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Abstract. Epithelial ovarian cancer (EOC) is one of the most 
lethal malignancies of the female reproductive organs. Increasing 
evidence has revealed that long non‑coding RNAs (lncRNAs) 
participate in tumorigenesis. Metastasis associated lung adeno-
carcinoma transcript 1 (MALAT1) is an lncRNA and plays 
a role in various types of tumors. However, the function of 
MALAT1 on cellular behavior in EOC remains unclear. The 
current study explored the expression of MALAT1 in ovarian 
cancer tissues and in EOC cell lines. Quantitative RT‑PCR 
analysis revealed that the expression of MALAT1 was higher 
in human ovarian malignant tumor tissues and EOC cells than 
in normal ovarian tissues and non‑tumorous human ovarian 
surface epithelial cells, respectively. By analyzing the online 
database Kaplan‑Meier Plotter, MALAT1 was identified to be 
correlated with the overall survival (OS) and progression‑free 
survival (PFS) of patients with ovarian cancer. Furthermore, 
knockdown of MALAT1 by small interfering RNA (siRNA) 
significantly decreased EOC cell viability, migration, and inva-
sion. Finally, dual‑luciferase reporter assays demonstrated that 
MALAT1 interacted with miR‑143‑3p, a miRNA that plays a 
role in EOC as demonstrated in our previous study. Inhibition 
of MALAT1 resulted in an increase of miR‑143‑3p expression, 
leading to a decrease of CMPK protein expression. In conclu-
sion, our results indicated that MALAT1 was overexpressed 
in EOC. Silencing of MALAT1 decreased EOC cell viability 
and inhibited EOC cell migration and invasion. These data 
revealed that MALAT1 may serve as a new therapeutic target 
of human EOC.

Introduction

Ovarian cancer (OC) is one of the most lethal malignan-
cies of the female reproductive organs, in the world. The 
estimated number of new cases of OC was 22,440 and the 

estimated mortality was 14,080, accounting for ~5% of the 
282,500 cancer‑related deaths of females in the United States 
in 2017 (1). The most frequent type of OC is epithelial ovarian 
cancer (EOC), which accounts for ~85% of total OCs (2). In 
spite of developments in surgery, chemotherapy, and radio-
therapy in the past decades, the overall survival (OS) rate of 
patients with EOC at the late stage is a consistently poor and 
unfavorable prognosis (3,4). It is also characterized by a high 
probability of drug resistance, leading to treatment failure and 
death in the majority of patients with distant metastasis (5). 
Nevertheless, the underlying molecular mechanisms for 
tumorigenesis, tumor progression, metastasis, and chemore-
sistance remain unclear. Therefore, it is necessary to acquire 
a better understanding of the targeted molecules involved in 
EOC and to find new therapeutic strategies for effective and 
sensitive intervention of EOC.

Long non‑coding RNAs (lncRNAs), which are initially 
regarded as transcriptional junk, are functionally classified 
as transcripts over 200 nucleotides in length lacking evident 
protein‑coding capacity  (6‑8). Previous studies have indi-
cated that lncRNAs participate in different aspects of tumor 
development, including tumorigenesis, tumor progression, 
and metastasis (9,10). For instance, the lncRNA HOTAIR was 
revealed to be upregulated in breast cancer tissues and cell lines 
and was closely correlated with the survival and metastasis of 
patients (11). The lncRNA lncARSR is exosome‑transmitted 
in renal cancer and was revealed to have a function on 
chemoresistance in patients with sunitinib treatment (12). The 
novel lncRNA UCC was found to be increased in colorectal 
cancer and could regulate cell growth, invasion, and tumor 
progression  (13). The lncRNA metastasis associated lung 
adenocarcinoma transcript 1 (MALAT1), first named in 2003, 
was revealed to be associated with the metastasis of patients 
with non‑small cell lung cancer (NSCLC) (14).

Our previous analysis revealed the clinical value of 
MALAT1 (15) which may potentially be applied as a new 
prognostic marker. It has been revealed that MALAT1 is 
involved in the development of various cancers, including lung, 
renal, hepatic, bladder, pancreatic, gastric, colorectal, brain 
and breast cancers (16‑24). Recently, several studies indicated 
that MALAT1 is associated with metastasis of patients with 
EOC (25,26). However, the effect of MALAT1 on cellular 
behavior in OC and the overall survival (OS) of patients with 
OC remain unclear. The present study aimed to examine 
MALAT1 expression in human EOC tissues and EOC cell 
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lines and to analyze MALAT1 expression associated with the 
OS and progression‑free survival (PFS) of patients with OC. 
Finally, a loss‑of‑function approach was used to explore the 
effect of MALAT1 on cellular behaviors in EOC cells.

Materials and methods

Cell line and cultivation. Human EOC cells SK‑OV‑3, 
OVCAR‑3, CAOV‑3 and ES‑2 were purchased from the 
American Type Culture Collection (ATCC; Manassas, VA, 
USA) and A2780 was obtained from the European Collection of 
Authenticated Cell Cultures (ECACC, Salisbury, UK). Human 
non‑tumorous ovarian surface epithelial cells  (HOSEpiC) 
were obtained from Guangzhou Jennio Biotech Co., Ltd. 
(Guangzhou, China). SK‑OV‑3 and CAOV‑3 cells were 
cultured in DMEM (Corning Life Sciences, Manassas, VA, 
USA). A2780, OVCAR‑3 and HOSEpiC cells were respectively 
cultured in RPMI‑1640 media (Corning Life Sciences). ES‑2 
cells were cultured in McCoy's 5A medium (Sigma‑Aldrich; 
Merck KGaA, Darmstadt, Germany). All media were supple-
mented with 10% fetal bovine serum (FBS; Gibco; Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) and were 
replaced with fresh medium every three days.

Clinical specimens. All tissue samples (n=32) were derived 
from hospitalized patients between June 2012 to October 2016 
at Jinshan Hospital, Fudan University. None of the patients 
with OC had received chemotherapy or radiotherapy prior 
to surgery. Control ovarian tissues were obtained from 
12 patients with non‑tumorous ovaries. The tumor and normal 
tissue specimens were frozen in liquid nitrogen after collection 
and stored at ‑80˚C until use. The present study was approved 
by the Ethics Committee of Jinshan Hospital and informed 
consent was obtained from each patient.

Bioinformatics analysis. The Kaplan‑Meier Plotter database, 
an online bioinformatics tool (www.kmplot.com), is available to 
evaluate the effect of genes on survival information in OC (27). 
Before starting the use of the tool, the samples from patients 
were filtered by stage, histology, grade, and treatment elements 
containing debulking status and applied chemotherapy. To 
assess the clinical value of MALAT1, patients with OC were 
selected for the calculation of OS and PFS and were divided 
into two groups using the median, a group with low expression 
of MALAT1 and a group with high expression of MALAT1. 
The Kaplan‑Meier survival curve was plotted. The hazard 
ratio (HR) with 95% confidence intervals (CIs) and the log‑rank 
P‑value were calculated. Online software LncBase Predicted v.2 
was used to predict a candidate of miRNA that interacted with 
MALAT1 (http://carolina.imis.athena‑innovation.gr/diana_
tools/web/index.php?r=lncbasev2%2Findex). Online software 
miRWalk 2.0 database was used to find a potential target of 
hsa‑miR‑143‑3p (http://zmf.umm.uni‑heidelberg.de/apps/zmf/
mirwalk2/index.html) (28).

Small interfering RNA (siRNA) transfection. The MALAT1-
siRNA (siMALAT1) and negative control‑siRNA (siNC) were 
obtained from RiboBio Co., Ltd. (Guangzhou, China). The 
sequence of siMALAT1 was 5'‑GCAAATGAAAGCTACC 
AAT‑3'. Briefly, cells were seeded in a 6‑well plate at a density of 

2x105 (OVCAR‑3) or 1.5x105 (SK‑OV‑3) cells/well. After culture 
for 24 h, the cells were transfected with siRNA using an X‑treme 
GENE Transfection Reagent (Roche Applied Science, 
Indianapolis, IN, USA) according to the protocol recommended 
by the manufacturer. The cells were then collected for subsequent 
experiments. The knockdown efficiency of siMALAT1 was 
confirmed by qRT‑PCR analysis.

RNA isolation and quantitative real‑time PCR. Total RNA from 
tissues and cells was extracted using an Axygen Bioscience kit 
(Suzhou, China) according to the manufacturer's protocol. The 
cDNA was synthesized using a Transcriptor First Strand cDNA 
Synthesis kit (Roche Applied Science). The reaction conditions 
of reverse transcription were: 25˚C for 10 min, 50˚C for 60 min, 
85˚C for 5 min, and 4˚C for 70 min. The qPCR experiments were 
conducted using a SYBR‑Green Master kit (Roche Applied 
Science). Glyceraldehyde‑3‑phosphate dehydrogenase (GAPDH), 
18S and U6 served as a control for cells, tissues, and miRNAs, 
respectively. The primers were: MALAT1 forward, 5'‑GTG 
TGCCAATGTTTCGTTTG‑3' and reverse, 5'‑AGGAGAAAG 
TGCCATGGTTG‑3'; hsa‑miR‑143‑3p forward, 5'‑CTGAGA 
TGAAGCACTGTAGCTC‑3' and reverse, 5'‑GTGCAGGGT 
CCGAGGT‑3'; GAPDH forward, 5'‑GCACCGTCAAGGCTG 
AGAAC‑3' and reverse, 5'‑TGGTGAAGACGCCAGTGGA‑3'; 
18S forward, 5'‑GACTCTGGCATGCTAACTAG‑3' and reverse, 
5'‑GACATCTAAGGGCATCACAG‑3'; and U6 forward, 5'‑CTC 
GCTTCGGCAGCACA‑3' and reverse, 5'‑AACGCTTCACGA 
ATTTGCGT‑3'. The expression of the target gene was analyzed 
by threshold cycle (Ct) 2‑ΔΔCt method obtained from Sequence 
Detection Software v1.4 (7300 Real‑Time PCR System; Applied 
Biosystems; Thermo Fisher Scientific, Inc.). The assay was 
performed at least three times.

Cell viability assessment. In brief, cells were cultured in 
96‑well plates at a density of 6x103 cells/100 µl medium/well 
overnight. After transfection and culture for 0, 24 and 48 h, 
the viability of cells was assessed using Cell Counting Kit‑8 
(CCK‑8; Dojindo Molecular Technologies, Inc., Kumamoto, 
Japan) according to the manufacturer's protocol. The optical 
density (OD) values at 450 nm were detected using a plate 
reader (Epoch; BioTek Instruments, Inc., Winooski, VT, USA). 
At least three independent experiments were conducted.

Cell migration and invasion assays. The cell migration and 
invasion capacities were evaluated by Transwell assays. Briefly, 
a Transwell chamber with a membrane of polycarbonate 
(6.5 mm in diameter with 8‑µm pores; Corning Life Sciences) 
was placed into a well of a 24‑well plate. In the lower chamber, 
700 µl suitable medium containing 10% FBS was added. For 
the migration assay, cells were seeded in the upper chamber 
at a concentration of ~6x104/100 µl with serum‑free culture 
medium. For the invasion assay, cells were seeded in the upper 
chamber with a Matrigel‑coated membrane (BD Biosciences, 
Bedford, MA, USA) at a concentration of ~8x104 cells in a 
100 µl volume of serum‑free culture medium. After incuba-
tion for 48 h, the non‑migrated or non‑invaded cells on the 
upper chamber were carefully removed with a cotton swab 
and washed with phosphate‑buffered saline (PBS). Migrated 
or invaded cells on the reversed membrane were fixed with 
4% paraformaldehyde for 15 min, stained with crystal violet 
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(Sigma‑Aldrich; Merck KGaA) for 30 min, photographed, and 
finally counted in three random fields under a light microscope 
(BX43; Olympus, Tokyo, Japan) at an x200 magnification. 
Experiments were conducted three times.

Dual‑luciferase reporter assay. 293T cells were cultured 
in a 24‑well plate and 70‑80% confluency was reached prior 
to the experiment. Cells were co‑transfected with 0.4  µg 
luciferase reporter vector (pmirGLO‑MALAT1‑wt or 
pmirGLO‑MALAT1‑mut) and 50 nM miRNA (miR‑143‑3p 
mimics or miR‑negative control (miR‑Ctrl; RiboBio Co., Ltd.) 
using the X‑tremeGENE Transfection Reagent (Roche Applied 
Science) and cultured for 24 h. Firefly and Renilla luciferase 
activities were detected using Luc‑Pair™ Duo‑Luciferase Assay 
Kit 2.0 (GeneCopoeia, Inc., Rockville, MD, USA) following 
co‑transfection according to the instructions recommended by 
the manufacturer. The relative firefly luciferase activity was 
corrected in accordance with the Renilla luciferase activity.

Western blot analysis. SK‑OV‑3 and OVCAR‑3 cells were 
lysed in SDS buffer with a phosphatase inhibitor (Nanjing 
KeyGen Biotech Co., Ltd., Nanjing, China). The protein 
concentration was determined using a BCA Protein Assay 
kit (Thermo Fisher Scientific, Inc.). After separation on 
SDS‑PAGE, total proteins were transferred to a PVDF 
membrane (EMD Millipore, Billerica, MA, USA) and incu-
bated with either mouse anti‑CMPK (cytidine monophosphate 
kinase; Cell Signaling Technology, Inc., Danvers, MA, USA) 
or rabbit anti‑GAPDH (Abcam, Cambridge, UK) primary 
antibody at 4˚C overnight. After incubation with horseradish 
peroxidase (HRP)‑conjugated goat anti‑mouse or anti‑rabbit 
IgG (Cell Signaling Technology) for 1 h at room temperature, 
the signals were detected using Tanon‑4500 Gel Imaging 
System (Tanon Science and Technology Co., Ltd., Shanghai, 
China) with an Immobilon™ Western Chemiluminescent 
HRP Substrate (EMD Millipore).

Statistical analysis. SPSS 18.0 software (SPSS Inc., Chicago, 
IL, USA) was used to analyze the collected data. For compar-
ison between two groups, a Student's  t‑test was used. The 
survival curve was evaluated with a log‑rank test. All data are 
displayed as the mean ± the standard error of the mean (SEM) 
from three independent experiments. A P‑value <0.05 was 
considered to indicate a statistically significant difference.

Results

MALAT1 is upregulated in human epithelial ovarian cancer 
tissues and cell lines. In order to identify functional MALAT1 
relevant to the progression of ovarian tumors, we performed 
qRT‑PCR to evaluate the expression of MALAT1 in human 
ovarian normal tissues (n=12), benign tumors (n=8), and 
malignant tumors (n=12, serous adenocarcinoma). The results 
revealed that the expression level of MALAT1 was signifi-
cantly higher in ovarian malignant tumors than normal ovarian 
tissues and ovarian benign tumors (P<0.01) (Fig. 1A). In addi-
tion, the expression of MALAT1 between diverse OC cell lines 
and normal ovarian HOSEpiC cells was detected by qRT‑PCR. 
The expression level of MALAT1 was high in EOC cell lines 
SK-OV‑3, OVCAR‑3, CAOV‑3 and A2780 cells compared to 

normal ovarian HOSEpiC cells and ovarian clear cell carci-
noma ES‑2 cells (P<0.05) (Fig. 1B).

MALAT1 is involved in the development of ovarian cancer. 
Based on the Kaplan‑Meier Plotter online database, we 
further analyzed the effect of MALAT1 on the OS and PFS of 
patients with OC. The survival plots revealed that the expres-
sion levels of MALAT1 were correlated with OS and PFS. 
The patients with high MALAT1 expression had low OS as 
shown in Fig. 2A (Affymetrix ID: 226675_s_at) and Fig. 2B 
(Affymetrix ID: 224567_x_at) and PFS as shown in Fig. 2C 
(Affymetrix ID: 226675_s_at) and Fig. 2D (Affymetrix ID: 
224567_x_at) (all P<0.05).

Knockdown of MALAT1 decreases ovarian cancer cell 
viability. In order to investigate the potential function of 
MALAT1 on the biological behaviors of OC cells, we 
conducted a loss‑of‑function assay. Knockdown of MALAT1 
by MALAT1‑siRNA (siMALAT1) was confirmed by qRT‑PCT 
in OVCAR‑3 and SK‑OV‑3 cells (Fig. 3A and B). Cells trans-
fected with siMALAT1 had a low expression of MALAT1 
compared with cells transfected with negative control‑siRNA 
(siNC) and blank control (Blank). Next, we assessed cell 
viability using a CCK‑8 assay. We found that the knockdown 
of MALAT1 significantly inhibited OC cell viability after 
48 h of transfection with siMALAT1 (Fig. 3C and D).

Figure 1. MALAT1 expression in human ovarian cancer. (A) Relative expres-
sion of MALAT1 was detected by qRT‑PCR in the normal ovarian tissues 
(n=12), ovarian benign (n=8), and malignant (n=12) tumors. (B) The expres-
sion of MALAT1 was detected by qRT‑PCR in diverse cell lines, including 
HOSEpiC, ES‑2, A2780, CAOV3, SK‑OV‑3 and OVCAR‑3 cells (n=3 repeats 
for each cell line). The results are presented as the mean ± SEM. *P<0.05; 
**P<0.01. MALAT1, metastasis associated lung adenocarcinoma transcript 1.
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Downregulation of MALAT1 expression suppresses ovarian 
cancer cell migration and invasion. Next, we investigated the 
effect of MALAT1 knockdown on OC cell migration and inva-
sion. Using Transwell migration assays, we determined that 
the number of migrated cells of OVCAR‑3 (Fig. 4A and B) 
and SK-OV‑3 (Fig. 4C and D) was significantly decreased 
after MALAT1‑siRNA transfection (siMALAT1) for 48 h 
compared with non‑transfected cells (Blank) and negative 
control‑siRNA (siNC) transfected cells. Furthermore, the 
knockdown of MALAT1 also significantly decreased the 
number of invaded cells of OVCAR‑3 (Fig. 5A and B) and 
SK‑OV‑3 (Fig. 5C and D).

MALAT1 interacts with miR‑143‑3p. One of the functions 
of lncRNAs is to regulate RNA expression. The regulatory 
mechanism of lncRNAs on miRNAs is that lncRNAs can 
act as sponges to influence the function of miRNAs  (29). 
Using online software LncBase Predicted v.2, we predicted 
a candidate of miRNA hsa‑miR‑143‑3p that is a potential 
target of MALAT1. Using the loss‑of‑function approach, we 
demonstrated for the first time that MALAT1 expression was 
correlated with miR‑143‑3p expression. The expression of 
miR‑143‑3p was significantly increased in OVACR‑3 (Fig. 6A) 
and SK‑OV‑3  (Fig.  6B) cells after MALAT1 knockdown 
(siMALAT1) for 48 h compared with the controls (Blank 

Figure 2. Survival plots. (A and B) Kaplan‑Meier OS curves and (C and D) PFS curves are presented. All patients were divided into two groups based on the 
expression of MALAT1: A high expression group and a low expression group. (A) OS curves derived from a microarray (Affymetrix ID: 226675_s_at). (B) OS 
curves derived from a microarray (Affymetrix ID: 224567_x_at). (C) PFS curves derived from a microarray (Affymetrix ID: 226675_s_at). (D) PFS curves 
derived from a microarray (Affymetrix ID: 224567_x_at). The HR with 95% CIs, and log‑rank P for OS and PFS were calculated, respectively. OS, overall 
survival; PFS, progression‑free survival; MALAT1, metastasis associated lung adenocarcinoma transcript 1; HR, hazard ratio; CIs, confidence intervals.
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and siNC) (P<0.05) as detected by qRT‑PCR. Next, we used 
a dual‑luciferase reporter assay to confirm the interaction 
between MALAT1 and miR‑143‑3p. Three sequences are 
shown in Fig. 6C: hsa‑miR‑143‑3p, a wild‑type MALAT1 
containing a miR‑143‑3p binding site (position at 3990‑3997 
of MALAT1), and a mutated MALAT1 in which the binding 
site was changed. The Dual‑Luciferase reporter assay 
confirmed that wild‑type MALT1, not mutated MALAT1, 

bound to miR‑143‑3p in 293T cells after 72 h of co‑trans-
fection (Fig. 6D). These data revealed that MALAT1 could 
directly bind to miR‑143‑3p. Using miRWalk 2.0 database, we 
found that miR‑143‑3p potentially targets CMPK, a molecule 
previously demonstrated to play a role in EOC (30). Western 
blotting revealed that treating OVCAR‑3 and SK‑OV‑3 cells 
with miR‑143‑3p mimics significantly decreased CMPK 
protein expression (Fig. 6E and F).

Figure 3. Effect of MALAT1‑siRNA on ovarian cancer cell viability. (A and C) OVCAR‑3 and (B and D) SK‑OV‑3 cells were transiently transfected with 
MALAT1‑siRNA (siMALAT1) or negative control‑siRNA (siNC). Non‑transfected cells were used as a blank control (Blank). (A and B) MALAT1 expression 
was detected by qRT‑PCR at 48 h post‑transfection. (C and D) A time‑course study revealing EOC cell viability as detected by CCK‑8 assay. The results 
are presented as the mean ± SEM. *P<0.05; **P<0.01; n=3 independent experiments. MALAT1, metastasis associated lung adenocarcinoma transcript 1; 
EOC, epithelial ovarian cancer.

Figure 4. Effect of MALAT1‑siRNA on cell migration. (A and B) OVCAR‑3 and (C and D) SK‑OV‑3 cell migration was performed using Transwell migration 
assays. The cells were transfected with MALAT1‑siRNA (siMALAT1) or negative control‑siRNA (siNC). Cells without transfection were used as a blank 
control (Blank). The effective migrating cells were counted and photographed. Original amplification, x200; scale bar, 100 µm. The histogram displays the 
quantitative analysis of migrated cells. The results are presented as the mean ± SEM. *P<0.05; n=3 independent experiments. MALAT1, metastasis associated 
lung adenocarcinoma transcript 1.
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Discussion

The present study demonstrated that MALAT1 was overex-
pressed in human ovarian malignant tissues and influenced the 
survival of patients with OC. MALAT1, an lncRNA, plays a 
role in the regulation of miRNAs, which further affect down-
stream gene regulation.

It has been revealed that MALAT1 is upregulated in 
several malignant tumors such as breast (24,31), bladder (32), 
pancreatic (20,33) and colorectal (22) cancers. Our present 
data revealed a similar result. MALAT1 was overexpressed in 
ovarian malignant tumors compared with benign tumors and 
normal ovarian tissue. Moreover, we also observed the high 
expression of MALAT1 in several EOC cell lines compared 
with non‑tumorous human ovarian surface epithelial 
cells (HOSEpiC). These data indicated that MALAT1 plays 
a role in EOC.

Through an online bioinformatics tool, we determined 
that MALAT1 could be a predictive biomarker of the survival 
of patients with OC. The available survival curves from 
the Kaplan‑Meier Plotter database were analyzed and they 
revealed that a high expression of MALAT1 was associ-
ated with poor OS and PFS in OC patients. Previous studies 
from us and other research groups have revealed the clinical 
significance of MALAT1  (15,32). The overexpression of 
MALAT1 was correlated with a decrease of disease‑specific 
survival of patients with breast cancer (24). Elevated plasma 
MALAT1 was associated with distant metastasis in patients 
with EOC (25). However, the possible regulation mechanism 
remains unclear.

Our functional assays revealed that the knockdown of 
MALAT1 significantly inhibited OC cell viability, migration, 
and invasion. Similar results have been reported by other 
research groups. For instance, the inhibition of MALAT1 
expression decreased OC cell proliferation, migration and 

invasion (34,35). MALAT1 induced EOC cell proliferation 
via the PI3K/Akt signaling pathway (26). These data indicated 
that MALAT1 may play a role in OC cell behavior.

MALAT1 can act as a regulator of the expression of other 
RNAs such as miRNAs and forms a molecular interaction 
network in different types of cancer (36,37). Recent studies 
have revealed that MALAT1 can target various miRNAs, 
which partly explains the mechanism of MALAT1 which plays 
a role in disease processes (38,39). For instance, miR‑200s was 
revealed to be sponged by MALAT1 in clear cell kidney carci-
noma (40). miR‑206 was determined to be negatively regulated 
by MALAT1 in gallbladder cancer (41). Using online software, 
we identified miR‑143‑3p as a possible target of MALAT1. 
Our Dual‑Luciferase reporter assay demonstrated the inter-
action between MALAT1 and miR‑143‑3p, indicating that 
MALAT1 is capable of functioning as a molecular sponge to 
adsorb miR‑143‑3p and subsequently regulate OC cell behav-
iors. Indeed, inhibition of MALAT1 resulted in an increase 
of miR‑143‑3p. Due to the size of MALAT1 which is over 
8,000 nt in length (14), we were not able to obtain a full‑length 
clone. Currently, we are unable to do a gain‑of‑function assay.

Several recent studies have revealed that miRNAs, a class 
of non‑coding RNAs ~22 nt in length, are subject to the regu-
lation of various biological processes as part of an integrated 
pathophysiological response to various stimuli (42,43). It has 
been revealed that miR‑143‑3p could play a role in tumori-
genesis and function as a tumor suppressor gene in breast 
cancer and esophageal squamous cell carcinoma  (44,45). 
We recently revealed that CMPK plays a role in ovarian 
tumorigenesis (30). Based on the bioinformatics analysis and 
our further experiments, we demonstrated that CMPK was 
one of the targets of miR‑143‑3p. It may be considered that 
miR‑143‑3p is a tumor‑inhibitory factor by targeting CMPK 
in OC. These results ascertained that MALAT1 negatively 
regulated miR‑143‑3p via a sponge‑like function, and in turn, 

Figure 5. Effect of MALAT1‑siRNA on cell invasion. (A and B) OVCAR‑3 and (C and D) SK‑OV‑3 cell invasion was performed using Transwell invasion 
assays. The cells were transfected with MALAT1‑siRNA (siMALAT1) or negative control‑siRNA (siNC). Cells without transfection were used as a blank 
control (Blank). The effective invaded cells were counted and photographed. Original amplification, x200; scale bar, 100 µm. The histogram displays the 
quantitative analysis of invaded cells. The results are presented as the mean ± SEM. *P<0.05; n=3 independent experiments. MALAT1, metastasis associated 
lung adenocarcinoma transcript 1.
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released the suppression of miR‑143‑3p to CMPK inhibition, 
leading to the progression of OC development.

In conclusion, our findings indicated that MALAT1 is 
overexpressed in ovarian malignant tumors and influences 
the survival of patients with OC. Knockdown of MALAT1 
affected OC cell behavior. MALAT1 functions as a tumor 

enhancer by interacting with miR‑143‑3p and may promote 
the development OC. Therefore, it is speculated that MALAT1 
may serve as a therapeutic target for the treatment of patients 
with OC. However, an understanding of concrete and extensive 
mechanisms underlying regulation of MALAT1 in OC needs 
to be further investigated.

Figure 6. Effect of MALAT1 on miR‑143‑3p expression. (A and B) Expression of miR‑143‑3p was detected by qRT‑PCR in (A) OVCAR‑3 and (B) SK‑OV‑3 
cells transfected with MALAT1‑siRNA (siMALAT1) or negative control‑siRNA (siNC). Cells without transfection were used as a blank control (Blank). 
(C) Sequences revealing specific binding sites between MALAT1 and miR‑143‑3p. MALAT1‑wt, wild‑type MALAT1; MALAT1‑mut, mutated MALAT1. 
(D) Dual‑Luciferase reporter assay. 293T cells were respectively co‑transfected with MALAT1‑wt/‑mut plasmids and miR‑143‑3p/negative control. 
(E and F) CMPK protein expression was detected by western blotting. (E) OVCAR‑3 and (F) SK‑OV‑3 cells were transfected with either miR‑143‑3p or control 
miRNA (miR‑Ctrl). The histogram reveals the quantitative analysis of the gels. The results are presented as the mean ± SEM. Ctrl, control; *P<0.05; **P<0.01; 
n=3 independent experiments. MALAT1, metastasis associated lung adenocarcinoma transcript 1.
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