods. Therefore, the BION] and PhyML phylogenies
received a weight of 1, whereas each of the DNAPARS
phylogenies received a weight of 0.5. For the case of
Bayesian phylogenies, we also used their specific poster-
ior probabilities whose sum was scaled to 1.

After breaking down the phylogenies into their clus-
ters and calculating the cluster weights using Equation 3,
we ranked all the clusters according to their weights and
put together the compatible clusters to build the back-
bone of the consensus network based on the clusters
ranks. Finally, we added the rest of the highly ranked
clusters to the backbone tree to construct a weighted
consensus network of the six honeybee species. In this
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Figure 4 The set of six gene trees (A-F) obtained using different tree reconstruction methods for honeybee dataset. ML, NJ, MP and BT
abbreviations stand for trees obtained by maximum likelihood, neighbour-joining (here a distance-based approach implemented in BIOINJ),

analysis, we found one reticulation branch (alternative
event) in addition to the backbone (consensus tree).
The explicit weighted consensus network built using
Algorithm 1 is shown in Figure 5A. It depicts one re-
combination event which might have influenced the
evolution of the considered honeybee species.

Second example: chloroplast data

In this example, we used the same four tree inference
methods as in the previous section to model evolution-
ary relationships among the eight plants from the
chloroplast dataset. The application of these methods re-
sulted in one maximum likelihood (Figure 6A), one
distance-based (Figure 6B), three maximum parsimony
(Figures 6C to 6E) and two Bayesian phylogenies
(Figures 6F and 6G). Similar to the previous example, we
assigned a total weight of 1 to each method. Therefore,
the BION]J and PhyML phylogenies received the weight
of 1 while each of the DNAPARS trees received the
weight of 0.33. In the case of the MrBayes phylogenies,
we also used their corresponding posterior probabilities
scaling their sum to 1.

We, then, computed the weights of all the clusters pre-
sented in at least one of the seven phylogenetic trees using
Equation 3. Finally, we built the backbone of the consen-
sus network and added to it the reticulation branches after
ranking the clusters as described in Algorithm 1.

In this analysis, we found three reticulation branches
which represent possible recombination events. The re-
constructed weighted consensus network of the plastid
16 s rRNAs is shown in Figure 7A. Using the cut-off
level of 10% and eliminating the two poorly supported
reticulation branches (those with the weights of 2% and

3%) would provide us with the weighted consensus net-
work encompassing one probable reticulation event only
(that with the weight of 23%).

Third example: archaebacteria data
Similar to the two previous examples we used the
four above-mentioned tree inference methods to build
multiple phylogenies of the gene rpli2e for 14 Archaebac-
teria species originally analyzed by Matte-Tailliez et al. [49].
Thus, one maximum likelihood (Figure 8A), one distance-
based (Figure 8B), five maximum parsimony (Figures 8C
to 8G) and two Bayesian phylogenies (Figures 8H and 8I)
were obtained. Considering the species tree (Figure 9A),
which was reconstructed using the concatenation ap-
proach [49], we applied Algorithm 3 to the obtained
phylogenies to infer a horizontal gene transfer net-
work of the gene rpli2e. The species tree was used as
the backbone topology to which we added the highly
ranked incompatible clusters to build the weighted
consensus evolutionary network encompassing a sce-
nario of horizontal transfers of rp/i12e. Using the cut-off
level of 30%, we obtained five reticulation branches depict-
ing alternative evolutionary histories (Figure 9B). Then,
applying the above-discussed strategy for determining
horizontal gene transfer direction (see function find_direc-
tion), we assigned directions to all obtained gene transfer
branches. In the case of Transfers 1 and 2 (Figure 9B),
the transfer direction cannot be retraced without dis-
crepancy because both concurrent transfers are sym-
metric and lead to the same tree topology.

Note that in Figures 5A and 7A the supporting
weights calculated by our method for the backbone and
reticulation branches are given in percentages. For the
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Figure 5 Explicit weighted consensus networks inferred for the
honeybee dataset. A) network obtained from full-length sequences
using all the six trees from Figure 4 (which were inferred using the
ML, NJ, MP and BT approaches); B) network obtained by the sliding
window procedure with a ML method used for tree inference; C)
network obtained by the sliding window procedure with a Bayesian
method used for tree inference. The bootstrap scores of internal
branches of the backbone tree and the weights of reticulation
branches are indicated. The sliding window procedure was used to
detect smaller-scale reticulation events which are represented by
dashed lines in parts B and C of the figure. For each small-scale
event, the sequence interval corresponding to this event is given
between brackets.

network presented in Figure 9B our method was carried
out to calculate the supporting weights of the reticula-
tion branches only, whereas the weights of the internal
branches of the backbone (species) phylogeny are the
bootstrap scores provided by Matte-Tailliez and col-
leagues [49].

Simulation results
The results provided by Algorithm 2 (inference of
recombination events using a sliding window approach)
on simulated data are shown in Figures 10 and 11. For
each parameter combination, including the number of
taxa, number of reticulation events and sliding window
size, 100 datasets were generated and analyzed. The
average rates of true and false positives characterizing
our weighted consensus network building method are
illustrated. Since in our simulations we knew the exact
source and target of each reticulation event, we were
able to estimate the success and failure rates of the
consensus network method in terms of true positives
and false positives by measuring the proportion of times
when our method was able to identify both the exact
source branch and destination branch of the event (ie.,
true positive reticulation) and when either the source or
destination branch of the detected event, or both of them,
were different from the simulated ones (i.e., false positive
reticulation). The x-axis depicts either the number of re-
combination events introduced in the data (Figure 10) or
the number of taxa (i.e., number of species or tree leaves -
Figure 11). The results obtained for the sliding windows
whose width was equal to 10, 20, 30, 40 and 50% of the
total length of the multiple sequence alignment are illus-
trated in different panels. The y-axis represents the aver-
age number of times when our weighted consensus
network reconstruction method correctly (true positives -
left-hand panels) or incorrectly (false positives - right-
hand panels) identified intragenic recombination events.
The obtained results suggest that when the number of
recombination events is small, they are more likely to be
detected correctly. The best results in terms of both true
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Figure 6 The set of seven gene trees (A-G) inferred for the chloroplast dataset. The abbreviations used in Figure 4 also apply here.

and false positives were found for longer recombination
fragments, i.e, 40 and 50% of the total length of the
multiple sequence alignment. Another general trend is
that the PhyML and MrBayes methods were much
more effective in inferring the correct supporting tree
and reticulation events than their BION] and DNA-
PARS counterparts. These results also suggest that it is
much easier to detect recombination events in larger
(i.e., 32 and 64-species) phylogenies. Furthermore, the
probability of finding the correct reticulation events in-
creases as the width of the sliding window becomes closer
to the real length of the simulated recombination
fragment.

Searching for intragenic recombination and partial
horizontal gene transfer events in real data

Considering the results obtained for simulated data,
we applied Algorithm 2 based on the sliding window
approach and the two best tree inference methods (PhyML
and MrBayes) to reanalyze the honeybee, chloroplast and
Archaebacteria data described above. The purpose of
this new analysis was to discover alternative evolutionary
events of smaller lengths (ie., intragenic recombination
and partial horizontal gene transfer events which trigger
the formation of mosaic genes [62]). Those partial evolu-
tionary events, in the sense that they concern only a part of

the given gene might have gone unnoticed when analyzing
the full-length gene sequences.

For the honeybee example, the PhyML and MrBayes
methods allowed us to infer one and two possible
recombination events (Figures 5B and 5C), respectively,
in addition to a possible recombination event found in the
analysis based on the full-length sequences (ie., linking
the species A. mellifer and A. serana in Figure 5A). For
the chloroplast data, two additional reticulation events
were detected using PhyML (Figure 7B) compared to
the full-length sequence analysis (Figure 7A). Using
MrBayes, we inferred four additional recombination
events (Figure 7C) compared to the full-length sequence
analysis three of which were concordant with the results
obtained using PhyML.

For the smaller-scale recombination events found
using Algorithm 2 for the honeybee and chloroplast
data, the intervals where they were detected are indi-
cated between brackets in addition to their supporting
weights (see Figures 5B and 5C, Figures 7B and 7C). For
the full-sequence analysis events found using Algorithm 1
(see Figures 5A and 7A), no intervals are given because
the latter events apply to entire genes.

Finally, in the case of the Archaebacteria data, the
PhyML and MrBayes methods allowed us to detect eight
and seven partial horizontal gene transfers, respectively
(Figures 9C and 9D). Three of the detected partial gene
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Figure 7 Explicit weighted consensus networks obtained for
the chloroplast dataset. A) network obtained from full-length
sequences using all the seven trees from Figure 6 (which were
inferred using the ML, NJ, MP and BT approaches); B) network
obtained by the sliding window procedure with a ML method
used for tree inference; C) network obtained by the sliding window
procedure with a Bayesian method used for tree inference. The
notations of Figure 5 also apply here.

transfers (Transfers 1, 3 and 6 in Figures 9C and 9D),
which were found by both methods, were also reported
by Boc et al. [63] (a study dedicated to the detection of
complete horizontal gene transfers) and Boc et al. [64]
(a study dedicated to the detection of partial horizontal
gene transfers). Two other partial gene transfers (Trans-
fers 5 and 8 in Figure 9C) detected using PhyML (one of
them was also detected using MrBayes; Transfer 5 in
Figures 9C and 9D) were reported only in [64], while an-
other gene transfer (Transfer 4 in Figures 9C and 9D)
detected using both PhyML and MrBayes was a combi-
nation of two separate complete gene transfer events
(Transfers 3 and 4 in Figure 9B) originally detected by Boc
et al. [63]. Our method also identified two additional partial
horizontal gene transfers (Transfers 2 and 7 in Figures 9C
and 9D) that were not indicated in Boc et al. [64].

For comparison purposes, we also inferred splits
graphs and cluster networks for the three above-
mentioned real datasets using the SplitsTree [4,43] and
Dendroscope [65] programs, respectively. Moreover,
reticulograms were inferred for the honeybee and
chloroplast datasets and a horizontal gene transfer net-
work was constructed for the Archaebacteria dataset,
both using the T-REX web server [63,66]. The Neighbor-
Net algorithm [67] from the SplitsTree 4 software was
used with the ordinary least-square optimization and
convex hull algorithm options. The Dendroscope pro-
gram [65] was carried out with the default parameters
and the percent threshold equal to 20 to build cluster
networks. The reticulogram inference algorithm was
carried out using the weighted least-square method MW
with global optimization [68] to infer the support tree
and the stopping criterion Q; [3]. The HGT-Detection
algorithm was performed with the HGT bootstrap
option and the species and gene tree roots selected as
described in [63].

The obtained network representations are shown
in Figures 12, 13 and 14 for the honeybee, chloro-
plast and Archaebacteria examples, respectively. In
Figures 12A and 13A, one of the reticulation
branches (represented by dashed lines) found by
the reticulogram inference method was also identi-
fied by our weighted consensus network building
method (i.e., the reticulation branches between (1)
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Figure 9 Explicit weighted consensus horizontal gene transfer networks inferred for the Archaebacteria dataset. A) species tree
obtained by Matte-Tailliez et al. [49]; B) network obtained from full-length sequences using all the nine gene trees from Figure 8 (which were
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A. mellifer and A. cerana in Figure 12A and be-
tween (2) Euglena and Olithodiscus in Figure 13A).
The similarities between horizontal gene transfer
network found by us and by HGT-Detection [63]
(Figure 14A) will be discussed in detail in the next
section.

Discussion and conclusion

Dealing with multiple
either through the

incompatible phylogenies inferred
use of different reconstruction

methods or by including multiple genes in the analysis
has been always a major issue in phylogenetics. The

degree of uncertainty

increases in line with the number
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Figure 10 Average true-positive (left-hand panel) and false-positive (right-hand panel) rates provided by the weighted consensus
network reconstruction method depending on the number of recombination events in the simulated data and the tree inference
method used. The presented rates are the averages computed for different sliding window sizes (varying from 10 to 50% of the total MSA
length) and different numbers of taxa (ranging from 16 to 64 with the step of 8); 100 datasets were tested for each parameter combination;
ML, NJ, MP and BT abbreviations stand for the PhyML, BIOINJ, DNAPARS and MrBayes methods, respectively.

of various phylogenies inferred for the same set of
species [38]. The concatenation approach, which has
been widely used as a solution to the single-gene phylo-
genies discordance problem, has been proven to lead to
biased and misleading phylogenies in many practical
situations [30-32]. For instance, Kubatko and Degnan [34]
showed that when the internal branches of a species
phylogeny are short (due to adaptive radiation, increased
number of taxa from the same group or recent diver-
gences), the concatenation approach usually reduces the
accuracy of standard phylogenetic methods. The latter
authors also suggested that bootstrap scores obtained
from concatenated datasets tend to show moderate to
strong support for incorrect trees [34]. In general, the
main drawback of the concatenation approach lies in its
flawed assumption that all the genes (and in a similar
way, the whole genomes) have been subject to the same
evolutionary processes at the same evolutionary rate,
and consequently, no heterogeneity exists among the
genes. Given the broad occurrence of heterogeneity among
genes and the high number of phylogenetic mechanisms
influencing their evolution, one can argue that in a consid-
erable number of cases the concatenation approach will fail
to infer a reliable congruent phylogenetic tree or network.
Since incongruence increases with the number of genes
included in the analysis, proposing as a final cohesive
solution a single phylogeny reconstructed using either
the concatenation or the consensus tree approaches is
only an indication of ignoring phylogenetic conflicts, and
consequently, ignoring many widespread evolutionary
processes such as horizontal gene transfer, recombination,
hybridization and deep coalescence, which play major
roles in the evolution of many species.

When the heterogeneity among genes is due to reticu-
late evolution, phylogenetic networks should be used
in place of traditional or consensus phylogenetic trees
[3-5]. Phylogenetic networks are generalizations of
phylogenetic trees intended to represent both speci-
ation and reticulate evolutionary events characterizing
the given group of genes and species explicit networks)
or to display conflicting evolutionary signals present in
the data (implicit networks). To address the gene trees
discordancy issue, we described here a new weighted
consensus network reconstruction method which is
able to infer and validate statistically the dominant
evolutionary history of species (consensus tree) as well

as the alternative evolutionary scenarios (consensus
reticulation events).

Two practical situations are possible: we are either in
possession of a reliable species phylogeny or not. In the
case when we have a reliable species tree (e.g., when tree
topology is confirmed via the Tree of Life project), we
can directly define it as the network support structure.
Otherwise, averaging the tree clusters present in the
given gene trees and using the consensus tree approach
as the starting point for building the consensus network
is a natural way of computing the support species
tree structure in the absence of reliable additional
information. The weights are used to take into account
the tree cluster support when building an explicit
phylogenetic network. The more gene trees we have,
even when some of them are affected by different
reticulation events, the more reliable the consensus
network is. The most difficult practical situation for
our method is when we have only a few gene phylog-
enies, most of which are affected by the same reticu-
lation event. But there is no any network building
method that will infer a correct explicit phylogenetic
network is such a situation.

We use both the discrepancy between the gene tree
topologies (i.e. between the gene tree clusters) and
statistical support of the gene tree branches in order to
indentify the consensus network branches and reticula-
tion events. Bootstrap scores or posterior probabilities of
the gene tree clusters are constantly used to compute
weights and thus to validate the selected network
braches. The acceptance of some of the clusters and
rejection of the other is determined by comparing the
cluster weights to a pre-defined threshold. Indeed, like
any other phylogenetic method, bootstrapping has its
own pitfalls [69]. However, in general, bootstrap scores
and posterior probabilities are widely-accepted statistical
estimates which have been proven very useful for assessing
statistical robustness of phylogenetic trees.

Many studies supported by simulations advocate
the use of probabilistic methods over distance- and
parsimony-based approaches for inferring phylogenetic
trees [12,60,70]. Our general conclusion supported by
the simulation results is that phylogenetic networks
should be preferably reconstructed using maximum
likelihood or Bayesian approaches as well. However, in
some cases in this study, we used all the four main
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Figure 11 Average true-positive (left-hand panel) and false-positive (right-hand panel) rates provided by the weighted consensus
network reconstruction method depending on the number of taxa in the simulated data and the tree inference method used.

The presented rates are the averages computed for different sliding window sizes (varying from 10 to 50% of the total MSA length) and different
numbers of recombination events (ranging from 1 to 8); 100 datasets were tested for each parameter combination; ML, NJ, MP and BT
abbreviations stand for the PhyML, BIOINJ, DNAPARS and MrBayes methods, respectively.

tree reconstruction approaches since different phylo-
genetic assumptions, optimality criterions and nucleo-
tide or amino acid substitution models augment the
collective probability of finding potential evolutionary
conflicts.

In our first example examining the evolution of six
honeybee species, we discovered a possible reticulate
evolutionary history, suggesting that A. cerana could be
a closer relative of A. mellifer, compared to the backbone
species phylogeny in which the closest relative of A.
mellifer is A. dorsata (Figure 5A - network obtained
from the full-length sequences). This finding was
consistent with a possible hybridization/recombination
hypothesis involving the ancestors of A. cerana and A.
mellifer, which was first formulated by Makarenkov and
colleagues [71]. Our weighted hybridization networks con-
structed using the sliding window procedure (Figure
5B-C) suggest explicitly that A. cerana is a possible hybrid of
A. mellifer and A. koschevnikovi (see the arrows stemming
from the A. mellifer and A. koschevnikovi branches and en-
tering into the A. cerana branch). The opposite arrows en-
tering into the A. cerana branch concern the intervals
that have a very short overlap in both cases (Figures 5B
and 5C) what suggests a possible recombination event.
We cannot provide such an easy interpretation for the
corresponding reticulogram, cluster network or splits
graph (Figures 12A to 12C, respectively). Note that the
backbone phylogeny we built using the bootstrap-based
extended majority rule was consistent with the species
phylogeny inferred in [68].

Similarly, the dominant evolutionary history (i.e., the
backbone phylogeny) we inferred when analyzing the
chloroplast dataset was consistent with the findings of
Makarenkov and Legendre [11]. The most significant
reticulation event depicted in the network obtained from
the full-length sequences (it is represented by a double-
headed arrow in Figure 7A showing that each of the
involved species might be a parent of the other) suggests
a closer relationship between Euglena and Olithodiscus
(ie, stemming from a possible hybridization event
involving the ancestors of these species) compared to
the dominant scenario in which Olithodiscus is the
closest neighbour of Anacystis. The networks inferred
using the sliding window procedure (Figure 7B-C)
suggest in addition that Chlamydomonas might be a
hybrid species whose possible parents include the

ancestors of Anacystis and Euglena, and the common an-
cestor of Tobacco, Rice and Marchantia, and that Euglena
might be a parent of Chlorella.

In the horizontal gene transfer example, we consid-
ered the maximum likelihood phylogeny of 14 Archaean
species inferred by Matte-Tailliez and colleagues [49]
using the gene concatenation approach. This tree played
the role of the species tree, representing the dominant
evolutionary history, in our analysis (Figure 9A). First,
using multiple phylogenies of the gene rpli2e inferred
using the BIONJ, DNAPARS, PhyML and MrBayes
methods (Figure 8) and Algorithm 3, we identified five
potential horizontal gene transfer relationships not
accounted for by the backbone tree topology (Figure 9B).
Our findings were consistent with the horizontal
gene transfer hypothesis formulated by Boc et al. [62].
Four transfer branches we inferred (see Transfers 1, 2, 4
and 5 in Figure 9B) were equivalent to those obtained
by Boc and colleagues (Figure 14A). Furthermore, the
fifth horizontal gene transfer we found (Transfer 3 in
Figure 9B) differs from Transfer 5 in Figure 14A only by
the presence of M. bakeri in the cluster of the donor
organisms.

While full-length multiple sequence alignments
can be directly used for finding diploid hybridization
and complete horizontal gene transfer events, we
need to consider the alignment fragments in order
to detect smaller-scale evolutionary events, such as
intragenic recombination and partial horizontal gene
transfer (i.e., in the latter case a horizontal gene
transfer is followed by an intragenic recombination
leading to the formation of a mosaic gene [62]). The
sliding window approach described above was applied
here to search for partial gene transfers. The weighted
consensus network of partial horizontal gene transfers
built using Algorithm 2 (Figure 9C and D) allowed us to
detect successfully five of the seven partial transfers
originally predicted by Boc et al. [64].

In terms of visualization and results interpretation,
our explicit network model is easily explicable, while the
interpretation of implicit network models (e.g., splits
graphs, cluster networks and reticulograms) becomes
extremely difficult when dealing with a high number of
species or conflicting events (see Figures 10B-C, 11B-C
and 12B-C). Methods and software developed by Huson
[43], Legendre and Makarenkov [3], Holland et al.
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[42,72] and Huson and Rupp [44] are rather devised to
infer and visualize incompatibilities among gene trees
without precisely describing the underlying evolutionary
events. In contrast, our explicit weighted consensus net-
work inference method is capable of detecting and valid-
ating, through the use of the weight function, the
following reticulate evolutionary events: diploid or poly-
ploid hybridization (recombination at the chromosome
level), intragenic recombination, complete horizontal
gene transfer and partial horizontal gene transfer
followed by intragenic recombination. In a recent at-
tempt, Guénoche [73] developed a method to tackle the
problem of conflicting evolutionary signals by finding
multiple consensus trees instead of a network as a
method for separating and representing the evolution
of diverging genes. In the future, it would be interest-
ing to verify whether this method could be extended
to the inference of multiple consensus phylogene-
tic networks representing alternative evolutionary hy-
potheses. The computer program implementing our
method is available for download at the following
URL: http://www.info2.uqam.ca/~makarenkov_v/Consensus
Network.rar.
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